English
新闻公告
More
化学进展 2023, Vol. 35 Issue (5): 655-682 DOI: 10.7536/PC221024   后一篇

• 综述 •

中药碳点的合成及其在生物成像和医学治疗方面的应用

何静1,2, 陈佳1,2,*(), 邱洪灯1,2,*()   

  1. 1 中国科学院兰州化学物理研究所 兰州 730000
    2 中国科学院大学 北京 101408
  • 收稿日期:2022-11-01 修回日期:2022-12-01 出版日期:2023-05-24 发布日期:2023-02-20
  • 作者简介:

    陈佳 2013年进入中国科学院兰州化学物理研究所工作(期间获博士学位),现任副研究员,2021年入选中国科学院青年创新促进会会员。主要从事纳米材料在生物标志物检测与药物分离方面的应用基础研究工作。在纳米材料制备、探针构建、光学传感、分离分析等方面积累有丰富的研究经验。已在Anal. Chem., Chem. Commun., Biosens. Bioelectron., Sens. Actuators B Chem., TrAC Trends Anal. Chem.等期刊发表论文120余篇,获授权国家发明专利20件。

    邱洪灯 国家基金委优秀青年项目获得者,中科院“百人计划”(A类),现任中国科学院兰州化学物理研究所研究员。2003年南昌大学化学系本科,2008年兰州化学物理研究所博士,留所任助理研究员,2009年至2012年日本国立熊本大学博士后(JSPS Fellow)。已在Anal. Chem., Adv. Funct. Mater.等重要学术期刊上发表论文220余篇,申请专利近50件,论著2章。研究方向为碳纳米材料、离子液体、多孔骨架材料等在药物分离、稀土分离及环境分析中的应用。

  • 基金资助:
    中国科学院“西部之光”人才培养计划(xbzg-zdsys-202008); 中国科学院青年创新促进会(2021420)

Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics

Jing He1,2, Jia Chen1,2(), Hongdeng Qiu1,2()   

  1. 1 Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences,Lanzhou 730000, China
    2 University of Chinese Academy of Sciences,Beijing 101408, China
  • Received:2022-11-01 Revised:2022-12-01 Online:2023-05-24 Published:2023-02-20
  • Contact: * e-mail: hdqiu@licp.cas.cn(Hongdeng Qiu);jiachen@licp.cas.cn(Jia Chen)
  • Supported by:
    CAS “Light of West China” Program(xbzg-zdsys-202008); Youth Innovation Promotion Association CAS(2021420)

碳点(Carbon dots, CDs)作为一类粒径小于10 nm新型零维光致发光纳米材料,具备可调荧光发射和激发波长,良好的光稳定性、水溶性和生物相容性、低毒性等显著优势,近年来得到了学者们广泛关注。以富含多种活性成分并可发挥多种药效作用的中药(Traditional Chinese Medicines, TCM)为碳源,制备出具有一些特殊功能的中药CDs(TCM-CDs),进而有望发挥出更大的药用价值。本文详细介绍了中药CDs的合成方法及每种合成方法的优缺点,全面综述了中药碳点在生物成像和医学治疗方面的最新研究进展,并对中药CDs研究的重要性及面临的主要问题及挑战和未来的发展方向进行了展望。

Carbon dots (CDs), with particle size less than 10 nm, are a new type of zero-dimensional photoluminescence nanomaterials. Due to the obvious advantages of adjustable fluorescence emission and excitation wavelength, light stability, low toxicity, good water solubility and biocompatibility, etc., CDs have been widely researched in recent years. As a treasure of ancient Chinese science, Traditional Chinese medicine (TCM) is rich in various active ingredients and plays a variety of pharmacodynamic effects, which has been used for thousands of years. TCM-CDs prepared with TCM as carbon source can create some special functions, and then may play a greater medicinal value. In this paper, the synthesis of TCM-CDs and its application in biological imaging and medical therapy are reviewed. Firstly, different synthetic methods of TCM-CDs (including hydrothermal, pyrolysis, solvothermal and microwave assisted method) are introduced in detail, and their advantages and disadvantages are compared. Subsequently, the latest research on TCM-CDs in biological imaging and medical treatment is comprehensively analyzed. This paper focuses on the application of imaging different types of cells in vitro and the distribution and uptake of TCM-CDs guided by imaging in vivo (mice, zebrafish, etc.). In addition, the intrinsic pharmacological activities of these TCM-CDs (including antibacterial, anti-inflammatory, hemostatic, antioxidant and anticancer, etc.) and their mechanisms are also discussed in order to improve and promote their clinical application. Finally, the importance of TCM-CDs research, the main problems and challenges in this fields and the future development direction are summarized and outlooked.

Contents

1 Introduction

2 Synthetic method of TCM-CDs

2.1 Hydrothermal method

2.2 Pyrolysis method

2.3 Solvothermal method

2.4 Microwave assisted method

3 Application of TCM-CDs in bioimaging

3.1 In vitro imaging

3.2 In vivo imaging

4 Application of TCM-CDs in therapeutics

4.1 Anti-bacterial

4.2 Anti-inflammatory

4.3 Hemostasis

4.4 Anti-oxidation

4.5 Anti-cancer

4.6 Other therapeutic effects

5 Conclusion and outlook

()
图1 CDs的分类和相应结构的示意图[2]
Fig.1 Schematic illustration of classifications and corresponding structures of CDs[2]
图2 N-CDs的合成路线及其在Ag+传感和RGB颜色分析中的应用[28]
Fig. 2 Schematic illustration of synthesis route for N-CDs and the application in Ag+ sensing and RGB color analysis[28]
图3 (A)荧光N-CDs的合成和应用示意图[50];(B)CDs荧光探针制备及检测Cr(Ⅵ)的原理图[51]
Fig. 3 (A) Schematic illustration for the synthesis and applications of fluorescent N-CDs[50]; (B) Schematic of the preparation and detection of Cr(Ⅵ) using CDs fluorescent probe[51]
图4 (A)从花生壳合成荧光CDs及其应用于多色活细胞成像的示意图[54];(B)从植物叶片热解合成CDs,等离子体和微波辐射增强PL的示意图[55];(C)榴莲皮CDs的合成与应用示意图[56]
Fig. 4 (A)Schematic illustration of the synthesis of fluorescent C-dots from peanut shells and their application in multicolor living cell imaging[54]; (B)Schematic synthesis of CDs from pyrolysis of plant leaves and the PL enhancement by plasma and microwave irradiation[55]; (C)Schematic representation of synthesis and applications of Durian Peel-based CDs[56]
图5 CP-CDs的制备工艺及应用的示意图[63]
Fig.5 Schematic of the preparation procedure and application of CP-CDs[63]
图6 活蚕蛹中提取制备的SC-CDs及其蓝光荧光的示意图[67]
Fig. 6 Schematic illustration for the preparation of SC-CDs derived from alive silkworm chrysalis and the presentation of blue photoluminescence[67]
表1 不同中药源及合成方法及条件制得的CDs的尺寸、荧光性质和荧光QY比较
Table 1 Comparison of size, fluorescence properties and fluorescence QY of CDs prepared from different TCM sources, synthesis methods and conditions
Source Synthesis method Reaction temperature ( ℃/W) Reaction time (h) Exciation (nm) Emission (nm) Average particle size (nm) Quantum yield (%) Surface modification ref
Reynoutria japonica Houtt. Hydrothermal 200 3 320 400 35 11.5 - 24
Citrus Bergamot Hydrothermal 200 5 330 440 10 50.78 - 25
Perilla Frutescens(L.)Britt Hydrothermal 260 5 360 450 2.8 9.01 - 26
Lycium chinense Miller Hydrothermal 180 24 427 550 4.5 21.8 - 28
Lycium chinense Miller Hydrothermal 200 5 350 430 3.3 17.2 NH3·H2O 29
Zingiber officinale Roscoe Hydrothermal 300 2 325 400 4.3 13.4 - 38
Trapa bispinosa Roxb. Hydrothermal 90 2 450 520 7.5 1.2 - 39
Allium sativum L. Hydrothermal 200 3 360 442 10.7 17.5 - 40
Salvia miltiorrhiza Bunge Hydrothermal 100~180 6 400 490 1.53~16.94 30~40 - 44
Mentha haplocalyx Briq. Hydrothermal 200 5 360 450 7 7.64 - 46
Mentha haplocalyx Briq. Hydrothermal 180 8 363 441 5 4.5 - 47
Aloe vera Hydrothermal 180 11 441 503 5 10.3 - 48
Brassica oleracea Linnaeus var. capitata Linnaeus Hydrothermal 140 5 345 432 4 12.5 - 49
Lilium brownii F. E. Brown var. Colchesteri Wils. Hydrothermal 240 12 340 405 4 11 - 50
Poria cocos (Schw.) Wolf Hydrothermal 200 5 376 450 4 4.8 - 51
Ginkgo biloba Linn. Hydrothermal 160~200 8 420 520 3.81 3.33 - 69
Salvia miltiorrhiza Bunge Hydrothermal 150 6 420 526 3.32 - - 74
Charred Triplet Hydrothermal 100 2 340 447 5.1 7.95 - 131
Litchi chinensis Sonn. Pyrolysis 300 2 365 440 1.12 10.6 - 53
Peanut Shells Pyrolysis 250 2 320 440 1.6 9.91 - 54
Durian Peel Pyrolysis 250 5 368 480 10 11 - 56
Gynostemma pentaphyllum
(Thunb.) Makino
Pyrolysis 400 4 320 400 2.49 5.7 - 57
Papaya Solvothermal 200 5 370 450 3.4/10.8 18.98/18.39 ethanol 60
Saccharum sinensis Roxb. Solvothermal 250 6 350 430 1 10.7 ethanol 61
Saccharum sinensis Roxb. Solvothermal 120 8 360 460 5 - Urea and ethanol 62
Codonopsis pilosula Solvothermal 25 4 390 456 11.54 12.8 methanol 63
Mentha canadensis Linnaeus Microwave 960 0.07~0.17 340 436 2.43 17 - 66
Bombyx mori L. Microwave 210 0.75 350 440 19 46 - 67
Zingiberis rhizome and
Alpinia officinarum
Microwave 450 0.08~0.67 - - 10 - - 68
Ginkgo biloba Linn. Microwave 800 0.08~0.25 440 550 2.82 0.65 - 69
Panax ginseng Microwave 700 0.5 380 500 2 8 AgNPs 70
Talinum paniculatum (Jacq.)
Gaertn.
Microwave 700 0.5 380 470 2 - Rutin 107
图7 用FCP-B、FCP-G和FCP-Y处理的A549细胞在4 h内观察的共聚焦显微镜图像[79]
Fig. 7 Confocal microscope images of A549 cells treated with FCP-B, FCP-G and FCP-Y, observed during a 4 h incubation period[79]
图8 Hoechst/PI双染色法对细胞凋亡和坏死的高含量成像分析[89]
Fig. 8 High-content imaging analysis of cell apoptosis and necrosis by hoechst/PI double-staining method[89]
图9 在蓝、黄、红三色区(A)E. Coli和(B)B.Subtilis存在下的细菌生物成像[92]
Fig. 9 Bioimaging of bacteria in presence of CDs in blue, yellow and red region (A) E. Coli and (B) B.Subtilis[92]
图10 基于Mis-mPD-CDs的细胞内CR成像与传感:A549、C. albicans、E. coli和S. aureus的CLSM图像,用不同浓度的CR处理,然后与Mis-mPD-CDs孵育30 min[93]
Fig. 10 Imaging and sensing of intracellular CR based on Mis-mPD-CDs. CLSM images of A549, C. albicans, E. coli, and S. aureus, and treated with CR of different concentrations and then incubated with Mis-mPD-CDs for 30 min[93]
图11 杧果CDs的小鼠体内成像图。尾静脉注射5 mg·kg-1体重后FCP-B、FCP-G和FCP-Y在BALB/c裸鼠体内的生物分布。FCP-B(a,b)、FCP-G(c,d)和FCP-Y(e,f)的体内分布及相应强度[79]
Fig. 11 In vivo biodistribution of FCP-B, FCP-G and FCP-Y in balb/c nude mice after tail vein injection of 5 mg·kg-1 of body weight. The in vivo biodistribution and corresponding intensities of FCP-B (a, b), FCP-G (c, d) and FCP-Y (e, f) respectively
图12 CDs的单光子和双光子生物成像。(A)在不同时间点静脉注射CDs的仰卧裸鼠的体内成像(Ⅰ:胸部区域,Ⅱ:肝脏区域,Ⅲ:小肠区域,Ⅳ:大肠区域,Ⅴ:膀胱区域);(B)在不同时间点静脉注射CDs的裸鼠的实时离体成像[97]
Fig. 12 One-photon and two-photon bioimaging of CDs. (A) In vivo imaging of supine nude mice with intravenous injection of CDs at different time points (Ⅰ: thoracic region, Ⅱ: area of liver, Ⅲ: area of small intestine, Ⅳ: area of large intestine, Ⅴ: bladder region). (B)Real-time ex vivo imaging of nude mice with intravenous injection of CDs at different time points
图13 用NBCD-PEG-Ce6-Tf在不同时间点对小鼠肿瘤进行实时近红外荧光成像[88]
Fig. 13 Real-time NIR fluorescence images of the mice tumor with NB-CDs at different time points[88]
图14 BALB/c小鼠不同时间间隔注射Pn N-CDs后的体内成像[98]
Fig. 14 In vivo imaging of male BALB/c mice after injection of Pn N-CDs at different time intervals[98]
图15 CDs在斑马鱼体内的光致发光衰减。0.4 mg/mL HCDs和SCDs溶液在不同时间点暴露2 d后斑马鱼胚胎的荧光图像[100]
Fig. 15 The photoluminescence decay of CDs in zebrafish. The fluorescent microscopic images of bright field and fluorescent field of zebrafish embryos after exposure to 0.4 mg/mL HCDs and SCDs solutions for 2 days at different time points[100]
表2 中药CDs在生物成像中的应用
Table 2 The application of TCM-CDs in bioimaging
Source FL color Applied Ex/Em (nm) Application Biotarget ref
Citrus junos Tanada blue, green 405, 488/- Imaging of cells MG-63 74
Mentha haplocalyx Briq blue, green, red 360, 470, 530/447,
525, 593
Imaging of cells MCF-7 75
Prunus persica blue - Imaging of cells MDA-MB-231 76
Prunus mume blue, green 365/- Imaging of cells MDA-MB-231 77
Curcuma Longa blue, yellow, red 405, 488, 543/- Imaging of cells KB 78
Mangifera indica L. blue, green, yellow 488, 488, 513/505,
530, 560
Imaging of cells A549 79
Allium sativum L. blue, green, yellow 385, 480,550/- Imaging of cells A549 40
Coriandrum sativum Linn. green 470/525 Imaging of cells L-132 80
Dendranthema morifolium blue, green 405, 488/- Imaging of cells HeLa 81
Mentha haplocalyx Briq. blue, yellow, red 380, 480, 590/- Imaging of cells HeLa 82
Brassica compestris L.var.purpurea Bailey blue, yellow, red 405, 488, 559/- Imaging of cells HeLa 83
Bombyx mori L. blue, yellow, red 340, 495, 550/- Imaging of cells HeLa 67
Abelmoschus esculentus (Linn.) Moench blue 340/410 Imaging of cells HeLa 84
Lycium chinense Miller blue, glaucous, green 400, 415, 485/- Imaging of cells HeLa 29
Alisma plantago-aquatica Linn. blue, yellow, red 340, 460, 520/- Imaging of cells HeLa 85
Ginkgo biloba Linn. blue, green 405, 488/- Imaging of cells HeLa, KYSE-410 69
Benincasa hispida (Thunb.) Cogn. blue 365/- Imaging of cells HepG2 86
Prunus cerasifera Ehrhart f. atropurpurea (Jacq.) Rehd. blue, green 405, 488/- Imaging of cells HepG2 87
Litchi chinensis Sonn blue 405/- Imaging of cells HepG2 88
Ginsenoside Re blue to red 360-530/- Imaging of cells A375 89
Brassica oleracea Linnaeus var.
capitata Linnaeus
blue, green, red 405, 488, 543/- Imaging of cells HaCaT 49
Phyllanthus acidus (L.) Skeels blue, green, red 405, 488, 555/- Imaging of cells Clone9 90
Cymbopogon citratus (D. C.) Stapf blue, yellow, red - Imaging of bacteria BY4742 91
Ocimum sanctum Linn. blue, yellow, red 405, 488, 561/- Imaging of bacteria B. subtilis,
E. coli
92
Salvadora persica green 488/550 Imaging of bacteria C. albicans,E. coli, S. aureus 93
Allium cepa Linn. green - Imaging of bacteria E.coli, S.aureus 94
Mangifera indica L. blue to yellow - In vivo imaging mice 79
Taxus chinensis (Pilger) Rehd. red 640/705 In vivo imaging of tumor mice 97
Litchi chinensis Sonn. blue to red - In vivo imaging of tumor mice 88
Panax notoginseng blue to red - In vivo imaging of tumor BALB/c mice 98
Pisum sativum Linn. blue - In vivo imaging mice 99
Crinis Carbonisatus blue, green, red 385, 480, 550/- In vivo imaging Zebrafish 100
Gynostemma pentaphyllum
(Thunb.) Makino
blue, green, red - In vivo imaging Zebrafish 57
Salvadora persica green 488/550 In vivo imaging Zebrafish 93
Panax notoginseng blue, yellow, red 405, 488, 543/- In vivo imaging P. caudatum 98
图16 CDs的一般杀菌作用机制。(a)CDs和细菌细胞壁之间最初静电相互作用。(b)CDs内化,在细菌膜中插入,以及细胞质物质泄漏的不可逆破坏。(c)CDs促进细菌光动力灭活,产生ROS和DNA损伤[105]
Fig. 16 General bactericidal mechanisms of action of CDs. (A) Schematic representation of the initial electrostatic interaction between CDs and the bacterial cell wall. (B) CDs internalization, intercalation in the bacterial membrane, and irreversible disruption with a leak of cytoplasmatic material. (C) CD-promoted bacterial photodynamic inactivation with ROS production and DNA damage[105]
图17 大肠杆菌的SEM图像:(A~C)光照射不含MCDs,(D~F)MCDs在黑暗条件下处理,以及(G~I)MCDs在可见光照射下处理12 h[106]
Fig. 17 SEM images of E. coli: (A~C) light irradiation without MCDs, (D~F) MCDs treated under dark conditions, and (G~I) MCDs treated with visible light irradiation for 12 h[106]
图18 (a)洋葱CDs对细菌细胞壁和细胞膜完整性影响的示意图;洋葱CDs对脆弱假单胞菌胞外(b)AKP和(c)ATP释放的影响[94]
Fig. 18 (a) Schematic illustration of the effect of the onion carbon dots on the integrity of the bacterial cell walls and membranes. Effect of onion carbon dots on the release of extracellular (b) AKP and (c) ATP content in Pseudomonas fragi[94]
图19 用于清除ROS和抗炎治疗的CDs示意图[108]
Fig. 19 Schematic illustration of CDs for ROS depletion and anti-inflammation therapy[108]
图20 ASAC-CDs改善LPS诱导的大鼠急性肺损伤(ALI)的宏观图像:(A)生理盐水组;(B)示范组;(C)阳性对照组;(D)大剂量ASAC-CDs组;(E)中剂量ASAC-CDs组;低剂量ASAC-CDs组[112]
Fig. 20 Macroscopic images of ASAC-CDs ameliorating an LPS-induced acute lung injury (ALI) in rats. (A) Normal saline group; (B) model group; (C) positive control group; (D) high-dose ASAC-CDs group; (E) medium-dose ASAC-CDs group; and (F) low-dose ASAC-CDs group[112]
图21 CDs减轻盐胁迫下莴苣氧化损伤的机理示意图[44]
Fig. 21 Schematic of the Mechanism of CDs Alleviating the Oxidative Damage of Italian Lettuce under Salt Stress[44]
图22 J-CDs的治疗贫血功能示意图[132]
Fig. 22 Schematic of the function of J-CDs[132]
[1]
Xu X Y, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A. J. Am. Chem. Soc., 2004, 126(40): 12736.

doi: 10.1021/ja040082h     URL    
[2]
Ai L, Shi R, Yang J, Zhang K, Zhang T R, Lu S Y. Small, 2021, 17(48): 2007523.

doi: 10.1002/smll.v17.48     URL    
[3]
Fatahi Z, Esfandiari N, Ranjbar Z. J. Anal. Test., 2020, 4(4): 307.

doi: 10.1007/s41664-020-00149-6    
[4]
Tang Z J, Li G K, Hu Y L. Prog. Chem., 2016, 28: 1455.
(唐志姣, 李攻科, 胡玉玲. 化学进展, 2016, 28: 1455.).

doi: 10.7536/PC160504    
[5]
Li C H, Liu Y M, Lu B, Sana U, Ren X Y, Sun Y P. Prog. Chem., 2022, 34(3): 499.
(李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 化学进展, 2022, 34(3): 499.).

doi: 10.7536/PC210303    
[6]
Zhai Y P, Zhang B W, Shi R, Zhang S Y, Liu Y, Wang B Y, Zhang K, Waterhouse G I N, Zhang T R, Lu S Y. Adv. Energy Mater., 2022, 12(6): 2103426.

doi: 10.1002/aenm.v12.6     URL    
[7]
Semeniuk M, Yi Z H, Poursorkhabi V, Tjong J, Jaffer S, Lu Z H, Sain M. ACS Nano, 2019, 13(6): 6224.

doi: 10.1021/acsnano.9b00688     pmid: 31145587
[8]
Wei Y Y, Chen L, Wang J L, Yu S P, Liu X G, Yang Y Z. Prog. Chem., 2020, 32: 381.
(卫迎迎, 陈琳, 王军丽, 于世平, 刘旭光, 杨永珍. 化学进展, 2020, 32: 381.).

doi: 10.7536/PC190739    
[9]
Hutton G A M, Martindale B C M, Reisner E. Chem. Soc. Rev., 2017, 46(20): 6111.

doi: 10.1039/C7CS00235A     URL    
[10]
Xiong W, Zhao Y, Cheng J J, Zhang M L, Sun Z W, Luo J, Zhu Y F, Zhang Y X, Kong H, Qu H H. Chinese Traditional and Herbal Drugs, 2019, 50: 1388.
(熊威, 赵琰, 成金俊, 张美龄, 孙紫薇, 罗娟, 朱雅凡, 张亚雪, 孔慧, 屈会化. 中草药, 2019, 50: 1388.).
[11]
He C, E S, Yan H H, Li X J. Prog. Chem., 2022, 34: 356.
(何闯, 鄂爽, 闫鸿浩, 李晓杰. 化学进展, 2022, 34: 356.).

doi: 10.7536/PC210105    
[12]
Chen S T, Chen C Q, Wang J, Luo F, Guo L H, Qiu B, Lin Z Y. J. Anal. Test., 2021, 5(1): 84.

doi: 10.1007/s41664-021-00162-3    
[13]
Wang J L, Wang Y L, Zheng J X, Yu S P, Yang Y Z, Liu X G. Prog. Chem., 2018, 30: 1186.
(王军丽, 王亚玲, 郑静霞, 于世平, 杨永珍, 刘旭光. 化学进展, 2018, 30: 1186.).

doi: 10.7536/PC180103    
[14]
Sharma A, Das J. J. Nanobiotechnology, 2019, 17(1): 92.

doi: 10.1186/s12951-019-0525-8    
[15]
Zhang H J, Qiao X, Cai T P, Chen J, Li Z, Qiu H D. Anal. Bioanal. Chem., 2017, 409(9): 2401.

doi: 10.1007/s00216-017-0187-z     URL    
[16]
Yang Y L, Zhang H J, Chen J, Li Z, Zhao L, Qiu H D. Analyst, 2020, 145(3): 1056.

doi: 10.1039/C9AN02246E     URL    
[17]
Chen J, Gong Z J, Tang W Y, Row K H, Qiu H D. Trac Trends Anal. Chem., 2021, 134: 116135.

doi: 10.1016/j.trac.2020.116135     URL    
[18]
Chen J, Yuan N, Jiang D N, Lei Q, Liu B, Tang W Y, Row K H, Qiu H D. Chin. Chem. Lett., 2021, 32(11): 3398.

doi: 10.1016/j.cclet.2021.04.052     URL    
[19]
Egorova M N, Tomskaya A E, Kapitonov A N, Alekseev A A, Smagulova S A. J. Struct. Chem., 2018, 59(4): 780.

doi: 10.1134/S0022476618040054    
[20]
Liu Y S, Zhao Y N, Zhang Y Y. Sens. Actuat. B Chem., 2014, 196: 647.

doi: 10.1016/j.snb.2014.02.053     URL    
[21]
Kong L Y, Tan R X. Nat. Prod. Rep., 2015, 32(12): 1617.

doi: 10.1039/C5NP00133A     URL    
[22]
Miao R, Meng Q, Wang C, Yuan W. Evid. Based Complementary Altern. Med., 2022, 2022: 8075344.
[23]
Zhang Y, Wang S N, Lu F, Zhang M L, Kong H, Cheng J J, Luo J, Zhao Y, Qu H H. J. Nanobiotechnology, 2021, 19(1): 257.

doi: 10.1186/s12951-021-00908-2    
[24]
Wu D, Huang X M, Deng X, Wang K, Liu Q Y. Anal. Methods, 2013, 5(12): 3023.

doi: 10.1039/c3ay40337h     URL    
[25]
Yu J, Song N, Zhang Y K, Zhong S X, Wang A J, Chen J R. Sens. Actuat. B Chem., 2015, 214: 29.

doi: 10.1016/j.snb.2015.03.006     URL    
[26]
Zhao X Y, Liao S, Wang L M, Liu Q, Chen X Q. Talanta, 2019, 201: 1.

doi: 10.1016/j.talanta.2019.03.095     URL    
[27]
Zuo G C, Xie A M, Li J J, Su T, Pan X H, Dong W. J. Phys. Chem. C, 2017, 121(47): 26558.

doi: 10.1021/acs.jpcc.7b10179     URL    
[28]
Tang S Y, Chen D, Guo G Q, Li X M, Wang C X, Li T T, Wang G. Sci. Total Environ., 2022, 825: 153913.

doi: 10.1016/j.scitotenv.2022.153913     URL    
[29]
Sun X H, He J, Yang S H, Zheng M D, Wang Y Y, Ma S, Zheng H P. J. Photochem. Photobiol. B Biol., 2017, 175: 219.

doi: 10.1016/j.jphotobiol.2017.08.035     URL    
[30]
Sharma V, Tiwari P, Mobin S M. J. Mater. Chem. B, 2017, 5(45): 8904.

doi: 10.1039/c7tb02484c     pmid: 32264117
[31]
Humaera N A, Fahri A N, Armynah B, Tahir D. Luminescence, 2021, 36(6): 1354.

doi: 10.1002/bio.v36.6     URL    
[32]
Luo W K, Zhang L L, Yang Z Y, Guo X H, Wu Y, Zhang W, Luo J K, Tang T, Wang Y. J. Nanobiotechnology, 2021, 19(1): 320.

doi: 10.1186/s12951-021-01072-3    
[33]
Li D, Xu K Y, Zhao W P, Liu M F, Feng R, Li D Q, Bai J, Du W L. Front. Pharmacol., 2022, 13: 815479.

doi: 10.3389/fphar.2022.815479     URL    
[34]
Wu X C, Liang W H, Cai C X. Prog. Chem., 2021, 33: 1059.
(吴星辰, 梁文慧, 蔡称心. 化学进展, 2021, 33: 1059.).

doi: 10.7536/PC200715    
[35]
Yan F Y, Zhou Y, Wang M, Dai L F, Zhou X G, Chen L. Prog. Chem., 2014, 26: 61.
(颜范勇, 邹宇, 王猛, 代林枫, 周旭光, 陈莉. 化学进展, 2014, 26: 61.).

doi: 10.7536/PC130643    
[36]
Liu Y S, Li W, Wu P, Liu S X. Prog. Chem., 2018, 30: 349.
(刘禹杉, 李伟, 吴鹏, 刘守新. 化学进展, 2018, 30: 349.).

doi: 10.7536/PC170808    
[37]
Rong M C, Wang D R, Li Y Y, Zhang Y Z, Huang H Y, Liu R F, Deng X Z. J. Anal. Test., 2021, 5(1): 51.

doi: 10.1007/s41664-021-00161-4    
[38]
Li C L, Ou C M, Huang C C, Wu W C, Chen Y P, Lin T E, Ho L C, Wang C W, Shih C C, Zhou H C, Lee Y C, Tzeng W F, Chiou T J, Chu S T, Cang J S, Chang H T. J. Mater. Chem. B, 2014, 2(28): 4564.

doi: 10.1039/c4tb00216d     pmid: 32261557
[39]
Mewada A, Pandey S, Shinde S, Mishra N, Oza G, Thakur M, Sharon M, Sharon M,. Mater. Sci. Eng. C, 2013, 33(5): 2914.

doi: 10.1016/j.msec.2013.03.018     URL    
[40]
Zhao S J, Lan M H, Zhu X Y, Xue H T, Ng T W, Meng X M, Lee C S, Wang P F, Zhang W J. ACS Appl. Mater. Interfaces, 2015, 7(31): 17054.

doi: 10.1021/acsami.5b03228     URL    
[41]
Zhu S J, Meng Q N, Wang L, Zhang J H, Song Y B, Jin H, Zhang K, Sun H C, Wang H Y, Yang B. Angew. Chem. Int. Ed., 2013, 52(14): 3953.

doi: 10.1002/anie.v52.14     URL    
[42]
Bhattacharyya S, Ehrat F, Urban P, Teves R, Wyrwich R, Döblinger M, Feldmann J, Urban A S, Stolarczyk J K. Nat. Commun., 2017, 8: 1401.

doi: 10.1038/s41467-017-01463-x     pmid: 29123091
[43]
Kwon W, Lee G, Do S, Joo T, Rhee S W. Small, 2014, 10(3): 506.

doi: 10.1002/smll.v10.3     URL    
[44]
Li Y J, Li W, Yang X, Kang Y Y, Zhang H R, Liu Y L, Lei B F. ACS Appl. Nano Mater., 2021, 4(1): 113.

doi: 10.1021/acsanm.0c02419     URL    
[45]
Yuan F L, Wang Z B, Li X H, Li Y C, Tan Z A, Fan L Z, Yang S H. Adv. Mater., 2017, 29(3): 1604436.

doi: 10.1002/adma.v29.3     URL    
[46]
Shen Y L, Wu H Y, Wu W H, Zhou L, Dai Z F, Dong S P. Mater. Express, 2020, 10(7): 1135.

doi: 10.1166/mex.2020.1745     URL    
[47]
Raveendran V, Suresh Babu A R, Renuka N K. RSC Adv., 2019, 9(21): 12070.

doi: 10.1039/c9ra02120e    
[48]
Xu H, Yang X P, Li G, Zhao C, Liao X J. J. Agric. Food Chem., 2015, 63(30): 6707.

doi: 10.1021/acs.jafc.5b02319     URL    
[49]
Alam A M, Park B Y, Ghouri Z K, Park M, Kim H Y. Green Chem., 2015, 17(7): 3791.

doi: 10.1039/C5GC00686D     URL    
[50]
Atchudan R, Edison T N J I, Aseer K R, Perumal S, Lee Y R. Colloids Surf. B Biointerfaces, 2018, 169: 321.

doi: 10.1016/j.colsurfb.2018.05.032     URL    
[51]
Huang Q Q, Bao Q Q, Wu C Y, Hu M R, Chen Y N, Wang L, Chen W D. J. Pharm. Anal., 2022, 12(1): 104.

doi: 10.1016/j.jpha.2021.04.004     URL    
[52]
Wang S, Wu S H, Fang W L, Guo X F, Wang H. Dyes Pigments, 2019, 164: 7.

doi: 10.1016/j.dyepig.2019.01.004    
[53]
Xue M Y, Zou M B, Zhao J J, Zhan Z H, Zhao S L. J. Mater. Chem. B, 2015, 3(33): 6783.

doi: 10.1039/C5TB01073J     URL    
[54]
Xue M Y, Zhan Z H, Zou M B, Zhang L L, Zhao S L. New J. Chem., 2016, 40(2): 1698.

doi: 10.1039/C5NJ02181B     URL    
[55]
Zhu L L, Yin Y J, Wang C F, Chen S. J. Mater. Chem. C, 2013, 1(32): 4925.

doi: 10.1039/c3tc30701h     URL    
[56]
Praneerad J, Neungnoraj K, In I, Paoprasert P. Key Eng. Mater., 2019, 803: 115.

doi: 10.4028/www.scientific.net/KEM.803     URL    
[57]
Wei X J, Li L, Liu J L, Yu L D, Li H B, Cheng F, Yi X T, He J M, Li B S. ACS Appl. Mater. Interfaces, 2019, 11(10): 9832.

doi: 10.1021/acsami.9b00074     URL    
[58]
Aji M P, Susanto, Wiguna P A, Sulhadi. J. Theor. Appl. Phys., 2017, 11(2): 119.

doi: 10.1007/s40094-017-0250-3     URL    
[59]
Chen Y Q, Lian H Z, Wei Y, He X, Chen Y, Wang B, Zeng Q G, Lin J. Nanoscale, 2018, 10(14): 6734.

doi: 10.1039/C8NR00204E     URL    
[60]
Wang N, Wang Y, Guo T, Yang T, Chen M, Wang J. Biosens. Bioelectron., 2016, 85: 68.

doi: 10.1016/j.bios.2016.04.089     URL    
[61]
Moreira V A, Toito Suarez W, de Oliveira Krambeck Franco M, Gambarra Neto F F. Anal. Methods, 2018, 10(37): 4570.

doi: 10.1039/C8AY00928G     URL    
[62]
Sim L C, Wong J L, Hak C H, Tai J Y, Leong K H, Saravanan P. Beilstein J. Nanotechnol., 2018, 9: 353.

doi: 10.3762/bjnano.9.35     URL    
[63]
Qiu Y, Gao D, Yin H G, Zhang K L, Zeng J, Wang L J, Xia L, Zhou K, Xia Z N, Fu Q F. Sens. Actuat. B Chem., 2020, 324: 128722.

doi: 10.1016/j.snb.2020.128722     URL    
[64]
Shi Y P, Liu J J, Zhang Y, Bao J F, Cheng J L, Yi C Q. Chin. Chem. Lett., 2021, 32(10): 3189.

doi: 10.1016/j.cclet.2021.03.022     URL    
[65]
Chatzimitakos T, Kasouni A, Sygellou L, Leonardos I, Troganis A, Stalikas C. Sens. Actuat. B Chem., 2018, 267: 494.

doi: 10.1016/j.snb.2018.04.059     URL    
[66]
Architha N, Ragupathi M, Shobana C, Selvankumar T, Kumar P, Lee Y S, Kalai Selvan R. Environ. Res., 2021, 199: 111263.

doi: 10.1016/j.envres.2021.111263     URL    
[67]
Feng J, Wang W J, Hai X, Yu Y L, Wang J H. J. Mater. Chem. B, 2016, 4(3): 387.

doi: 10.1039/c5tb01999k     pmid: 32263205
[68]
Isnaeni, Rahmawati I, Intan R, Zakaria M. J. Phys.: Conf. Ser., 2018, 985: 012004.
[69]
Li L L, Li L Y, Chen C P, Cui F L. Inorg. Chem. Commun., 2017, 86: 227.

doi: 10.1016/j.inoche.2017.10.006     URL    
[70]
Tejwan N, Sharma A, Thakur S, Das J. Inorg. Chem. Commun., 2021, 134: 108985.

doi: 10.1016/j.inoche.2021.108985     URL    
[71]
de Medeiros T V, Manioudakis J, Noun F, Macairan J R, Victoria F, Naccache R. J. Mater. Chem. C, 2019, 7(24): 7175.

doi: 10.1039/c9tc01640f    
[72]
Singh R K, Kumar R, Singh D P, Savu R, Moshkalev S A. Mater. Today Chem., 2019, 12: 282.

doi: 10.1016/j.mtchem.2019.03.001    
[73]
Lu M C, Duan Y X, Song Y H, Tan J S, Zhou L. J. Mol. Liq., 2018, 269: 766.

doi: 10.1016/j.molliq.2018.08.101     URL    
[74]
Sahu S, Behera B, Maiti T K, Mohapatra S. Chem. Commun., 2012, 48(70): 8835.

doi: 10.1039/c2cc33796g     URL    
[75]
Shahid S, Mohiyuddin S, Packirisamy G. J. Nanosci. Nanotechnol., 2020, 20(10): 6305.

doi: 10.1166/jnn.2020.17899     pmid: 32384980
[76]
Atchudan R, Edison T N J I, Lee Y R. J. Colloid Interface Sci., 2016, 482: 8.

doi: 10.1016/j.jcis.2016.07.058     URL    
[77]
Atchudan R, Edison T N J I, Sethuraman M G, Lee Y R. Appl. Surf. Sci., 2016, 384: 432.

doi: 10.1016/j.apsusc.2016.05.054     URL    
[78]
Mazrad Z A I, Kang E B, In I, Park S Y. Luminescence, 2018, 33(1): 40.

doi: 10.1002/bio.3370     URL    
[79]
Jeong C J, Roy A K, Kim S H, Lee J E, Jeong J H, In I, Park S Y. Nanoscale, 2014, 6(24): 15196.

doi: 10.1039/c4nr04805a     pmid: 25375199
[80]
Sachdev A, Gopinath P. Anal., 2015, 140(12): 4260.

doi: 10.1039/C5AN00454C     URL    
[81]
Chai C F, Qiao X H, Zheng L L, Duan H B, Bian W, Choi M M F. Fuller. Nanotub. Carbon Nanostructures, 2022, 30(5): 534.

doi: 10.1080/1536383X.2021.1966419     URL    
[82]
Raveendran V, Kizhakayil R N. ACS Omega, 2021, 6(36): 23475.

doi: 10.1021/acsomega.1c03481     pmid: 34549145
[83]
Li L S, Jiao X Y, Zhang Y, Cheng C, Huang K, Xu L. Sens. Actuat. B Chem., 2018, 263: 426.

doi: 10.1016/j.snb.2018.02.141     URL    
[84]
Wan Y Y, Wang M, Zhang K L, Fu Q F, Gao M J, Wang L J, Xia Z N, Gao D. Microchem. J., 2019, 148: 385.

doi: 10.1016/j.microc.2019.05.026     URL    
[85]
Liu M J, Hao X L, Dai S J, Wang S Y, Wang Y, Zhang H. Chem. Res. Chin. Univ., 2022, 39: 234.

doi: 10.1007/s40242-022-2142-6    
[86]
Feng X,. Jiang Y, Zhao J. RSC Adv., 2015, 5: 31250.

doi: 10.1039/C5RA02271A     URL    
[87]
Ma H P, Sun C C, Xue G, Wu G L, Zhang X H, Han X, Qi X H, Lv X, Sun H J, Zhang J B. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2019, 213: 281.
[88]
Xue M Y, Zhao J J, Zhan Z H, Zhao S L, Lan C Q, Ye F G, Liang H. Nanoscale, 2018, 10(38): 18124.

doi: 10.1039/C8NR05017A     URL    
[89]
Yao H, Li J, Song Y B, Zhao H, Wei Z H, Li X Y, Jin Y R, Yang B, Jiang J L. Int. J. Nanomed., 2018, 13: 6249.

doi: 10.2147/IJN     URL    
[90]
Atchudan R, Edison T N J I, Aseer K R, Perumal S, Karthik N, Lee Y R. Biosens. Bioelectron., 2018, 99: 303.

doi: S0956-5663(17)30534-1     pmid: 28780346
[91]
Thota S P, Thota S M, Srimadh Bhagavatham S, Sai Manoj K, Sai Muthukumar V S, Venketesh S, Vadlani P V, Belliraj S K. IET Nanobiotechnol., 2018, 12(2): 127.

doi: 10.1049/nbt2.v12.2     URL    
[92]
Bhatt S, Bhatt M, Kumar A, Vyas G, Gajaria T, Paul P. Colloids Surf. B Biointerfaces, 2018, 167: 126.

doi: 10.1016/j.colsurfb.2018.04.008     URL    
[93]
Durrani S, Zhang J, Yang Z, Pang A P, Zeng J, Sayed S M, Khan A, Zhang Y Q, Wu F G, Lin F M. Anal. Chim. Acta, 2022, 1202: 339672.

doi: 10.1016/j.aca.2022.339672     URL    
[94]
Lin R, Cheng S S, Tan M Q. Food Funct., 2022, 13(4): 2098.

doi: 10.1039/D1FO03426J     URL    
[95]
Yang S T, Cao L, Luo P G, Lu F S, Wang X, Wang H F, Meziani M J, Liu Y F, Qi G, Sun Y P. J. Am. Chem. Soc., 2009, 131(32): 11308.

doi: 10.1021/ja904843x     URL    
[96]
Luo P G, Sahu S, Yang S T, Sonkar S K, Wang J P, Wang H F, LeCroy G E, Cao L, Sun Y P. J. Mater. Chem. B, 2013, 1(16): 2116.

doi: 10.1039/c3tb00018d     URL    
[97]
Liu J J, Geng Y J, Li D W, Yao H, Huo Z P, Li Y F, Zhang K, Zhu S J, Wei H T, Xu W Q, Jiang J L, Yang B. Adv. Mater., 2020, 32(17): 1906641.

doi: 10.1002/adma.v32.17     URL    
[98]
Zheng X D, Qin K H, He L P, Ding Y F, Luo Q, Zhang C T, Cui X M, Tan Y, Li L N, Wei Y L. Analyst, 2021, 146(3): 911.

doi: 10.1039/D0AN01599G     URL    
[99]
Su Q, Gan L L, Liu J, Yang X M. Anal. Biochem., 2020, 589: 113476.

doi: 10.1016/j.ab.2019.113476     URL    
[100]
Zhang J H, Niu A P, Li J, Fu J W, Xu Q, Pei D S. Sci. Rep., 2016, 6: 37860.

doi: 10.1038/srep37860    
[101]
Phan L M T, Cho S. Bioinorg. Chem. Appl., 2022, 2022: 9303703.
[102]
Sun Y N, Zhang M, Bhandari B, Yang C H. Food Rev. Int., 2022, 38(7): 1513.

doi: 10.1080/87559129.2020.1818255     URL    
[103]
Dong X L, Liang W X, Meziani M J, Sun Y P, Yang L J. Theranostics, 2020, 10(2): 671.

doi: 10.7150/thno.39863     URL    
[104]
Wu Y Y, Li C, van der Mei H C, Busscher H J, Ren Y J. Antibiotics, 2021, 10(6): 623.

doi: 10.3390/antibiotics10060623     URL    
[105]
Ghirardello M, Ramos-Soriano J, Galan M C. Nanomaterials, 2021, 11(8): 1877.

doi: 10.3390/nano11081877     URL    
[106]
Venkateswarlu S, Viswanath B, Reddy A S, Yoon M. Sens. Actuat. B Chem., 2018, 258: 172.

doi: 10.1016/j.snb.2017.11.044     URL    
[107]
Tejwan N, Kundu M, Sharma A, Das J, Sil P C. Research Square,Preprint, (2020-05-19). DOI:10.21203/rs.3.rs-28922/v1.

doi: 10.21203/rs.3.rs-28922/v1    
[108]
Kong B, Yang T, Cheng F, Qian Y, Li C M, Zhan L, Li Y F, Zou H Y, Huang C Z. J. Colloid Interface Sci., 2022, 611: 545.

doi: 10.1016/j.jcis.2021.12.107     URL    
[109]
Wang S N, Zhang Y, Kong H, Zhang M L, Cheng J J, Wang X K, Lu F, Qu H H, Zhao Y. Nanomedicine, 2019, 14(22): 2925.

doi: 10.2217/nnm-2019-0255     URL    
[110]
Wang X K, Zhang Y, Kong H, Cheng J J, Zhang M L, Sun Z W, Wang S N, Liu J X, Qu H H, Zhao Y. Artif. Cells Nanomed. Biotechnol., 2020, 48(1): 68.

doi: 10.1080/21691401.2019.1699810     URL    
[111]
Zhang M L, Cheng J J, Hu J, Luo J, Zhang Y, Lu F, Kong H, Qu H H, Zhao Y. J. Nanobiotechnology, 2021, 19(1): 105.

doi: 10.1186/s12951-021-00847-y    
[112]
Zhao Y S, Zhang Y, Kong H, Cheng G L, Qu H H, Zhao Y. Int. J. Nanomed., 2022, 17: 1.

doi: 10.2147/IJN.S338886     URL    
[113]
Wu J S, Zhang M L, Cheng J J, Zhang Y, Luo J, Liu Y H, Kong H, Qu H H, Zhao Y. Int. J. Nanomed., 2020, 15: 4139.

doi: 10.2147/IJN.S248467     URL    
[114]
Zhao Y S, Li W Y, Cao T Y, Zhao Y, Qu H H, Guid. J.. Tradit. Chin. Med. Pharm, 2021, 27: 56.
(赵玉升, 李伟洋, 曹天佑, 赵琰, 屈会化. 中医药导报, 2021, 27: 56.).
[115]
Guo Y M, Zhang L F, Cao F P, Leng Y M. Sci. Rep., 2016, 6: 35795.

doi: 10.1038/srep35795    
[116]
Zhang M, Zhao Y, Cheng J, Liu X, Wang Y, Yan X, Zhang Y, Lu F, Wang Q, Qu H. Artificial Cells, Nanomedicine, and Biotechnology, 2018, 46: 1562.
[117]
Wang Y Z, Kong H, Liu X M, Luo J, Xiong W, Zhu Y F, Zhang Y X, Zhang Y H, Zhao Y, Qu H H. J. Biomed. Nanotechnol., 2018, 14(9): 1635.

doi: 10.1166/jbn.2018.2613     URL    
[118]
Sun Z W, Lu F, Cheng J J, Zhang M L, Zhang Y, Xiong W, Zhao Y, Qu H H. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup3): 308.

doi: 10.1080/21691401.2018.1492419     URL    
[119]
Yan X, Zhao Y, Luo J, Xiong W, Liu X M, Cheng J J, Wang Y Z, Zhang M L, Qu H H. J. Nanobiotechnology, 2017, 15(1): 60.

doi: 10.1186/s12951-017-0296-z     URL    
[120]
Luo J, Kong H, Zhang M L, Cheng J J, Sun Z W, Xiong W, Zhu Y F, Zhao Y, Qu H H. J. Biomed. Nanotechnol., 2019, 15(1): 151.

doi: 10.1166/jbn.2019.2675     URL    
[121]
Liu X M, Wang Y Z, Yan X, Zhang M L, Zhang Y, Cheng J J, Lu F, Qu H H, Wang Q G, Zhao Y. Nanomedicine, 2018, 13(4): 391.

doi: 10.2217/nnm-2017-0297     URL    
[122]
Luo J, Zhang M L, Cheng J J, Wu S H, Xiong W, Kong H, Zhao Y, Qu H H. RSC Adv., 2018, 8(66): 37707.

doi: 10.1039/C8RA06340K     URL    
[123]
Chen Z, Ye S Y, Yang Y, Li Z Y. Pharm. Biol., 2019, 57(1): 498.

doi: 10.1080/13880209.2019.1645700     pmid: 31401925
[124]
Cheng J J, Zhang M L, Sun Z W, Lu F, Xiong W, Luo J, Kong H, Wang Q G, Qu H H, Zhao Y. Nanomedicine, 2019, 14(4): 431.

doi: 10.2217/nnm-2018-0285     URL    
[125]
Zhao Y, Zhang Y, Liu X M, Kong H, Wang Y Z, Qin G F, Cao P, Song X X, Yan X, Wang Q G, Qu H H. Sci. Rep., 2017, 7: 4452.

doi: 10.1038/s41598-017-04073-1     pmid: 28667269
[126]
Wang W H, Hsuan K Y, Chu L Y, Lee C Y, Tyan Y C, Chen Z S, Tsai W C. Evid. Based Complementary Altern. Med., 2017, 2017: 1.
[127]
Li Y J, Tang Z H, Pan Z Y, Wang R G, Wang X, Zhao P, Liu M, Zhu Y X, Liu C, Wang W C, Liang Q, Gao J, Yu Y C, Li Z Y, Lei B F, Sun J. ACS Nano, 2022, 16(3): 4357.

doi: 10.1021/acsnano.1c10556     URL    
[128]
Arul V, Sethuraman M G. Opt. Mater., 2018, 78: 181.

doi: 10.1016/j.optmat.2018.02.029     URL    
[129]
Liu Y H, Zhang M L, Cheng J J, Zhang Y, Kong H, Zhao Y, Qu H H. Molecules, 2021, 26(6): 1512.

doi: 10.3390/molecules26061512     URL    
[130]
Zhang M L, Cheng J J, Zhang Y, Kong H, Wang S N, Luo J, Qu H H, Zhao Y. Nanomedicine, 2020, 15(9): 851.

doi: 10.2217/nnm-2019-0369     URL    
[131]
Sun Z W, Lu F, Cheng J J, Zhang M L, Zhu Y F, Zhang Y X, Kong H, Qu H H, Zhao Y. J. Biomed. Nanotechnol., 2018, 14(12): 2146.

doi: 10.1166/jbn.2018.2653     URL    
[132]
Xu Y L, Wang B Y, Zhang M M, Zhang J X, Li Y D, Jia P J, Zhang H, Duan L L, Li Y, Li Y T, Qu X L, Wang S H, Liu D H, Zhou W P, Zhao H Z, Zhang H C, Chen L X, An X L, Lu S Y, Zhang S J. Adv. Mater., 2022, 34(19): 2200905.

doi: 10.1002/adma.v34.19     URL    
[133]
Kong H, Zhao Y S, Cao P, Luo J, Liu Y H, Qu H H, Zhang Y, Zhao Y. J. Biomed. Nanotechnol., 2021, 17(12): 2485.

doi: 10.1166/jbn.2021.3200     pmid: 34974871
[134]
Liu Y Y, Yu N Y, Fang W D, Tan Q G, Ji R, Yang L Y, Wei S, Zhang X W, Miao A J. Nat. Commun., 2021, 12: 812.

doi: 10.1038/s41467-021-21080-z    
[1] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[2] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[3] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[4] 袁传军, 王猛, 李明, 包金鹏, 孙鹏瑞, 高荣轩. 基于碳点的发光材料在潜在手印显现中的应用[J]. 化学进展, 2022, 34(9): 2108-2120.
[5] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[6] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[7] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[8] 何闯, 鄂爽, 闫鸿浩, 李晓杰. 碳点在润滑领域中的应用[J]. 化学进展, 2022, 34(2): 356-369.
[9] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[10] 洪俊贤, 朱旬, 葛磊, 徐鸣川, 吕文珍, 陈润锋. CsPbX3(X = Cl, Br, I) 纳米晶的制备及其应用[J]. 化学进展, 2021, 33(8): 1362-1377.
[11] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.
[12] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[13] 刘园园, 郭芸, 罗晓刚, 刘根炎, 孙琦. 近红外荧光探针检测金属离子、小分子和生物大分子[J]. 化学进展, 2021, 33(2): 199-215.
[14] 孙亚芳, 周子平, 舒桐, 钱立生, 苏磊, 张学记. 多彩金纳米簇:从结构到生物传感和成像[J]. 化学进展, 2021, 33(2): 179-187.
[15] 刘加伟, 王婧, 王其, 范曲立, 黄维. 激活型有机光声造影剂的应用[J]. 化学进展, 2021, 33(2): 216-231.