English
新闻公告
More
化学进展 2023, Vol. 35 Issue (7): 1097-1105 DOI: 10.7536/PC221118 前一篇   后一篇

• 综述 •

共价有机框架材料在碘捕捉方面的研究进展

马云超1,2, 姚宇新1,2, 付跃1,2, 刘春波1,3,*(), 胡波2,*(), 车广波1,3,4,*()   

  1. 1 吉林师范大学 环境友好材料制备与应用教育部重点实验室 长春 130103
    2 吉林师范大学 化学学院 四平 136000
    3 吉林师范大学 工程学院 四平 136000
    4 白城师范学院 化学学院 137000
  • 收稿日期:2022-11-24 修回日期:2023-02-28 出版日期:2023-07-24 发布日期:2023-03-30
  • 基金资助:
    国家自然科学基金项目(22205076); 吉林省科技厅项目(YDZJ202201ZYTS335); 吉林省人力资源和社会保障厅项目(2021Y019); 吉林省人力资源和社会保障厅项目(2021Z007); 吉林省发展和改革委员会项目(2021C036-7); 吉林省发展和改革委员会项目(2021C038-7); 吉林省教育厅项目(JJKH20220427KJ)

Progress of Covalent Organic Frameworks in Iodine Capture

Yunchao Ma1,2, Yuxin Yao1,2, Yue Fu1,2, Chunbo Liu1,3(), Bo Hu2(), Guangbo Che1,3,4()   

  1. 1 Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University,Changchun 130103, China
    2 College of Chemistry, Jilin Normal University,Siping 136000, China
    3 College of Engineering, Jilin Normal University,Siping 136000, China
    4 College of Chemistry, Baicheng Normal University,Baicheng 137000, China
  • Received:2022-11-24 Revised:2023-02-28 Online:2023-07-24 Published:2023-03-30
  • Contact: * e-mail: chunboliu@jlnu.edu.cn(Chunbo Liu); hubo2001@163.com(Bo Hu); guangboche@jlnu.edu.cn(Guangbo Che)
  • Supported by:
    National Natural Science Foundation of China(22205076); Project of Department of Science & Technology of Jilin Province(YDZJ202201ZYTS335); Project of Human Resources and Social Security Department of Jilin Province(2021Y019); Human Resources and Social Security Department of Jilin Province(2021Z007); Jilin Province Development and Reform Commission(2021C036-7); Jilin Province Development and Reform Commission(2021C038-7); Project of Education Department of Jilin Province(JJKH20220427KJ)

随着核工业的发展,放射性碘被确定为最危险的核废料之一。放射性碘捕获对于降低核废水污染也有着重要意义。共价有机框架材料(COFs)是一种通过共价键连接形成的晶态多孔有机材料,因其具有大的比表面积、规则的孔道结构和高化学稳定性等特点,因其本身的结构特征和COFs吸附位点易被碘分子占据,COFs被认为是理想的碘捕捉材料。本文主要综述了具有周期性多孔结构的COFs材料在碘捕捉领域的研究进展。首先,简要论述近年来各课题组对于亚胺键连接的COFs在碘捕获方面的进展。其次,探讨复合型COFs和离子型COFs的碘捕获能力。最后,探讨高效碘捕获COFs材料拓展至规模化应用的潜力并展望该领域未来的发展形势。

With the development of the nuclear industry, radioactive iodine was identified as one of the most hazardous nuclear wastes. Radioactive iodine capture also plays an important role in reducing the contamination of nuclear wastewater. Covalent organic frameworks (COFs), a crystalline porous organic material formed by covalent bond connection, are considered an ideal candidate for iodine capture materials for their large specific surface area, regular pore structure and high chemical stability. COFs are considered as ideal iodine trapping materials due to their structural characteristics and the fact that the adsorption sites of COFs are easily occupied by iodine molecules. This paper mainly reviews the progress of COFs with periodic porous structure and tunable functions in the field of iodine capture. Firstly, the recent progress in iodine capture of imine bonded COFs was briefly reviewed. Secondly, iodine capture capacity of compound COFs and ionic COFs are discussed. Finally, the potential of efficient iodine capture COFs to scale and the future development of this field.

Contents

1 Introduction

2 Capture of iodine by different types of COFs

2.1 Imine bonded COFs

2.2 Compound-functionalized COFs

2.3 3D COFs

2.4 Ionic-multivariated COFs

3 Conclusion and outlook

()
图1 ETTA-PyTTA-COF的合成示意图[11]
Fig.1 Synthesis of ETTA-PyTTA-COF[11], Copyright 2022, Acounts of Chemical Research
图2 TAPB-BPDA-COF的合成示意图[12]
Fig.2 Synthesis of TAPB-BPDA-COF[12], Copyright 2021, Reactive and Functional Polymers
图3 TAPA-PDA-COF的合成示意图[13]
Fig.3 Synthesis of TAPA-PDA-COF[13], Copyright 2021, Microporous and Mesoporous Materials
图4 TFB-DB、TFB-BD和TFB-Td COFs的合成示意图[19]
Fig.4 Synthesis of TFB-DB、TFB-BD and TFB-Td COFs[19], Copyright 2021, ACS Applied Materials & Interfaces
图5 TTA-TMTA-COF和TTA-FMTA-COF的合成示意图[20]
Fig.5 Synthesis of TTA-TMTA-COF and TTA-FMTA-COF[20], Copyright 2021, Macromolecular Rapid Communications
图6 COF-PA合成示意图[21]
Fig.6 Synthesis of COF-PA[21], Copyright 2021, Microporous and Mesoporous Materials
图7 JUC-609的合成示意图[22]
Fig.7 Synthesis of JUC-609[22] Copyright 2022, Chemical Research
图8 TTF-TD-COF和TTF-TAPT-COF合成示意图[24]
Fig.8 Synthesis of TTF-TD-COF and TTF-TAPT-COF[24], Copyright 2022, Chemical Research
图9 JUC-560和JUC-561合成示意图[25]
Fig.9 Synthesis of JUC-560 and JUC-561[25], Copyright 2021, Chemical Science
图10 SCU-COF-2合成示意图[26]
Fig.10 Synthesis of SCU-COF-2[26], Copyright 2021, CellPress
图11 CuxPc-COFs合成示意图[27]
Fig.11 Synthesis of CuxPc-COFs[27], Copyright 2022, Chinese Chemical Letters
图12 COFs@cotton合成示意图[31]
Fig.12 Synthesis of COFs@cotton[31], Copyright 2020, Cellulose
图13 BTM合成示意图[32]
Fig.13 Synthesis of BTM[32], Copyright 2021, Journal of Materials Chemistry A
图14 3D COF-DL229合成示意图[36]
Fig.14 Synthesis of 3D COF-DL229[36], Copyright 2018, Chemistry European Journal
图15 QTD-COFs合成示意图[37]
Fig.15 Synthesis of QTD-COFs[37], Copyright 2020, Angewandte Chemie International Edition
图16 COF-OH-X合成示意图[40]
Fig.16 Synthesis of COF-OH-X[40], Copyright 2021, Angewandte Chemie International Edition
[1]
Vellingiri K, Kim K H, Pournara A, Deep A. Prog. Mater. Sci., 2018, 94: 1.

doi: 10.1016/j.pmatsci.2018.01.002     URL    
[2]
Chapman K W, Chupas P J, Nenoff T M. J. Am. Chem. Soc., 2010, 132(26): 8897.

doi: 10.1021/ja103110y     pmid: 20550110
[3]
Pham T C T, Docao S, Hwang I C, Song M K, Choi D Y, Moon D, Oleynikov P, Yoon K B. Energy Environ. Sci., 2016, 9(3): 1050.

doi: 10.1039/C5EE02843D     URL    
[4]
Lei C, Gao J K, Ren W J, Xie Y B, Abdalkarim S Y H, Wang S L, Ni Q Q, Yao J M. Carbohydr. Polym., 2019, 205: 35.

doi: 10.1016/j.carbpol.2018.10.029     URL    
[5]
Adams G M, Weller A S. Coord. Chem. Rev., 2018, 355: 150.

doi: 10.1016/j.ccr.2017.08.004     URL    
[6]
Shahvar A, Soltani R, Saraji M, Dinari M, Alijani S. J. Chromatogr. A, 2018, 1565: 48.

doi: S0021-9673(18)30789-1     pmid: 29921466
[7]
Afshari M, Dinari M. J. Hazard. Mater., 2020, 385: 121514.

doi: 10.1016/j.jhazmat.2019.121514     URL    
[8]
Coõteé A P, Benin A I, Ockwig N W, O'Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310(5751): 1166.

doi: 10.1126/science.1120411     URL    
[9]
Tong D Y, Zhao Y L, Chen Z C, Wang Y Q, Jia Z Q, Nie X M, Xiao S T. Phys. Chem. Chem. Phys., 2021, 23(44): 25365.

doi: 10.1039/D1CP04390K     URL    
[10]
Smith B J, Overholts A C, Hwang N, Dichtel W R. Chem. Commun., 2016, 52(18): 3690.

doi: 10.1039/C5CC10221A     URL    
[11]
Wen Z L, Wang S L, Fu S Y, Qian J Y, Yan Q Q, Xu H J, Zuo K M, Su X F, Zeng C Y, Gao Y N. Chem. Res. Chin. Univ., 2022, 38(2): 472.

doi: 10.1007/s40242-022-2057-2    
[12]
Chen R, Hu T L, Li Y Q. React. Funct. Polym., 2021, 159: 104806.

doi: 10.1016/j.reactfunctpolym.2020.104806     URL    
[13]
Chen R, Hu T L, Zhang W, He C Y, Li Y Q. Microporous Mesoporous Mater., 2021, 312: 110739.

doi: 10.1016/j.micromeso.2020.110739     URL    
[14]
Sun Y H, Song S N, Xiao D H, Gan L F, Wang Y R. ACS Omega, 2020, 5(38): 24262.

doi: 10.1021/acsomega.0c02382     URL    
[15]
Ding S Y, Gao J, Wang Q, Zhang Y, Song W G, Su C Y, Wang W. J. Am. Chem. Soc., 2011, 133(49): 19816.

doi: 10.1021/ja206846p     URL    
[16]
Han X, Zhang J, Huang J J, Wu X W, Yuan D Q, Liu Y, Cui Y. Nat. Commun., 2018, 9: 1294.

doi: 10.1038/s41467-018-03689-9    
[17]
Vyas V S, Vishwakarma M, Moudrakovski I, Haase F, Savasci G, Ochsenfeld C, Spatz J P, Lotsch B V. Adv. Mater., 2016, 28(39): 8749.

doi: 10.1002/adma.201603006     URL    
[18]
Gomes R, Bhanja P, Bhaumik A. Chem. Commun., 2015, 51(49): 10050.

doi: 10.1039/C5CC02147B     URL    
[19]
Song S N, Shi Y, Liu N, Liu F Q. ACS Appl. Mater. Interfaces, 2021, 13(8): 10513.

doi: 10.1021/acsami.0c17748     URL    
[20]
Zhai L P, Han D D, Dong J H, Jiang W Q, Nie R M, Yang X B, Luo X L, Li Z P. Macromol. Rapid Commun., 2021, 42(13): 2100032.

doi: 10.1002/marc.v42.13     URL    
[21]
Zhao Y X, Liu X, Li Y P, Xia M, Xia T, Sun H C, Sui Z Y, Hu X M, Chen Q. Microporous Mesoporous Mater., 2021, 319: 111046.

doi: 10.1016/j.micromeso.2021.111046     URL    
[22]
Zhang J H, Liu J C, Liu Y Z, Wang Y J, Fang Q R, Qiu S L. Chem. Res. Chin. Univ., 2022, 38(2): 456.

doi: 10.1007/s40242-022-1513-3    
[23]
Wu Q, Xie R K, Mao M J, Chai G L, Yi J D, Zhao S S, Huang Y B, Cao R. ACS Energy Lett., 2020, 5(3): 1005.

doi: 10.1021/acsenergylett.9b02756     URL    
[24]
Wang G B, Xie K H, Zhu F C, Kan J L, Li S, Geng Y, Dong Y B. Chem. Res. Chin. Univ., 2022, 38(2): 409.

doi: 10.1007/s40242-022-1417-2    
[25]
Chang J H, Li H, Zhao J, Guan X Y, Li C M, Yu G T, Valtchev V, Yan Y S, Qiu S L, Fang Q R. Chem. Sci., 2021, 12(24): 8452.

doi: 10.1039/D1SC01742J     URL    
[26]
He L W, Chen L, Dong X L, Zhang S T, Zhang M X, Dai X, Liu X J, Lin P, Li K F, Chen C L, Pan T T, Ma F Y, Chen J C, Yuan M J, Zhang Y G, Chen L, Zhou R H, Han Y, Chai Z F, Wang S A. Chem, 2021, 7(3): 699.

doi: 10.1016/j.chempr.2020.11.024     URL    
[27]
Liu X W, Zhang A R, Ma R, Wu B, Wen T, Ai Y J, Sun M T, Jin J, Wang S H, Wang X K. Chin. Chemical Lett., 2022, 33(7): 3549.

doi: 10.1016/j.cclet.2022.03.001     URL    
[28]
Qian X, Zhu Z Q, Sun H X, Ren F, Mu P, Liang W D, Chen L H, Li A. ACS Appl. Mater. Interfaces, 2016, 8(32): 21063.

doi: 10.1021/acsami.6b06569     URL    
[29]
Wei H T, Ning J, Cao X D, Li X H, Hao L. J. Am. Chem. Soc., 2018, 140(37): 11618.

doi: 10.1021/jacs.8b08282     URL    
[30]
Jie K, Zhou Y, Li E. J. Am. Chem. Soc., 2017, 139: 15320.

doi: 10.1021/jacs.7b09850     URL    
[31]
Li Y Q, Li Y R, Zhao Q H, Li L, Chen R, He C Y. Cellulose, 2020, 27(3): 1517.

doi: 10.1007/s10570-019-02877-0    
[32]
Zhu Y, Qi Y, Guo X H, Zhang M C, Jia Z M, Xia C Q, Liu N, Bai C Y, Ma L J, Wang Q. J. Mater. Chem. A, 2021, 9(31): 16961.

doi: 10.1039/D1TA03879F     URL    
[33]
Wang H L, Bao Z B, Wu H, Lin R B, Zhou W, Hu T L, Li B, Zhao J C G, Chen B L. Chem. Commun., 2017, 53(81): 11150.

doi: 10.1039/C7CC06187K     URL    
[34]
Zhou Y, Kan L, Eubank J F, Li G H, Zhang L R, Liu Y L. Chem. Sci., 2019, 10(26): 6565.

doi: 10.1039/c9sc00290a     pmid: 31367308
[35]
Tan L L, Li H W, Tao Y C, Zhang S X A, Wang B, Yang Y W. Adv. Mater., 2014, 26(41): 7027.

doi: 10.1002/adma.201401672     URL    
[36]
Wang C, Wang Y, Ge R L, Song X D, Xing X Q, Jiang Q K, Lu H, Hao C, Guo X W, Gao Y N, Jiang D L. Chem. Eur. J., 2018, 24(3): 585.

doi: 10.1002/chem.v24.3     URL    
[37]
Guo X H, Li Y, Zhang M C, Cao K C, Tian Y, Qi Y, Li S J, Li K, Yu X Q, Ma L J. Angewandte Chemie Int. Ed., 2020, 59(50): 22697.

doi: 10.1002/anie.v59.50     URL    
[38]
Jiao J J, Gong W, Wu X W, Yang S P, Cui Y. Coord. Chem. Rev., 2019, 385: 174.

doi: 10.1016/j.ccr.2019.01.016     URL    
[39]
Huang N, Zhai L P, Coupry D E, Addicoat M A, Okushita K, Nishimura K, Heine T, Jiang D L. Nat. Commun., 2016, 7: 12325.

doi: 10.1038/ncomms12325     pmid: 27460607
[40]
Xie Y Q, Pan T T, Lei Q, Chen C L, Dong X L, Yuan Y Y, Shen J, Cai Y C, Zhou C H, Pinnau I, Han Y. Angewandte Chemie Int. Ed., 2021, 60(41): 22432.

doi: 10.1002/anie.v60.41     URL    
[1] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[2] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[3] 兰兴旺, 白国义. 共价有机框架催化材料:二氧化碳转化与利用[J]. 化学进展, 2020, 32(10): 1482-1493.
[4] 王婷, 薛瑞, 魏玉丽, 王明玥, 郭昊, 杨武. 共价有机框架材料的发展与应用:气体存储、催化与化学传感[J]. 化学进展, 2018, 30(6): 753-764.
[5] 付先彪, 喻桂朋. 共价有机框架材料催化剂[J]. 化学进展, 2016, 28(7): 1006-1015.