中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (11): 1638-1654 DOI: 10.7536/PC230332 Previous Articles   Next Articles

• Review •

Carbon-Based Electrocatalyst Derived from Porous Organic Polymer in Oxygen Reduction Reaction for Fuel Cells

Sun Hanxue(), Wang Juanjuan, Zhu Zhaoqi, Li An()   

  1. Lanzhou University of Technology,Lanzhou 730050, China
  • Received: Revised: Online: Published:
  • Contact: Sun Hanxue, Li An
  • Supported by:
    National Natural Science Foundation of China(22006061); National Natural Science Foundation of China(21975113); Gansu Provincial Science Fund for Distinguished Young Scholars(23JRRA808); Postgraduate “Innovation Star” program of Gansu Province(2023CXZX423)
Richhtml ( 8 ) PDF ( 158 ) Cited
Export

EndNote

Ris

BibTeX

Fuel cell, a kind of energy conversion device that can directly convert chemical energy into electric energy, is a new and an important energy technology during China’s 14th Five-Year Plan. In recent years, the fuel cell technology has undergone iterative upgrading, which effectively promotes the transition of hydrogen energy industry from mode-exploration to multiple demonstration, and helps the high-quality development of the new energy. Cathodic oxygen reduction reaction (ORR) is one of the basic and core reactions of fuel cells, but its slow kinetic process restricts the large-scale application of fuel cells. Although metal Pt-based catalysts have high catalytic activity and can improve the reaction rate of ORR, they are not conducive to wide commercial use because of their scarcity, high cost and poor durability. The development of non-Pt-based ORR catalysts is of great practical significance to promote the development of fuel cells. Porous Organic Polymers (POPs) are an important branch of porous materials. Due to their controllable composition and diverse structure, heteroatoms and metal species can be incorporated into the skeleton to enhance the overall catalytic activity of materials. As ideal candidate materials for electrocatalysts with high-efficiency, POPs have attracted wide attention in promoting the slow kinetics of ORR. In this paper, the research progress in the synthesis strategy, composition, morphology, structure regulation and electrocatalytic performance of POPs-derived carbon-based ORR electrocatalysts in recent years are emphatically introduced. The challenges faced by POPs-derived carbon-based ORR electrocatalysts at present are discussed, and their future development directions are summarized.

Contents

1 Introduction

2 Oxygen reduction reaction (ORR) mechanism

3 Design and performance of porous organic polymer derived carbon-based ORR electrocatalysts

3.1 Conjugated microporous polymers (CMPs) derived carbon-based ORR catalysts

3.2 Covalent organic frameworks (COFs) derived carbon-based ORR catalysts

3.3 Hyper-cross-linked polymers (HCPs) derived carbon-based ORR catalysts

3.4 Covalent triazine frameworks (CTFs) derived carbon-based ORR catalysts

3.5 Polymers of intrinsic microporosity (PIMs) derived carbon-based ORR catalysts

3.6 Porous aromatic frameworks (PAFs) derived carbon-based ORR catalysts

4 Conclusion and outlook

Fig.1 (a) Model of multielectron ORR reaction on metal surface under acid condition[16]. Copyright 1976, Elsevier. (b) ORR reaction mechanism of N-doped carbon materials under acidic conditions[17]. Copyright 2016, American Association for the Advancement of Science
Fig.2 Examples of typical synthesis process and molecular structural unit of POPs
Fig.3 The statistics of the paper by topic of “conjugated microporous polymers” as an example and “oxygen reduction” indexed in Web of Science from 2014 to 2022
Fig.4 Schematic of POPs derived carbon-based ORR electrocatalysts
Table 1 Summary of electrochemical properties of CMPs and their derived carbon-based ORR catalysts
Catalysts Heteroatom Method for CMPs Eonset vs.RHE (V) E1/2 vs.RHE (V) Jd
(mA·cm-2)
Pt/C Jd
(mA·cm-2)
Electrolyte ref
1DPC-L3 B, N, S Sonogashira-Hagihara coupling reaction / 0.75 4.6 5.3 0.1 mol/L KOH 29
N-HsGDY-900 ℃ N Sonogashira-Hagihara coupling reaction 0.86 0.64 4.7 / 0.1 mol/L HClO4 18
1.02 0.85 6.5 / 0.1 mol/L KOH
TPA-BP-1 N Sonogashira-Hagihara coupling reaction 0.80 / / / 0.1 mol/L KOH 27
TPA-TPE-2 0.82 / /
ZnPcFePor-CMP Fe, Zn, N Sonogashira-Hagihara coupling reaction 0.902 0.724 -5.31 / 0.1 mol/L KOH 26
FePcZnPor-CMP 0.936 0.866 -5.59
CPP-P1 N Sonogashira-Hagihara coupling reaction 0.87 0.73 4.71 4.88 0.1 mol/L KOH 30
BP-800 B, N, Co, Fe Sonogashira-Hagihara coupling reaction 0.85 0.66 5.97 / 0.1 mol/L HClO4 31
0.93 0.80 5.95 5.57 0.1 mol/L KOH
0.85 0.66 / / 0.1 mol/L PBS
BPCMP-Fe-800 Fe, N Sonogashira-Hagihara coupling reaction 0.97 0.85 4.98 / 0.1 mol/L KOH 32
BBCMP-Fe-800 0.81 0.71 /
C-CMPs-NP N, S Sonogashira-Hagihara coupling reaction 0.98 0.82 4.2 4.3 0.1 mol/L KOH 33
NHCNT-1 N Sonogashira-Hagihara coupling reaction 0.87 0.76 3.8 / 0.1 mol/L KOH 34
1.15 0.45 4.4 / 0.1 mol/L HClO4
Fe/N-CMP-1000 Fe, N Sonogashira-Hagihara coupling reaction 0.95 0.85 5.10 4.10 0.1 mol/L KOH 35
CMP-NP-800 N Sonogashira-Hagihara coupling reaction 0.903 0.815 / 4.25 0.1 mol/L KOH 36
CMP-NP-900 0.930 0.857 4.45
CMP-NP-1000 0.872 0.766 /
N-Fc-800 Fe, N Schiff base reaction 0.96 0.82 5.3 4.6 0.1 mol/L KOH 37
CoNCs800 Co, N Schiff base reaction 0.905 0.807 -4.72 / 0.1 mol/L KOH 38
0.80 0.70 -4.40 3.57 0.5 mol/L H2SO4
CoPP-FePc-CMPs Co, Fe, N Schiff base reaction 0.837 0.426 1.537 5.85 0.1 mol/L KOH 39
CoFeNC 0.904 0.775 3.68
CoFeNG 0.957 0.777 4.00
C-POP-2-900 N, P Schiff base reaction -0.11 -0.19 / / 0.1 mol/L KOH 40
Fe/Co-CMP-800 N, Fe, Co Suzuki coupling reaction 0.88 0.78 4.5 / 0.5 mol/L H2SO4 41
TT-TPB S Suzuki coupling reaction 0.9 0.89 / / 0.1 mol/L KOH 28
TPP-CMP-900 N Suzuki coupling reaction 0.95 0.83 4.05 4.1 0.1 mol/L KOH 42
XWB-CMP-1000 N, S one-pot catalyst-free
procedure
-0.11 -0.19 -5.2 / 0.1 mol/L KOH 43
CoO/ZnO@N-PC Co, Zn, N Molten salt-templated
approach
0.91 0.85 / / 0.1 mol/L KOH 44
N, P-CMP-1000 N, P Acid-catalyzed con-
densation
0.94 0.84 / / 0.1 mol/L KOH 45
0.75 0.57 / / 0.1 mol/L HClO4
/ 0.48 / / 0.01 mol/L PBS
Fig.5 Schematic representation of the synthesis and structure of (a) Fe/Co-CMP, (b) Co-CMP and (c) Fe-CMP and their nanosized morphology imaged by SEM and TEM[41]. Copyright 2015, Royal Society of Chemistry
Fig.6 Schematic illustration of synthesis of CoO/ZnO@N-PC[44]. Copyright 2020, Elsevier
Fig.7 (a) Schematic of the synthesis procedure of COF@ZIF800 catalyst by in-situ growing TP-BPY-COF on the surface of ZIF-67. (b) The synthesis and structure of TP-BPY-COF. The SEM images of ZIF-67 (c), COF@ZIF (d), and COF@ZIF800 (e)[64]. Copyright 2022, Royal Society of Chemistry
Table 2 Summary of electrochemical properties of HCPs derived carbon-based ORR catalysts
Fig.8 Schematic illustration of the hyper-cross-linked polymer nanotubes (HCP-NT) and derived porous carbon nanotubes[80]. Copyright 2023, Elsevier
Table 3 Summary of electrochemical properties of CTFs derived carbon-based ORR catalysts
Fig.9 Structural models of C-N4, C-FeN4(O) and C-FeN4(OH) (left), and the corresponding free energy diagram of the 2e- pathway at C sites of varying compressive strain[98]. Copyright 2021, American Chemical Society
Fig.10 Preparation process of Fe and Co bimetallic monatomic catalyst based on CTFs[99]. Copyright 2023, Royal Society of Chemistry
[1]
Wang Q, Han N, Bokhari A, Li X, Cao Y, Asif S, Shen Z F, Si W M, Wang F G, Klemeš J J, Zhao X L. Energy, 2022, 255: 124465.
[2]
Zhao G Q, Rui K, Dou S X, Sun W P. Adv. Funct. Mater., 2018, 28(43): 1803291.
[3]
Zaman S, Huang L, Douka A I, Yang H, You B, Xia B Y. Angewandte Chemie Int. Ed., 2021, 60(33): 17832.
[4]
Wei C, Rao R R, Peng J Y, Huang B T, Stephens I E L, Risch M, Xu Z J, Shao-Horn Y. Adv. Mater., 2019, 31(31): 1806296.
[5]
Wang H J, Ren H, Liu S L, Yin S L, Jiao S Q, Xu Y, Li X N, Wang Z Q, Wang L. Chem. Eng. J., 2022, 438: 135539.
[6]
Huang L, Wei M, Qi R J, Dong C L, Dang D, Yang C C, Xia C F, Chen C, Zaman S, Li F M, You B, Xia B Y. Nat. Commun., 2022, 13: 6703.
[7]
Li S W, Liu J J, Yin Z, Ren P J, Lin L L, Gong Y, Yang C, Zheng X S, Cao R C, Yao S Y, Deng Y C, Liu X, Gu L, Zhou W, Zhu J F, Wen X D, Xu B J, Ma D. ACS Catal., 2020, 10(1): 907.
[8]
Xia W, Mahmood A, Liang Z B, Zou R Q, Guo S J. Angewandte Chemie Int. Ed., 2016, 55(8): 2650.
[9]
Lin L X, Miao N H, Wallace G G, Chen J, Allwood D A. Adv. Energy Mater., 2021, 11(32): 2100695.
[10]
Wei W, Ge H T, Huang L S, Kuang M, Al-Enizi A M, Zhang L J, Zheng G F. J. Mater. Chem. A, 2017, 5(26): 13634.
[11]
He M, Song S J, Wang P, Fang Z, Wang W W, Yuan X L, Li C Y, Li H, Song W Y, Luo D, Li Z X. Carbon, 2022, 196: 483.
[12]
Feng L Y, Wang T T, Sun H, Jiang M, Chen Y G. ACS Appl. Mater. Interfaces, 2020, 12(51): 56954.
[13]
Xue W D, Zhou Q X, Cui X, Jia S R, Zhang J W, Lin Z Q. Nano Energy, 2021, 86: 106073.
[14]
Yang D H, Tao Y, Ding X S, Han B H. Chem. Soc. Rev., 2022, 51(2): 761.
[15]
Liu X, Liu C F, Xu S H, Cheng T, Wang S, Lai W Y, Huang W. Chem. Soc. Rev., 2022, 51(8): 3181.
[16]
Wroblowa H S, Pan Y C, Razumney G. J. Electroanal. Chem. Interfacial Electrochem., 1976, 69(2): 195.
[17]
Guo D H, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J. Science, 2016, 351(6271): 361.
[18]
Lv Q, Si W Y, He J J, Sun L, Zhang C F, Wang N, Yang Z, Li X D, Wang X, Deng W Q, Long Y Z, Huang C S, Li Y L. Nat. Commun., 2018, 9: 3376.
[19]
Yeager E. Electrochim. Acta, 1984, 29(11): 1527.
[20]
Liu M Y, Xiao X D, Li Q, Luo L Y, Ding M H, Zhang B, Li Y X, Zou J L, Jiang B J. J. Colloid Interface Sci., 2022, 607: 791.
[21]
Kim H W, Bukas V J, Park H, Park S, Diederichsen K M, Lim J, Cho Y H, Kim J, Kim W, Han T H, Voss J, Luntz A C, McCloskey B D. ACS Catal., 2020, 10(1): 852.
[22]
Zhang J T, Xia Z H, Dai L M. Sci. Adv., 2015, 1(7): e1500564.
[23]
Zhou R F, Zheng Y, Jaroniec M, Qiao S Z. ACS Catal., 2016, 6(7): 4720.
[24]
Li Z, Yang Y W. J. Mater. Chem. B, 2017, 5(47): 9278.
[25]
Jiang J X, Su F B, Trewin A, Wood C, Campbell N, Niu H J, Dickinson C, Ganin A, Rosseinsky M, Khimyak Y, Cooper A. Angew. Chem. Int. Ed., 2007, 46(45): 8574.
[26]
Liu W B, Wang K, Wang C M, Liu W P, Pan H H, Xiang Y J, Qi D D, Jiang J Z. J. Mater. Chem. A, 2018, 6(45): 22851.
[27]
Roy S, Bandyopadhyay A, Das M, Ray P P, Pati S K, Maji T K. J. Mater. Chem. A, 2018, 6(14): 5587.
[28]
Isci R, Balkan T, Tafazoli S, Sütay B, Eroglu M S, Ozturk T. ACS Appl. Energy Mater., 2022, 5(11): 13284.
[29]
He Y F, Gehrig D, Zhang F, Lu C B, Zhang C, Cai M, Wang Y Y, Laquai F, Zhuang X D, Feng X L. Adv. Funct. Mater., 2016, 26(45): 8255.
[30]
Bandyopadhyay S, Boukhvalov D W, Nayak A K, Ha S R, Shin H J, Kwon J, Song T, Choi H. Dyes Pigments, 2019, 170: 107557.
[31]
Dou J L, Luo H T, Zhang C L, Lu J J, Luan X J, Guo W X, Zhang T, Bian W W, Bai J K, Zhang X L, Zhou B L. New J. Chem., 2021, 45(45):21020.
[32]
Wang M Y, Cao Z L, Li L Y, Ren S J. Carbon, 2022, 200: 337.
[33]
Jiao R, Zhang W L, Sun H X, Zhu Z Q, Yang Z F, Liang W D, Li A. Mater. Today Energy, 2020, 16: 100382.
[34]
Zhang W L, Sun H X, Zhu Z Q, Jiao R, Mu P, Liang W D, Li A. Renew. Energy, 2020, 146: 2270.
[35]
Sun H X, Zhou P L, Tian Z Y, Ye X Y, Zhu Z Q, Ma C H, Liang W D, Li A. ChemPlusChem, 2022, 87(7): e202200168.
[36]
Sun H X, Zhou P L, Ye X Y, Wang J J, Tian Z Y, Zhu Z Q, Ma C H, Liang W D, Li A. J. Colloid Interface Sci., 2022, 617: 11.
[37]
Zhou B L, Liu L Z, Cai P W, Zeng G, Li X Q, Wen Z H, Chen L. J. Mater. Chem. A, 2017, 5(42): 22163.
[38]
Li Q, Shao Q, Wu Q, Duan Q, Li Y H, Wang H G. Catal. Sci. Technol., 2018, 8(14): 3572.
[39]
Li Y, Tao X S, Wei J C, Lv X L, Wang H G. Chem. Asian J., 2020, 15(13): 1970.
[40]
Yang J, Xu M, Wang J Y, Jin S B, Tan B E. Sci. Rep., 2018, 8: 4200.
[41]
Brüller S, Liang H W, Kramm U I, Krumpfer J W, Feng X L, Müllen K. J. Mater. Chem. A, 2015, 3(47): 23799.
[42]
Zhu Z Q, Yang Z F, Fan Y K, Liu C, Sun H X, Liang W D, Li A. ACS Appl. Energy Mater., 2020, 3(6):5260.
[43]
Ren S B, Chen X L, Li P X, Hu D Y, Liu H L, Chen W, Xie W B, Chen Y X, Yang X L, Han D M, Ning G H, Xia X H. J. Power Sources, 2020, 461: 228145.
[44]
Hu L L, Gu S, Yu W G, Zhang W J, Xie Q J, Pan C Y, Tang J T, Yu G P. J. Colloid Interface Sci., 2020, 562: 550.
[45]
Lin D Q, Hu C G, Chen H, Qu J, Dai L M. Chem. A Eur. J., 2018, 24(69): 18487.
[46]
Ma L, Liu Y L, Liu Y, Jiang S Y, Li P, Hao Y C, Shao P P, Yin A X, Feng X, Wang B. Angew. Chem. Int. Ed., 2019, 58(13): 4221.
[47]
Chen J, Yan W, Townsend E J, Feng J T, Pan L, Del Angel Hernandez V, Faul C F J. Angew. Chem. Int. Ed., 2019, 58(34): 11715.
[48]
Wang Z J, Yang X Y, Yang T J, Zhao Y B, Wang F, Chen Y, Zeng J H, Yan C, Huang F, Jiang J X. ACS Catal., 2018, 8(9):8590.
[49]
Bhosale M E, Illathvalappil R, Kurungot S, Krishnamoorthy K. Chem. Commun., 2016, 52(2): 316.
[50]
Abdulaeva I A, Birin K P, Bessmertnykh-Lemeune A, Tsivadze A Y, Gorbunova Y G. Coord. Chem. Rev., 2020, 407: 213108.
[51]
Park J M, Hong K I, Lee H, Jang W D. Acc. Chem. Res., 2021, 54(9): 2249.
[52]
Xia W, Zou R Q, An L, Xia D G, Guo S J. Energy Environ. Sci., 2015, 8(2): 568.
[53]
Lohse M S, Bein T. Adv. Funct. Mater., 2018, 28(33): 1705553.
[54]
Bu R, Lu Y Y, Zhang B. Chem. Res. Chin. Univ., 2022, 38(5):1151.
[55]
Yang C, Tao S S, Huang N, Zhang X B, Duan J G, Makiura R, Maenosono S. ACS Appl. Nano Mater., 2020, 3(6):5481.
[56]
Park J H, Lee C H, Ju J M, Lee J H, Seol J, Lee S U, Kim J H. Adv. Funct. Mater., 2021, 31: 2101727.
[57]
Li Z, Liu Z W, Li Z Y, Wang T X, Zhao F L, Ding X S, Feng W, Han B H. Adv. Funct. Mater., 2020, 30: 1909267.
[58]
Wan X, Liu Q T, Liu J Y, Liu S Y, Liu X F, Zheng L R, Shang J X, Yu R H, Shui J L. Nat. Commun., 2022, 13: 2963.
[59]
Zhang R M, Wang K, Wang P, He Y, Liu Z M. Energies, 2023, 16(9): 3684.
[60]
Yang S, Li X W, Tan T Y, Mao J N, Xu Q, Liu M H, Miao Q Y, Mei B B, Qiao P Z, Gu S Q, Sun F F, Ma J Y, Zeng G F, Jiang Z. Appl. Catal. B Environ., 2022, 307: 121147.
[61]
Zhao X J, Pachfule P, Li S, Langenhahn T, Ye M Y, Tian G Y, Schmidt J, Thomas A. Chem. Mater., 2019, 31(9): 3274.
[62]
Chen H, Li Q H, Yan W S, Gu Z G, Zhang J. Chem. Eng. J., 2020, 401: 126149.
[63]
Zhang S H, Xia W, Yang Q, Valentino Kaneti Y, Xu X T, Alshehri S M, Ahamad T, Hossain M S A, Na J, Tang J, Yamauchi Y. Chem. Eng. J., 2020, 396: 125154.
[64]
Liu M H, Xu Q, Miao Q Y, Yang S, Wu P, Liu G J, He J, Yu C B, Zeng G F. J. Mater. Chem. A, 2022, 10(1): 228.
[65]
Liu M M, Zhu X H, Song Y J, Huang G L, Wei J M, Song X K, Xiao Q, Zhao T, Jiang W, Li X P, Luo W. Adv. Funct. Mater., 2023, 33(11): 2213395.
[66]
Tan L X, Tan B E. Chem. Soc. Rev., 2017, 46(11): 3322.
[67]
Lu Y, Liang J N, Deng S F, He Q M, Deng S Y, Hu Y Z, Wang D L. Nano Energy, 2019, 65: 103993.
[68]
Gu Y L, Son S U, Li T, Tan B E. Adv. Funct. Mater., 2021, 31(12): 2170082.
[69]
Li B Y, Gong R N, Luo Y L, Tan B E. Soft Matter, 2011, 7(22): 10910.
[70]
Xu J J, Shi L, Wang J N, Lu S Y, Wang Y K, Gao G X, Ding S J. Carbon, 2018, 138: 348.
[71]
Zhang J W, Xu D, Wang C C, Guo J N, Yan F. Adv. Mater. Interfaces, 2018, 5(7): 1701641.
[72]
Yang Z F, Han J X, Jiao R, Sun H X, Zhu Z Q, Liang W D, Li A. J. Colloid Interface Sci., 2019, 557: 664.
[73]
Zhu Z Q, Cui J, Cao X Y, Yang L J, Sun H X, Liang W D, Li J Y, Li A. Int. J. Hydrog. Energy, 2022, 47(16): 9504.
[74]
Zhai T L, Xuan C J, Xu J C, Ban L, Cheng Z M, Wang S L, Wang D L, Tan B E, Zhang C. Chem. Asian J., 2018, 13(18): 2671.
[75]
Barman J, Deka N, Maji P K, Dutta G K. ChemElectroChem, 2022, 9(15): e202200677.
[76]
Yang Y, He Z P, Liu Y, Wang S L, Wang H G, Zhu G S. Appl. Surf. Sci., 2021, 565: 150579.
[77]
Pei Y C, Qi Z Y, Li X L, Maligal-Ganesh R V, Goh T W, Xiao C X, Wang T Y, Huang W Y. J. Mater. Chem. A, 2017, 5(13): 6186.
[78]
Zhu Z Q, Cui J, Cao X Y, Yang L J, Sun H X, Liang W D, Li J Y, Li A. Energy Technol., 2022, 10(5): 2101097.
[79]
Chen H W, Liu Y J, Liu B, Yang M, Li H M, Chen H B. Nanoscale, 2022, 14(34): 12431.
[80]
Qian Q P, Hu H Y, Huang S D, Li Y, Lin L L, Duan F, Zhu H, Du M L, Lu S L. Carbon, 2023, 202: 81.
[81]
Kuhn P, Antonietti M, Thomas A. Angew. Chem. Int. Ed., 2008, 47(18): 3450.
[82]
Liu M Y, Guo L P, Jin S B, Tan B E. J. Mater. Chem. A, 2019, 7(10): 5153.
[83]
Kamiya K, Kamai R, Hashimoto K, Nakanishi S. Nat. Commun., 2014, 5: 5040.
[84]
Hao L, Zhang S S, Liu R J, Ning J, Zhang G J, Zhi L J. Adv. Mater., 2015, 27(20): 3190.
[85]
Chai D, Min X T, Harada T, Nakanishi S, Zhang X W. Colloids Surf. A Physicochem. Eng. Aspects, 2021, 628: 127240.
[86]
Cao Y Q, Zhu Y Z, Chen X F, Abraha B S, Peng W C, Li Y, Zhang G L, Zhang F B, Fan X B. Catal. Sci. Technol., 2019, 9(23): 6606.
[87]
Jiao L, Hu Y L, Ju H X, Wang C D, Gao M R, Yang Q, Zhu J F, Yu S H, Jiang H L. J. Mater. Chem. A, 2017, 5(44): 23170.
[88]
Zhang X L, Lin Z Y, Su W, Zhang M T, Wang X J, Li K X. Appl. Surf. Sci., 2022, 592: 153278.
[89]
Zheng Y, Chen S, Song H, Guo H L, Zhang K A I, Zhang C, Liu T X. Nanoscale, 2020, 12(27): 14441.
[90]
Yu W G, Gu S, Fu Y, Xiong S H, Pan C Y, Liu Y N, Yu G P. J. Catal., 2018, 362: 1.
[91]
Jena H S, Krishnaraj C, Parwaiz S, Lecoeuvre F, Schmidt J, Pradhan D, van der Voort P. ACS Appl. Mater. Interfaces, 2020, 12(40): 44689.
[92]
Sönmez T, Belthle K S, Iemhoff A, Uecker J, Artz J, Bisswanger T, Stampfer C, Hamzah H H, Alexandra Nicolae S, Titirici M M, Palkovits R. Catal. Sci. Technol., 2021, 11(18): 6191.
[93]
Tong L, Shao Z G, Qian Y S, Li W M. J. Mater. Chem. A, 2017, 5(8): 3832.
[94]
Zhu Y Z, Chen X F, Liu J, Zhang J F, Xu D Y, Peng W C, Li Y, Zhang G L, Zhang F B, Fan X B. ChemSusChem, 2018, 11(14): 2402.
[95]
Iwase K, Yoshioka T, Nakanishi S, Hashimoto K, Kamiya K. Angew. Chem. Int. Ed., 2015, 54(38): 11068.
[96]
Zhou S K, Xiao Z C, Yang Q, Huang X X, Niu Y, Ma Y J, Zhi L J. Sci. China Mater., 2021, 64(9): 2221.
[97]
Zheng Y, Song H, Chen S, Yu X H, Zhu J X, Xu J S, Zhang K, Zhang C, Liu T X. Small, 2020, 16(47): 2004342.
[98]
Zhu Y P, Li J J, Chen Y B, Zou J, Cheng Q Q, Chen C, Hu W B, Zou L L, Zou Z Q, Yang B, Yang H. ACS Catal., 2021, 11(21): 13020.
[99]
Dun R M, He X, Huang J, Wang W liu Y W, Li L H, Lu B W, Hua Z L, Shi J L. J. Mater. Chem. A, 2023, 11(11): 5902.
[100]
Quernheim M, Liang H W, Su Q, Baumgarten M, Koshino N, Higashimura H, Müllen K. Chem. A Eur. J., 2014, 20(44): 14178.
[101]
Patil B, Satilmis B, Uyar T. J. Power Sources, 2020, 451: 227799.
[102]
He D P, Rong Y Y, Kou Z K, Mu S C, Peng T, Malpass-Evans R, Carta M, McKeown N B, Marken F. Electrochem. Commun., 2015, 59: 72.
[103]
Tian Y Y, Zhu G S. Chem. Rev., 2020, 120(16): 8934.
[104]
Wu X, Shaibani M, Smith S J D, Konstas K, Hill M R, Wang H T, Zhang K S, Xie Z L. J. Mater. Chem. A, 2018, 6(24): 11327.
[105]
Chen J H, Jiang L C, Wang W T, Wang P Y, Li X, Ren H, Wang Y G. Micropor. Mesopor. Mater., 2021, 326: 111385.
[106]
Zhao S, Bian Z, Liu Z L, Wang Y H, Cui F C, Wang H G, Zhu G S. Adv. Funct. Mater., 2022, 32 (44):2204539.
[107]
Xiang Z H, Wang D, Xue Y H, Dai L M, Chen J F, Cao D P. Sci. Rep., 2015, 5: 8307.
[108]
Wu K Q, Chen R, Zhou Z X, Chen X H, Lv Y Q, Ma J, Shen Y F, Liu S Q, Zhang Y J. Angew. Chem. Int. Ed., 2023, 62(12): e202217078.
[1] Bingguo Zhao, Yadi Liu, Haoran Hu, Yangjun Zhang, Zezhi Zeng. Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2023, 35(5): 794-806.
[2] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[3] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[4] Yang Zhang, Min Zhang, Hailei Zhao. Double Perovskite Material as Anode for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2022, 34(2): 272-284.
[5] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[6] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[7] Yubing Wang, Jie Chen, Wei Yan, Jianwen Cui. Preparation and Application of Conjugated Microporous Polymers [J]. Progress in Chemistry, 2021, 33(5): 838-854.
[8] Yu Bai, Shuanjin Wang, Min Xiao, Yuezhong Meng, Chengxin Wang. Phosphoric Acid Based Proton Exchange Membranes for High Temperature Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2021, 33(3): 426-441.
[9] Li Liangjun, Jianhui Deng, Jianwei Guo, Hangbo Yue. Synthesis and Properties of Microporous Organic Polymers Based on Adamantane [J]. Progress in Chemistry, 2020, 32(2/3): 190-203.
[10] Rui Zhang, Yun Wu, Lutian Wang, Qiang Wu, Hongwei Zhang. Cathode Denitrification of Microbial Fuel Cells [J]. Progress in Chemistry, 2020, 32(12): 2013-2021.
[11] Dongmei Yao, Weiqi Zhang, Qian Xu, Li Xu, Huaming Li, Huaneng Su. Membrane Electrode Assembly for High Temperature Polymer Electrolyte Membrane Fuel Cell Based on Phosphoric Acid-Doped Polybenzimidazole [J]. Progress in Chemistry, 2019, 31(2/3): 455-463.
[12] Yuekun Ye, Bin Chi, Shijie Jiang, Shijun Liao. Enhancing the Durability of Membrane Electrode Assembly of Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2019, 31(12): 1637-1652.
[13] Xiaofu Wu, Hui Tong, Lixiang Wang. Fluorescent Polymer Materials for Detection of Explosives [J]. Progress in Chemistry, 2019, 31(11): 1509-1527.
[14] Xi Liang, Cheng Wang, Yijie Lei, Yadi Liu, Bo Zhao, Feng Liu. Potential Applications of Metal Organic Framework-Based Materials for Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2018, 30(11): 1770-1783.
[15] Yijun Lin, Yunlong Zhu, Guichao Kuang, Guipeng Yu*, Riguang Jin. Application of Porous Organic Polymers in the Radioactive Iodine Adsorption [J]. Progress in Chemistry, 2017, 29(7): 766-775.