English
新闻公告
More
化学进展 2023, Vol. 35 Issue (12): 1752-1763 DOI: 10.7536/PC230415 前一篇   后一篇

• 综述 •

钛基金属有机框架材料合成的研究进展

刘苏慧1,2, 张飞飞1,2, 王小青1,2, 刘普旭1,2, 杨江峰1,2,*()   

  1. 1 太原理工大学 化学工程与技术学院 太原 030024
    2 气体能源高效清洁利用山西省重点实验室 太原 030024
  • 收稿日期:2023-04-13 修回日期:2023-06-30 出版日期:2023-12-24 发布日期:2023-09-10
  • 作者简介:

    杨江峰 教授,博导,入选国家级青年人才项目;担任中国化工学会化工过程强化专业委员会青年委员,《低碳化学与化工》期刊青年编委。主要研究方向:非常规天然气及氢气的富集与提纯;基于温室气体减排的捕集与回收;无机多孔材料制备与气体吸附分离研究。在Adv. Mater., Angew. Chem. Int. Ed., Chem. Commun., AIChE J., IECR等刊物发表SCI收录论文百余篇,授权国家发明专利22件;获2019年度山西省自然科学一等奖(第一),2021年度中国石油和化学工业联合会技术发明一等奖(第二),2022年度山西省科技进步三等奖(第二)。

  • 基金资助:
    国家自然科学基金项目(21908153)

Research Progress in Synthesis of Titanium-Based Organic Framework Materials

Suhui Liu1,2, Feifei Zhang1,2, Xiaoqing Wang1,2, Puxu Liu1,2, Jiangfeng Yang1,2,*()   

  1. 1 College of Chemical Engineering and Technology, Taiyuan University of Technology,Taiyuan 030024, China
    2 Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization,Taiyuan 030024, China
  • Received:2023-04-13 Revised:2023-06-30 Online:2023-12-24 Published:2023-09-10
  • Contact: *e-mail: yangjiangfeng@tyut.edu.cn
  • Supported by:
    National Natural Science Foundation of China(21908153)

钛基金属有机框架(Ti-MOF)作为一种高价金属MOF,具有优异的化学稳定性、特殊的光响应特性、低毒性等优点,但由于钛金属源具有很高的反应活性,给材料合成带来了一定的挑战。本文综述了近年来Ti-MOF在合成方面的研究进展,详细介绍了溶剂热直接合成法、后交换合成法、原位生成SBUs构筑法等方法,并对形成的拓扑类型和晶体结构进行了分析,总结了Ti-MOF的合成规律及各种方法的优缺点。指出调控金属源和配位环境是获得Ti-MOF最重要的策略,并从原位生成SBUs构筑Ti-MOF和构筑双金属Ti/M-MOF两个角度进行了展望。

As a kind of metal-organic framework (MOF) with high valence, titanium-based metal-organic framework (Ti-MOF) has superior chemical stability, appealing photoresponsive properties, low toxicity and so on. However, due to the high reactivity of titanium sources, it brings certain challenges to the synthesis of materials. In this paper, the research progress of Ti-MOF synthesis in recent years is reviewed, and the solvothermal synthesis, post-synthetic modification and in situ SBUs construction methods are introduced in detail. The topological types and crystal structures formed are analyzed, and the synthesis rules of Ti-MOF and the advantages and disadvantages of various methods are summarized. It is pointed out that the control of the metal source and coordination environment is the most important strategy to obtain Ti-MOF, and the construction of Ti-MOF by in-situ formation of SBUs and heterometallic Ti/M-MOF are prospected.

Contents

1 Introduction

2 Synthesis of Ti-MOF

2.1 Solvothermal synthesis

2.2 Post-synthetic modification

2.3 In situ SBUs construction methods

3 Conclusion and outlook

()
图1 已被用作构建MOF的金属。橙色:已被使用;蓝色:未被使用[7]
Fig. 1 Metal that has been used to construct MOF. Orange: used; blue: unused[7]
表1 Ti-MOF的应用范围[11]
Table 1 Application fields of Ti-MOF[11]
图2 Ti-MOF发展历程(橙色:溶剂热直接合成法;黄色:后交换合成法;绿色:原位生成SBUs构筑法)
Fig. 2 Development of Ti-MOF (Orange: solvothermal synthesis; yellow: post-synthetic modification; green: in situ SBUs construction method)
图3 MIL-125的结构图[11]
Fig. 3 Structure of MIL-125[11]
表2 基于溶剂热法合成的Ti-MOF
Table 2 Ti-MOF synthesized by solvothermal synthesis
图4 Cd-Ti-MOF-1的合成方法[13]
Fig. 4 Synthesis of Cd-Ti-MOF-1[13]
图5 (a) Cd-Ti-MOF-1的晶体结构; (b) ctm拓扑结构[13]
Fig. 5 (a) Crystal structure of Cd-Ti-MOF-1. (b) Topology of ctm[13]
图6 ZTOF-1和ZTOF-2中的Zn/Ti-oxo簇[13]
Fig. 6 Zn/Ti-oxo clusters of ZTOF-1 and ZTOF-2[13]
图7 ZTOF-1和ZTOF-2的代表性结构[13]
Fig. 7 Representative structures of ZTOF-1 and ZTOF-2[13]
图8 CTOF-1和CTOF-2的结构[47]
Fig. 8 Structures of CTOF-1 and CTOF-2[47]
图9 MUV-10(Ca)的配位结构[24]
Fig. 9 The structure of MUV-10(Ca)[24]
图10 MUV-10(Ca)在pH=2~12的稳定性[24]
Fig. 10 Stability of MUV-10(Ca) between pH 2 and 12[24]
图11 不同Ti含量的MIL-173(Zr/Ti)的SEM[48]
Fig. 11 SEM images of MIL-173(Ti/Zr) samples of variable Ti content[48]
图12 PSM法制备UiO-66@TiO2的机理示意图[56]
Fig. 12 The mechanism of UiO-66@TiO2 by PSM[56]
图13 PSM策略制备的MOF-5(Zn/Me)(其中Me=Ti、V、Cr、Mn、Fe)[57]
Fig. 13 Synthesis of MOF-5(Zn/Me) (Me=Ti, V, Cr, Mn, Fe)[57]
图14 HVMO方法制备的Ti-MOF [20]
Fig. 14 Synthesis of Ti-MOF by HVMO[20]
图15 金属交换策略制备的双金属Ti-MOF[50]
Fig. 15 Heterometallic Ti-MOFs by Metal-exchange reactions[50]
图16 PCN-22合成过程[19]
Fig. 16 Synthesis process of PCN-22[19]
图17 PCN-22的7-连接钛簇[13]
Fig. 17 7-connected Ti-oxo-clusters of PCN-22[13]
图18 等网状的MOF-901和MOF-902[60]
Fig. 18 Isoreticular MOF-901 and MOF-902[60]
图19 Ti-oxo-clusters的多样性[61?~63]
Fig. 19 Diversity of Ti-oxo-clusters[61?~63]
表3 基于原位生成SBUs构筑法的Ti-MOF
Table 3 Ti-MOF synthesized by in situ SBUs construction methods
表4 三种合成方法的对比
Table 4 Comparison of three synthesis methods
Method Advantage and disadvantage Common synthesis condition
Solvothermal synthesis Ti-MOF Ad: The available ligands are diverse, and the synthesized structures are rich with few restrictions.
Dis: High reaction activity, easy hydrolysis, and the majority of synthesized sample powders.
Ti sources: organic Ti sources
Solvent environment: organic solvent
pH controller:acetic acid
Heterometallic Ti/M-MOF Ad: Properly reduce the reactivity of Ti and synthesize materials with heterometallic advantages.
Dis: The high polarizing power of Ti4+ prevents a direct reaction with other metals that would likely result in poor control over their distribution in the final material for the formation of segregated phases.
Ti sources:organic sources
Solvent environment:organic solvent
Post-synthetic modification M-MOF transform into Ti/M-MOF
by PSM
Ad: Capable of functionalizing the introduction of specific Ti ions into existing MOFs.
Dis: 1. Titanium sources are prone to severe hydrolysis and are dangerous to operate.
2. Easy to be MOF@metal oxide rather than Ti/M-MOF
Ti sources:TiCl3、TiCl4 etc.
Synthetic environment:Inert
gas environment
Ti/M1-MOF transform into Ti/M2-MOF by PSM Ad: Heterometallic Ti-MOF that cannot be obtained under high-temperature solvothermal conditions can be synthesized.
Dis: Ti/M1-MOF is relatively rare, and not all bimetallic MOFs are suitable for this strategy.
In situ SBUs construction methods Ad: It is another effective method to control the hydrolysis Condensation reaction reaction of Ti.
Dis: The addition of reaction steps has made the stability of titanium clusters another factor limiting the reaction.
Ti sources:Ti6O6(OiPr)6(abz)6
Solvent environment:organic solvent
[1]
Eddaoudi M, MolerD B, Li H L, Chen B L, Reineke T M, O’Keeffe M, Yaghi O M. Acc. Chem. Res., 2001, 34(4): 319.

doi: 10.1021/ar000034b     URL    
[2]
TranchemontagneD J, Mendoza-Cortés J L, O’Keeffe M, Yaghi O M. Chem. Soc. Rev., 2009, 38(5): 1257.

doi: 10.1039/b817735j     pmid: 19384437
[3]
Wang H, Yuan X Z, Wu Y, Zeng G M, Chen X H, Leng L J, Li H. Appl. Catal. B Environ., 2015, 174/175: 445.

doi: 10.1016/j.apcatb.2015.03.037     URL    
[4]
Wang H, Yuan X Z, Wu Y, Chen X H, Leng L J, Zeng G M. RSC Adv., 2015, 5(41): 32531.

doi: 10.1039/C5RA01283J     URL    
[5]
Schaate A, Roy P, Godt A, Lippke J, Waltz F, Wiebcke M, Behrens P. Chem. A Eur. J., 2011, 17(24): 6643.

doi: 10.1002/chem.v17.24     URL    
[6]
Mouchaham G, Cooper L, Guillou N, Martineau C, Elkaïm E, Bourrelly S, Llewellyn P L, Allain C, Clavier G, Serre C, Devic T. Angew. Chem. Int. Ed., 2015, 54(45): 13297.

doi: 10.1002/anie.201507058     pmid: 26457412
[7]
Yuan S, Qin J S, Lollar C T, Zhou H C. ACS Cent. Sci., 2018, 4(4): 440.

doi: 10.1021/acscentsci.8b00073     URL    
[8]
Canivet J, Fateeva A, Guo Y M, Coasne B, Farrusseng D. Chem. Soc. Rev., 2014, 43(16): 5594.

doi: 10.1039/c4cs00078a     pmid: 24875439
[9]
Wang C H, Liu X L, KeserDemir N, Chen J P, Li K. Chem. Soc. Rev., 2016, 45(18): 5107.

doi: 10.1039/C6CS00362A     URL    
[10]
Burtch N C, Jasuja H, Walton K S. Chem. Rev., 2014, 114(20): 10575.

doi: 10.1021/cr5002589     URL    
[11]
Nguyen H L. J. Phys. Energy, 2021, 3(2): 021003.

doi: 10.1088/2515-7655/abe3c9    
[12]
Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P. J. Am. Chem. Soc., 2008, 130(42): 13850.

doi: 10.1021/ja8057953     URL    
[13]
Nguyen H L. New J. Chem., 2017, 41(23): 14030.

doi: 10.1039/C7NJ03153J     URL    
[14]
Nasalevich M A, van der Veen M, Kapteijn F, Gascon J. CrystEngComm, 2014, 16(23): 4919.

doi: 10.1039/C4CE00032C     URL    
[15]
Abedi S, Morsali A. New J. Chem., 2015, 39(2): 931.

doi: 10.1039/C4NJ01536C     URL    
[16]
Guillerm V, Gross S, Serre C, Devic T, Bauer M, Férey G. Chem. Commun., 2010, 46(5): 767.

doi: 10.1039/B914919H     URL    
[17]
Gao J K, Miao J W, Li P Z, Teng W Y, Yang L, Zhao Y L, Liu B, Zhang Q C. Chem. Commun., 2014, 50(29): 3786.

doi: 10.1039/C3CC49440C     URL    
[18]
Dan-Hardi M, Serre C, Frot T, Rozes L, Maurin G, Sanchez C, Férey G. J. Am. Chem. Soc., 2009, 131(31): 10857.

doi: 10.1021/ja903726m     URL    
[19]
Yuan S, Liu T F, FengD W, Tian J, Wang K C, Qin J S, Zhang Q, Chen Y P, Bosch M, Zou L F, Teat S J, Dalgarno S J, Zhou H C. Chem. Sci., 2015, 6(7): 3926.

doi: 10.1039/C5SC00916B     URL    
[20]
Zou L F, FengD W, Liu T F, Chen Y P, Yuan S, Wang K C, Wang X, Fordham S, Zhou H C. Chem. Sci., 2016, 7(2): 1063.

doi: 10.1039/C5SC03620H     URL    
[21]
Hendon C H, TianaD, Fontecave M, Sanchez C, D’arras L, Sassoye C, Rozes L, Mellot-Draznieks C, Walsh A. J. Am. Chem. Soc., 2013, 135(30): 10942.

doi: 10.1021/ja405350u     URL    
[22]
Nguyen H L, Gándara F, Furukawa H, Doan T L H, Cordova K E, Yaghi O M. J. Am. Chem. Soc., 2016, 138(13): 4330.

doi: 10.1021/jacs.6b01233     pmid: 26998612
[23]
Li C Q, Xu H, Gao J K, Du W N, Shangguan L Q, Zhang X, Lin R B, Wu H, Zhou W, Liu X F, Yao J M, Chen B L. J. Mater. Chem. A, 2019, 7(19): 11928.

doi: 10.1039/C9TA01942A     URL    
[24]
Castells-Gil J, Padial N M, Almora-Barrios N, Albero J, Ruiz-Salvador A R, González-Platas J, García H, Martí-Gastaldo C. Angew. Chem. Int. Ed., 2018, 57(28): 8453.

doi: 10.1002/anie.201802089     pmid: 29873868
[25]
Castells-Gil J, Padial N M, Almora-Barrios N, Gil-San-Millán R, Romero-Ángel M, Torres V, da Silva I, Vieira B C J, Waerenborgh J C, Jagiello J, Navarro J A R, Tatay S, Martí-Gastaldo C. Chem., 2020, 6(11): 3118.

doi: 10.1016/j.chempr.2020.09.002     URL    
[26]
Sun Y Y, LuD F, Sun Y X, Gao M Y, Zheng N, Gu C, Wang F, Zhang J. ACS Mater. Lett., 2021, 3(1): 64.
[27]
Li H L, Eddaoudi M, O’Keeffe M, Yaghi O M. Nature, 1999, 402(6759): 276.

doi: 10.1038/46248    
[28]
Serre C, Férey G. Inorg. Chem., 1999, 38(23): 5370.

doi: 10.1021/ic990345m     URL    
[29]
Serre C, Groves J A, Lightfoot P, Slawin A M Z, Wright P A, Stock N, Bein T, Haouas M, Taulelle F, Férey G. Chem. Mater., 2006, 18(6): 1451.

doi: 10.1021/cm052149l     URL    
[30]
Khaletskaya K, Pougin A, Medishetty R, Rösler C, Wiktor C, Strunk J, Fischer R A. Chem. Mater., 2015, 27(21): 7248.

doi: 10.1021/acs.chemmater.5b03017     URL    
[31]
Cai Y L, Zou L J, Ji Q H, Yong J Y, Qian X F, Gao J K. Polyhedron, 2020, 190: 114771.

doi: 10.1016/j.poly.2020.114771     URL    
[32]
Wang C, Liu C, He X, Sun Z M. Chem. Commun., 2017, 53(85): 11670.

doi: 10.1039/C7CC06652J     URL    
[33]
Wang S J, Reinsch H, Heymans N, Wahiduzzaman M, Martineau-Corcos C, De Weireld G, Maurin G, Serre C. Matter, 2020, 2(2): 440.

doi: 10.1016/j.matt.2019.11.002     URL    
[34]
Salcedo-Abraira P, Babaryk A A, Montero-Lanzuela E, Contreras-Almengor O R, Cabrero-Antonino M, Grape E S, Willhammar T, Navalón S, Elkäim E, García H, Horcajada P. Adv. Mater., 2021, 33(52): 2106627.

doi: 10.1002/adma.v33.52     URL    
[35]
Assi H, Pardo Pérez L C, Mouchaham G, Ragon F, Nasalevich M, Guillou N, Martineau C, Chevreau H, Kapteijn F, Gascon J, Fertey P, Elkaim E, Serre C, Devic T. Inorg. Chem., 2016, 55(15): 7192.

doi: 10.1021/acs.inorgchem.6b01060     URL    
[36]
Bueken B, Vermoortele F, VanpouckeD E P, Reinsch H, Tsou C C, Valvekens P, De Baerdemaeker T, Ameloot R, Kirschhock C E A, Van Speybroeck V, Mayer J M, De VosD. Angew. Chem. Int. Ed., 2015, 54(47): 13912.

doi: 10.1002/anie.201505512     pmid: 26404186
[37]
Mason J A, Darago L E, Lukens W W Jr, Long J R. Inorg. Chem., 2015, 54(20): 10096.

doi: 10.1021/acs.inorgchem.5b02046     URL    
[38]
Li Y F, Aschauer U, Chen J, Selloni A. Acc. Chem. Res., 2014, 47(11): 3361.

doi: 10.1021/ar400312t     URL    
[39]
Wang S J, Kitao T, Guillou N, Wahiduzzaman M, Martineau-Corcos C, Nouar F, Tissot A, Binet L, Ramsahye N, Devautour-Vinot S, Kitagawa S, Seki S, Tsutsui Y, Briois V, Steunou N, Maurin G, Uemura T, Serre C. Nat. Commun., 2018, 9: 1660.

doi: 10.1038/s41467-018-04034-w    
[40]
Lan G X, Ni K Y, Veroneau S S, Feng X Y, Nash G T, Luo T K, Xu Z W, Lin W B. J. Am. Chem. Soc., 2019, 141(10): 4204.

doi: 10.1021/jacs.8b13804     URL    
[41]
Padial N M, Castells-Gil J, Almora-Barrios N, Romero-Angel M, da Silva I, Barawi M, García-Sánchez A, de la Peña O’Shea V A, Martí-Gastaldo C. J. Am. Chem. Soc., 2019, 141(33): 13124.

doi: 10.1021/jacs.9b04915     URL    
[42]
Cadiau A, Kolobov N, Srinivasan S, Goesten M G, Haspel H, Bavykina A V, Tchalala M R, Maity P, Goryachev A, Poryvaev A S, Eddaoudi M, Fedin M V, Mohammed O F, Gascon J. Angew. Chem. Int. Ed., 2020, 59(32): 13468.

doi: 10.1002/anie.v59.32     URL    
[43]
Zhu C F, Chen X, Yang Z W, Du X, Liu Y, Cui Y. Chem. Commun., 2013, 49(64): 7120.

doi: 10.1039/c3cc43225d     URL    
[44]
Xuan W M, Ye C C, Zhang M N, Chen Z J, Cui Y. Chem. Sci., 2013, 4(8): 3154.

doi: 10.1039/c3sc50487e     URL    
[45]
Hong K, Bak W, Chun H. Inorg. Chem., 2013, 52(10): 5645.

doi: 10.1021/ic400607w     URL    
[46]
Hong K, Chun H. Chem. Commun., 2013, 49(93): 10953.

doi: 10.1039/c3cc46761a     URL    
[47]
Hong K, Bak W, MoonD, Chun H. Cryst. GrowthDes., 2013, 13(9): 4066.
[48]
Gikonyo B, Montero-Lanzuela E, Baldovi H G, De S, Journet C, Devic T, Guillou N, TianaD, Navalon S, Fateeva A. J. Mater. Chem. A, 2022, 10(46): 24938.

doi: 10.1039/D2TA06652A     URL    
[49]
Li M M, Yuan J W, Wang G, Yang L J, Shao J X, Li H, Lu J M. Sep. Purif. Technol., 2022, 298: 121658.

doi: 10.1016/j.seppur.2022.121658     URL    
[50]
Padial N M, Lerma-Berlanga B, Almora-Barrios N, Castells-Gil J, da Silva I, de la Mata M, Molina S I, Hernández-Saz J, Platero-Prats A E, Tatay S, Martí-Gastaldo C. J. Am. Chem. Soc., 2020, 142(14): 6638.

doi: 10.1021/jacs.0c00117     URL    
[51]
Shultz A M, Sarjeant A A, Farha O K, Hupp J T, Nguyen S T. J. Am. Chem. Soc., 2011, 133(34): 13252.

doi: 10.1021/ja204820d     URL    
[52]
Grancha T, Ferrando-Soria J, Zhou H C, Gascon J, Seoane B, Pasán J, Fabelo O, Julve M, Pardo E. Angew. Chem. Int. Ed., 2015, 54(22): 6521.

doi: 10.1002/anie.201501691     pmid: 25873186
[53]
Li B J, Gui B, Hu G P, YuanD Q, Wang C. Inorg. Chem., 2015, 54(11): 5139.

doi: 10.1021/acs.inorgchem.5b00535     URL    
[54]
Wang Z Q, Cohen S M. J. Am. Chem. Soc., 2007, 129(41): 12368.

doi: 10.1021/ja074366o     URL    
[55]
Kim M, Cahill J F, Fei H H, Prather K A, Cohen S M. J. Am. Chem. Soc., 2012, 134(43): 18082.

doi: 10.1021/ja3079219     URL    
[56]
Denny M S Jr, Parent L R, Patterson J P, Meena S K, Pham H, Abellan P, Ramasse Q M, Paesani F, Gianneschi N C, Cohen S M. J. Am. Chem. Soc., 2018, 140(4): 1348.

doi: 10.1021/jacs.7b10453     URL    
[57]
Brozek C K, Dincă M. J. Am. Chem. Soc., 2013, 135(34): 12886.

doi: 10.1021/ja4064475     pmid: 23902330
[58]
Yaghi O M, O’Keeffe M, Ockwig N W, Chae H K, Eddaoudi M, Kim J. Nature, 2003, 423(6941): 705.

doi: 10.1038/nature01650    
[59]
Assi H, Mouchaham G, Steunou N, Devic T, Serre C. Chem. Soc. Rev., 2017, 46(11): 3431.

doi: 10.1039/C7CS00001D     URL    
[60]
Nguyen H L, Vu T T, LeD, Doan T L H, Nguyen V Q, Phan N T S. ACS Catal., 2017, 7(1): 338.

doi: 10.1021/acscatal.6b02642     URL    
[61]
Gao M Y, Wang Z R, Li Q H, LiD J, Sun Y Y, Andaloussi Y H, Ma C, Deng C H, Zhang J, Zhang L. J. Am. Chem. Soc., 2022, 144(18): 8153.

doi: 10.1021/jacs.2c00765     URL    
[62]
Lv H T, Li H M, Zou GD, Cui Y, Huang Y, Fan Y. Dalton Trans., 2018, 47(24): 8158.

doi: 10.1039/C8DT01844H     URL    
[63]
Hong K, Bak W, Chun H. Inorg. Chem., 2014, 53(14): 7288.

doi: 10.1021/ic500629y     URL    
[64]
Hong K, Chun H. Inorg. Chem., 2013, 52(17): 9705.

doi: 10.1021/ic401122u     URL    
[65]
Keum Y, Park S, Chen Y P, Park J. Angew. Chem. Int. Ed., 2018, 57(45): 14852.

doi: 10.1002/anie.v57.45     URL    
[66]
Wang S J, Cabrero-Antonino M, Navalón S, Cao C C, Tissot A, Dovgaliuk I, Marrot J, Martineau-Corcos C, Yu L, Wang H, Shepard W, García H, Serre C. Chem, 2020, 6(12): 3409.

doi: 10.1016/j.chempr.2020.10.017     URL    
[67]
Feng X Y, Song Y, Chen J S, Li Z, Chen E Y, Kaufmann M, Wang C, Lin W B. Chem. Sci., 2019, 10(7): 2193.

doi: 10.1039/C8SC04610G     URL    
[68]
Castells-Gil J, Padial N M, Almora-Barrios N, da Silva I, MateoD, Albero J, García H, Martí-Gastaldo C. Chem. Sci., 2019, 10(15): 4313.

doi: 10.1039/c8sc05218b     pmid: 31057758
[1] 马云华, 邵晗, 蔺腾龙, 邓钦月. 基于多齿钯化合物的磁性纳米颗粒催化材料的设计合成及应用[J]. 化学进展, 2023, 35(9): 1369-1388.
[2] 潘自宇, 冀豪栋. 银纳米材料的可控合成及其环境应用[J]. 化学进展, 2023, 35(8): 1229-1257.
[3] 马云超, 姚宇新, 付跃, 刘春波, 胡波, 车广波. 共价有机框架材料在碘捕捉方面的研究进展[J]. 化学进展, 2023, 35(7): 1097-1105.
[4] 王雪丽, 王倩茹, 李缔, 魏俊年, 郭建平, 于良, 邓德会, 陈萍, 席振峰. 固氮反应中的凝聚态化学[J]. 化学进展, 2023, 35(6): 904-917.
[5] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[6] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[7] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[8] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[9] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[10] 邓祥宇, 张宝昌, 曲倩. 蛋白化学合成中的片段增溶策略[J]. 化学进展, 2023, 35(11): 1579-1594.
[11] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[12] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
[13] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[14] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[15] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.