中文
Announcement
More
Progress in Chemistry 2024, Vol. 36 Issue (3): 335-356 DOI: 10.7536/PC230714 Previous Articles   Next Articles

• Review •

Catalytic Conversion of Hydroxyl Compounds : Conversion of Phenols and Alcohols to Ethers and Esters

Xiaoyu Wang1(), Ruiyi Wang2, Xiangpeng Kong1, Yulan Niu1(), Zhanfeng Zheng2()   

  1. 1 Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China
    2 State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
  • Received: Revised: Online: Published:
  • Contact: * e-mail:wed2005290043@126.com (Xiaoyu Wang); niuyl@tit.edu.cn (Yulan Niu);zfzheng@sxicc.ac.cn (Zhanfeng Zheng)
  • Supported by:
    Fundamental Research Program of Shanxi Province(20210302124472); National Natural Science Foundation of China(22072176); Shanxi Science and Technology Department(20210302123012); Shanxi Science and Technology Department(201801D221093); Shanxi Science and Technology Department(202203021211003)
Richhtml ( 4 ) PDF ( 28 ) Cited
Export

EndNote

Ris

BibTeX

With the background of rapid economic development, the green synthesis of high-value-added chemicals has attracted great interest. Ethers and Esters, the products of hydroxyl compound conversion, are important green chemical products. However, the harsh reaction conditions limit their application. Herein, we review the developments in the catalysis of phenols alkylation to ethers and alcohols oxidative esterification to esters. The modification strategy and catalytic mechanism of the catalytic systems are summarized. The heterogeneous catalytic system and its mechanisms have been mainly discussed. It is found that the acid-base synergistic catalysis and the synergistic effect between metal and support are favorable for the green synthesis of ethers and esters under mild reaction condition. Besides, the application of photocatalysis in oxidative esterification of alcohols is highlighted because the photocatalytic reaction is considered a promising green synthesis method. Finally, the research on the catalytic conversion of hydroxyl compounds are summarized and prospected, and we believe that the synthesis and modification of new catalysts and the exploration of catalytic mechanisms is still a promising research field.

Contents

1 Introduction

2 Activation of phenols hydroxyl group: alkylation of phenols

2.1 Homogeneous catalyst

2.2 Heterogeneous catalyst

2.3 Alkylating agent

2.4 Catalytic mechanism of phenols alkylation

3 Activation of alcohols hydroxyl group: oxidative esterification of alcohols

3.1 Homogeneous catalyst

3.2 Heterogeneous catalyst and catalytic mechanism

4 Photocatalytic oxidative esterification of alcohols

5 Conclusions and outlook

Fig. 1 Catalytic performance of various zeolites for the alkylation of phenol with methanol, reaction temperature: 473~573 K
Table 1 Activity comparison of different alkylating agents used in the alkylation of phenols
Fig. 2 Catalytic results for the alkylation of m-cresol with methanol over various molecular sieves, reaction temperature: 523 K
Fig. 3 Alkylation of phenol and methanol over Al-MCM-41
Fig. 4 O-alkylation of hydroquinone with alcohol over the solid acid catalyst
Fig. 5 Parallel orientation of the aromatic ring of phenol molecule on the acidic site of catalyst surface
Fig. 6 Vertical orientation of the aromatic ring of phenol molecule on the acidic site of catalyst surface
Fig. 7 Plausible mechanism of the O-methylation of catechol with DMC over acid-base pair sites
Fig. 8 Reaction formulas of the oxidative esterification of the homologues of benzyl alcohol with methanol using the [PdCl2 (CH3CN)2] catalyst
Fig. 9 Reaction formulas of the oxidative esterification of benzyl alcohol with p-nitrophenol using the [Ru(p-cymene)Cl2]2 catalyst
Table 2 Comparison of different homogeneous catalysts activity in the oxidative esterification of benzyl alcohol with methanol
Fig. 10 Mechanism of direct esterification of alcohols over Ru/MCM-41 catalyst. Reprinted (adapted) with permission from ref 46. Copyright (2011) American Chemical Society
Fig. 11 Reaction formulas of the oxidative esterification of benzyl alcohol with methanol on the Co3O4-N@C catalyst
Fig. 12 Schematic illustration of the oxidative esterification of p-nitrobenzyl alcohol with methanol on Co@CN(800) catalyst without the addition of base. Reprinted (adapted) with permission from ref 49. Copyright (2015) American Chemical Society
Fig. 13 Self-esterification of ethanol over PdAu alloy catalyst. Reproduced with permission from. Reprinted (adapted) with permission from ref 50. Copyright (2019) American Chemical Society
Fig. 14 Proposed reaction mechanism for the aerobic oxidation of alcohols to methyl esters over PdBiTe. Reprinted (adapted) with permission from ref 53. Copyright (2018) American Chemical Society
Fig. 15 Proposed pathway of the dehydrogenative esterification of primary alcohols over Pt/SnO2
Fig. 16 A proposed mechanism for aerobic oxidation esterification of alcohols on gold nanoparticles-supported catalyst. Reprinted (adapted) with permission from ref 62. Copyright (2015) Elsevier
Fig. 17 Proposed reaction pathway of the direct oxidative esterification of aliphatic alcohols on Au-Pd@HT-PO43- photocatalyst. Reprinted (adapted) with permission from ref 64. Copyright (2015) American Chemical Society
Fig. 18 Proposed mechanism for direct benzyl alcohol esterification on AgPd nanoalloy under visible-light irradiation. Reprinted (adapted) with permission from ref 65. Copyright (2021) Elsevier
Fig. 19 Proposed mechanism for the oxidative esterification of benzyl alcohol and methanol to methyl benzoate on Au/UiO-66-HCl under visible-light irradiation. Reprinted (adapted) with permission from ref 66. Copyright (2020) Elsevier
[1]
Winkler L D E, Mortimer R H. US 2448942, 1948-09-07.
[2]
Hamilton S B. US 3479410, 1969-11-18.
[3]
Hamilton S B. US 3446856, 1969-05-27.
[4]
Fuhrmann E, Talbiersky J. Org. Process Res. Dev., 2005, 9(2): 206.

doi: 10.1021/op050001h
[5]
Fiege H, Voges H W, Hamamoto T. Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH: 2012.
[6]
Bryner F, US 2726270: 1955-12-06.
[7]
Ouk S, Thiébaud S, Borredon E, Le Gars P. Appl. Catal. A Gen., 2003, 241(1-2): 227.

doi: 10.1016/S0926-860X(02)00524-0
[8]
Barcelo G, Grenouillat D, Senet J P, Sennyey G. Tetrahedron, 1990, 46(6): 1839.

doi: 10.1016/S0040-4020(01)89753-2
[9]
Choi W C, Kim J S, Lee T H, Woo S I. Catal. Today, 2000, 63(2-4): 229.
[10]
Santacesaria E, Grasso D, Gelosa D, Carrá S. Appl. Catal., 1990, 64: 83.

doi: 10.1016/S0166-9834(00)81555-9
[11]
Li J, Liu J, Applied Chemical Industry, 2004, 33 (4): 11.
[12]
Chary K V R, Ramesh K, Vidyasagar G, Venkat Rao V. J. Mol. Catal. A Chem., 2003, 198(1-2): 195.

doi: 10.1016/S1381-1169(02)00685-4
[13]
Wang Y L, Song Y Y, Huo W T, Jia M J, Jing X Y, Yang P P, Yang Z, Liu G, Zhang W X. Chem. Eng. J., 2012, 181-182: 630.
[14]
Wu G D, Wang X L, Chen B, Li J P, Zhao N, Wei W, Sun Y H. Appl. Catal. A Gen., 2007, 329: 106.

doi: 10.1016/j.apcata.2007.06.031
[15]
Jyothi T M, Raja T, Talawar M B, Rao B S. Appl. Catal. A Gen., 2001, 211(1): 41.

doi: 10.1016/S0926-860X(00)00839-5
[16]
Subramanian T, Dhakshinamoorthy A, Pitchumani K. Tetrahedron Lett., 2013, 54(52): 7167.
[17]
Talawar M B, Jyothi T M, Raja T, Rao B S, Sawant P D. Green Chem., 2000, 2(6): 266.

doi: 10.1039/b006077l
[18]
Duan Z Y, Gu Y L, Zhang J, Zhu L Y, Deng Y Q. J. Mol. Catal. A Chem., 2006, 250(1-2): 163.

doi: 10.1016/j.molcata.2006.01.030
[19]
Lee S C, Lee S W, Kim K S, Lee T J, Kim D H, Kim J C. Catal. Today, 1998, 44(1-4): 253.

doi: 10.1016/S0920-5861(98)00168-0
[20]
Zhao X, Shen J, Li H, Liu D, Zhou P. Chemical Engineering of Oil or Gas, 2008, 37 (1): 12.
[21]
Lewis H F, Shaffer S, Trieschmann W, Cogan H. Ind. Eng. Chem., 1930, 22(1): 34.

doi: 10.1021/ie50241a009
[22]
Oae S, Kiritani R. Bull. Chem. Soc. Jpn., 1966, 39(3): 611.

doi: 10.1246/bcsj.39.611
[23]
Tundo P, Selva M. Acc. Chem. Res., 2002, 35(9): 706.

doi: 10.1021/ar010076f
[24]
Xue B, Jia K, Xu J, Liu N, Liu P, Xu C F, Li Y X. React. Kinet. Mech. Catal., 2012, 107(2): 435.

doi: 10.1007/s11144-012-0486-5
[25]
Khusnutdinov R I, Shchadneva N A, Mayakova Y Y. Russ. J. Org. Chem., 2014, 50(6): 790.

doi: 10.1134/S1070428014060050
[26]
Gjyli S, Korpa A, Tabanelli T, Trettin R, Cavani F, Belviso C. Microporous Mesoporous Mater., 2019, 284: 434.

doi: 10.1016/j.micromeso.2019.04.065
[27]
Acevedo M D, Bedogni G A, Okulik N B, Padró C L. Catal. Lett., 2014, 144(11): 1946.

doi: 10.1007/s10562-014-1358-6
[28]
Sarala Devi G, Giridhar D, Reddy B M. J. Mol. Catal. A Chem., 2002, 181(1-2): 173.

doi: 10.1016/S1381-1169(01)00343-0
[29]
Bhattacharyya K G, Talukdar A K, Das P, Sivasanker S. J. Mol. Catal. A Chem., 2003, 197(1-2): 255.

doi: 10.1016/S1381-1169(02)00519-8
[30]
Bautista F M, Campelo J M, Garcia A, Luna D, Marinas J M, Romero A A, Urbano M R. React. Kinet. Catal. Lett., 1997, 62(1): 47.

doi: 10.1007/BF02475712
[31]
Bautista F M, Campelo J M, Garcia A, Luna D, Marinas J M, Romero A, Navio J A, Macias M. Appl. Catal. A Gen., 1993, 99(2): 161.

doi: 10.1016/0926-860X(93)80097-A
[32]
Wang X Y, Wang R Y, Zheng Z F. J. Photochem. Photobiol. A Chem., 2020, 400: 112695.

doi: 10.1016/j.jphotochem.2020.112695
[33]
Velu S, Swamy C S. Appl. Catal. A Gen., 1997, 162(1-2): 81.

doi: 10.1016/S0926-860X(97)00243-3
[34]
Bolognini M, Cavani F, Scagliarini D, Flego C, Perego C, Saba M. Catal. Today, 2002, 75(1-4): 103.

doi: 10.1016/S0920-5861(02)00036-6
[35]
Liu C, Wang J, Meng L K, Deng Y, Li Y, Lei A W. Angew. Chem. Int. Ed., 2011, 50(22): 5144.

doi: 10.1002/anie.v50.22
[36]
Bai X F, Ye F, Zheng L S, Lai G Q, Xia C G, Xu L W. Chem. Commun., 2012, 48(68): 8592.

doi: 10.1039/c2cc34117d
[37]
Gowrisankar S, Neumann H, Beller M. Angew. Chem. Int. Ed., 2011, 50(22): 5139.

doi: 10.1002/anie.v50.22
[38]
Wang L Y, Li J, Dai W, Lv Y, Zhang Y, Gao S. Green Chem., 2014, 16(4): 2164.

doi: 10.1039/c3gc42075b
[39]
Zhang D, Pan C D. Catal. Commun., 2012, 20: 41.

doi: 10.1016/j.catcom.2011.12.041
[40]
Owston N A, Parker A J, Williams J M J. Chemical Communications, 2008, (5): 624.
[41]
Zhang J, Leitus G, Ben-David Y, Milstein D. J. Am. Chem. Soc., 2005, 127(31): 10840.

doi: 10.1021/ja052862b
[42]
Nobuta T, Fujiya A, Hirashima S I, Tada N, Miura T, Itoh A. Tetrahedron Lett., 2012, 53(39): 5306.

doi: 10.1016/j.tetlet.2012.07.091
[43]
Wu X F. Chem., 2012, 18(29): 8912.
[44]
Wan X Y, Deng W P, Zhang Q H, Wang Y. Catal. Today, 2014, 233: 147.

doi: 10.1016/j.cattod.2013.12.012
[45]
Ahmed M S, Mannel D S, Root T W, Stahl S S. Org. Process Res. Dev., 2017, 21(9): 1388.

doi: 10.1021/acs.oprd.7b00223
[46]
Del Pozo C, Iglesias M, Sánchez F. Organometallics, 2011, 30(8): 2180.

doi: 10.1021/om101179a
[47]
Jagadeesh R V, Junge H, Pohl M M, Radnik J, Brückner A, Beller M. J. Am. Chem. Soc., 2013, 135(29): 10776.

doi: 10.1021/ja403615c
[48]
Panwar V, Ray S S, Jain S L. Mol. Catal., 2017, 427: 31.
[49]
Zhong W, Liu H L, Bai C H, Liao S J, Li Y W. ACS Catal., 2015, 5(3): 1850.

doi: 10.1021/cs502101c
[50]
Evans E J Jr, Li H, Han S, Henkelman G, Mullins C B. ACS Catal., 2019, 9(5): 4516.

doi: 10.1021/acscatal.8b04820
[51]
Brett G L, Miedziak P J, Dimitratos N, Lopez-Sanchez J A, Dummer N F, Tiruvalam R, Kiely C J, Knight D W, Taylor S H, Morgan D J, Carley A F, Hutchings G J. Catal. Sci. Technol., 2012, 2(1): 97.

doi: 10.1039/C1CY00254F
[52]
Hu Y K, Xia J W, Li J, Li H J, Li Y X, Li S Z, Duanmu C S, Li B D, Wang X. J. Mater. Sci., 2021, 56(12): 7308.

doi: 10.1007/s10853-020-05726-9
[53]
Mannel D S, King J, Preger Y, Ahmed M S, Root T W, Stahl S S. ACS Catal., 2018, 8(2): 1038.

doi: 10.1021/acscatal.7b02886
[54]
Costa V V, Estrada M, Demidova Y, Prosvirin I, Kriventsov V, Cotta R F, Fuentes S, Simakov A, Gusevskaya E V. J. Catal., 2012, 292: 148.

doi: 10.1016/j.jcat.2012.05.009
[55]
Moromi S K, Hakim Siddiki S M A, Ali M A, Kon K, Shimizu K I. Catal. Sci. Technol., 2014, 4(10): 3631.

doi: 10.1039/C4CY00979G
[56]
Verma S, Verma D, Sinha A K, Jain S L. Appl. Catal. A Gen., 2015, 489: 17.

doi: 10.1016/j.apcata.2014.10.004
[57]
Smolentseva E, Costa V V, Cotta R F, Simakova O, Beloshapkin S, Gusevskaya E V, Simakov A. ChemCatChem, 2015, 7(6): 1011.

doi: 10.1002/cctc.v7.6
[58]
Zhou Y X, Chen Y Z, Cao L N, Lu J L, Jiang H L. Chem. Commun., 2015, 51(39): 8292.

doi: 10.1039/C5CC01588J
[59]
Parreira L A, Bogdanchikova N, Pestryakov A, Zepeda T A, Tuzovskaya I, Farías M H, Gusevskaya E V. Appl. Catal. A Gen., 2011, 397(1-2): 145.

doi: 10.1016/j.apcata.2011.02.025
[60]
Cui W J, Jia M L, Ao W L, Zhaorigetu B. React. Kinet. Mech. Catal., 2013, 110(2): 437.

doi: 10.1007/s11144-013-0608-8
[61]
Kang X C, Zhang J L, Shang W T, Wu T B, Zhang P, Han B X, Wu Z H, Mo G, Xing X Q. J. Am. Chem. Soc., 2014, 136(10): 3768.

doi: 10.1021/ja5001517
[62]
Wei H L, Li J Y, Yu J, Zheng J W, Su H Q, Wang X J. Inorg. Chim. Acta, 2015, 427: 33.

doi: 10.1016/j.ica.2014.11.024
[63]
Taketoshi A, Gangarajula Y, Sodenaga R, Nakayama A, Okumura M, Sakaguchi N, Murayama T, Shimada T, Takagi S, Haruta M, Qiao B T, Wang J H, Ishida T. ACS Appl. Mater. Interfaces, 2023, 15(28): 34290.

doi: 10.1021/acsami.3c05974
[64]
Xiao Q, Liu Z, Bo A, Zavahir S, Sarina S, Bottle S, Riches J D, Zhu H Y. J. Am. Chem. Soc., 2015, 137(5): 1956.

doi: 10.1021/ja511619c
[65]
Han P F, Jin P, Li X, Xu Y, Li K, Wang S Y, Nie Z. Appl. Catal. B Environ., 2021, 298: 120598.

doi: 10.1016/j.apcatb.2021.120598
[66]
Fan C Y, Wang R Y, Kong P, Wang X Y, Wang J, Zhang X C, Zheng Z F. Catal. Commun., 2020, 140: 106002.

doi: 10.1016/j.catcom.2020.106002
[67]
Wang X Y, Wang R Y, Wang J, Fan C Y, Zheng Z F. Phys. Chem. Chem. Phys., 2020, 22(3): 1655.

doi: 10.1039/C9CP05992J
[1] Anqi Chen, Zhiwei Jiang, Juntao Tang, Guipeng Yu. Photocatalytic Production of Hydrogen Peroxide from Covalent Organic Framework Materials [J]. Progress in Chemistry, 2024, 36(3): 357-366.
[2] Xichen Li, Zheng Li, Can Peng, Chen Qian, Yufei Han, Tao Zhang. Application of MOFs in Catalytic Conversion of Organic Molecules [J]. Progress in Chemistry, 2024, 36(3): 367-375.
[3] Hai Wang, Chengtao Wang, Hang Zhou, Liang Wang, Fengshou Xiao. Condensed Matter Chemistry in Catalytic Conversion of Small Molecules [J]. Progress in Chemistry, 2023, 35(6): 861-885.
[4] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[5] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[6] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[7] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[8] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[9] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.
[10] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[11] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[12] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[13] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[14] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[15] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide [J]. Progress in Chemistry, 2021, 33(12): 2334-2347.