English
新闻公告
More
化学进展 2023, Vol. 35 Issue (11): 1579-1594 DOI: 10.7536/PC230325 前一篇   后一篇

• 综述 •

蛋白化学合成中的片段增溶策略

邓祥宇1,2, 张宝昌1, 曲倩2,*()   

  1. 1 清华大学 清华-北大生命科学联合中心 生命有机磷化学及化学生物学教育部重点实验室 化学肿瘤基因组学国家重点实验室(深圳)化学系 北京 100084
    2 上海交通大学 转化医学研究院 上海 200240
  • 收稿日期:2023-03-27 修回日期:2023-07-10 出版日期:2023-11-24 发布日期:2023-08-07
  • 通讯作者: 曲倩
  • 作者简介:

    曲倩 主要研究方向为蛋白质合成方法学发展及应用,代表性对象为泛素蛋白、多肽类毒素等。代表性研究工作包括:1)多链型多聚泛素链的合成方法发展;2)靶向离子通道蛋白的多肽毒素的合成方法发展及应用;3)基于活性的泛素结合酶(E2)-泛素(Ub)化学探针的合成方法发展。目前已发表高水平成果14篇,包括Angew. Chem.、PNAS、Advanced Science等刊物,获授权专利1项。

  • 基金资助:
    国家自然科学基金项目资助(22277073)

Segment Solubilizing Strategy in Protein Chemical Synthesis

Deng Xiangyu1,2, Zhang Baochang1, Qu Qian2()   

  1. 1 Tsinghua University Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry,Beijing 100084, China
    2 Shanghai Jiao Tong University Institute of Translational Medicine,Shanghai 200240, China
  • Received:2023-03-27 Revised:2023-07-10 Online:2023-11-24 Published:2023-08-07
  • Contact: Qu Qian
  • Supported by:
    National Natural Science Foundation of China(22277073)

蛋白质在多种生物过程和生物医学研究中起到关键作用,获取高度均一性的蛋白质样品是这类生化研究的重要一环。相较于重组表达法,蛋白质化学合成能够更为稳健地获取精准修饰的,甚至是人为设计的蛋白质。而一些可作为药物靶点的重要蛋白(如人源白细胞介素-2、K+通道蛋白Kir5.1等)在化学合成过程中面临多肽片段溶解度不佳的问题,为后续的纯化、表征、连接反应等操作带来困难。这类问题的主要原因可能是这些目标蛋白的多肽片段之间易通过疏水相互作用、氢键等作用模式自组装形成二级结构,进而使得片段溶解度降低。增溶标签策略是这类问题的解决途径之一,本文介绍了在多肽片段主链、侧链和骨架上安装增溶标签的策略,选取膜蛋白FCER1G、共伴侣蛋白GroES等蛋白作为目标展示,并对增溶标签策略未来的发展方向作出展望。

Proteins play critical roles in various biological processes and biomedical researches. A significant task of such biochemical studies is to obtain protein samples of high homogeneity with respect to their atomic compositions. Chemical protein synthesis offers a much more robust and effective strategy over recombinant expression technology for accessing proteins that are precisely modified or even artificially designed. However, some important proteins that can be used as drug targets (such as human interleukin-2, K+ channel protein Kir5.1, etc.) suffer from limited solubility of peptide segments during the journey of protein synthesis. Such hydrophobic peptides pose difficulty for subsequent purification, characterization, chemical ligation and other operations. The main factors for these problems may be that the peptide segments are prone to self-assemble into secondary structures through hydrophobic interactions, hydrogen bond or other interaction modes, thus reducing the solubility. Addition of solubilizing tags is recognized as one of the effective methods to overcome such obstacles. In this review, strategies of attaching solubilizing tags to the main chain, side chain and backbone of peptides are introduced. Membrane protein FCER1G, co-chaperone protein GroES and other proteins are selected as examples to describe the applications of the solubilizing tags. Moreover, the future of solubilizing tags strategy is discussed and prospected.

Contents

1 Introduction

2 Main chain solubilizing tags

2.1 C-terminal solubilizing tags

2.2 N-terminal solubilizing tags

3 Side chain solubilizing tags

3.1 Cysteine (Cys) side chain solubilizing tags

3.2 Lysine (Lys) side chain solubilizing tags

3.3 Asparagine (Asn) /Glutamine (Gln) side chain solubilizing tags

4 Backbone modifications as solubilizing tags

4.1 Irreversible backbone modification

4.2 Removable backbone modification

5 Conclusion and outlook

()
图1 多肽片段溶解度不佳的原因[56]
Fig.1 Reasons for poor solubility of peptide fragments[56]
图2 提升多肽溶解度的方法[57⇓⇓⇓⇓⇓~63]
Fig.2 Methods for improving the solubility of peptides[57⇓⇓⇓⇓⇓~63]
图式1 C端硫酯增溶标签[67]
Scheme 1 C terminal thioester solubilizing tag[67]
图3 DGK亲水片段的划分[67]
Fig.3 Division of DGK hydrophilic peptides[67]
图4 其他C端增溶标签[70⇓~72]
Fig.4 Other C-terminal solubilizing tags[70⇓~72]
图5 N端增溶标签[73,74]
Fig.5 N-terminal solubilizing tags[73,74]
图式2 碱敏感的N端增溶标签[73]
Scheme 2 Base-liable N-terminal solubilizing tags[73]
图6 基于侧链的增溶标签
Fig.6 Side chain-based solubilizing tags
图式3 Brik等发展的Cys侧链增溶策略[78]
Scheme 3 Cys side chain solubilizing strategy developed by Brik et al[78]
图式4 组蛋白H4的化学全合成[78]
Scheme 4 Total chemical synthesis of histone H4[78]
图式5 Yoshiya等发展的Cys侧链增溶策略[81]
Scheme 5 Cys side chain solubilizing strategy developed by Yoshiya et al[81]
图式6 CP149的化学全合成[81]
Scheme 6 Total chemical synthesis of CP149[81]ALC
图式7 Deber等发展的Cys侧链增溶策略[84]
Scheme 7 Cys side chain solubilizing strategy developed by Deber et al[84]
图式8 Li等发展的Cys侧链增溶策略[85]
Scheme 8 Cys side chain solubilizing strategy developed by Li et al[85]
图式9 膜蛋白FCER1G的化学全合成[85]
Scheme 9 Total chemical synthesis of membrane protein FCER1G[85]
图式10 Danishefsky等发展的Lys侧链增溶策略[89]
Scheme 10 Lys side chain solubilizing strategy developed by Danishefsky et al[89]
图式11 hEPO多肽片段物理化学性质的优化[89]
Scheme 11 Optimization of physical and chemical properties of hEPO peptide fragment[89]
图式12 Hojo等发展的Lys侧链增溶策略[91]
Scheme 12 Lys side chain solubilizing strategy developed by Hojo et al[91]
图式13 IL-2的化学全合成[91]
Scheme 13 Total chemical synthesis of IL-2[91]
图式14 Kay等发展的Lys侧链增溶策略[94]
Scheme 14 Lys side chain solubilizing strategy developed by Kay et al[94]
图式15 GroES的化学全合成[94]
Scheme 15 Total chemical synthesis of GroES[94]
图7 Ddap的结构[96]
Fig.7 The structure of Ddap[96]
图式16 Yoshiya等发展的Lys侧链增溶策略[97]
Scheme 16 Lys side chain solubilizing strategy developed by Yoshiya et al[97]
图式17 Imperiali等发展的策略[99]
Scheme 17 Strategy developed by Imperial et al[99]
图式18 Liu等发展的Gln侧链增溶策略[100]
Scheme 18 Gln side chain solubilizing strategy developed by Liu et al[100]
图式19 LC3-Ⅱ的化学全合成[100]
Scheme 19 Total chemical synthesis of LC3-Ⅱ[100]
图8 不可逆的骨架修饰[102]
Fig.8 Irreversible backbone modification[102]
图9 Hmb及其衍生物[104,105]
Fig.9 Hmb and its derivatives[104,105]
图式20 RBM策略[56,106]
Scheme 20 The RBM strategy[56,106]
图式21 p7离子通道的化学全合成[106]
Scheme 21 Total chemical synthesis of p7 ion channel[106]
[33]
Mitchell N J, Malins L R, Liu X Y, Thompson R E, Chan B, Radom L, Payne R J. J. Am. Chem. Soc., 2015, 137(44): 14011.
[34]
Tan Y, Li J S, Jin K, Liu J M, Chen Z Y, Yang J, Li X C. Angew. Chem. Int. Ed., 2020, 59(31): 12741.
[35]
Bode J W. Acc. Chem. Res., 2017, 50(9): 2104.
[36]
Pusterla I, Bode J W. Nat. Chem., 2015, 7(8): 668.
[37]
Zuo C, Zhang B C, Yan B J, Zheng J S. Org. Biomol. Chem., 2019, 17(4): 727.
[38]
Tang S, Si Y Y, Wang Z P, Mei K R, Chen X, Cheng J Y, Zheng J S, Liu L. Angew. Chem. Int. Ed., 2015, 54(19): 5713.
[39]
Fang G M, Wang J X, Liu L. Angew. Chem. Int. Ed., 2012, 51(41): 10347.
[40]
Pech A, Achenbach J, Jahnz M, Schülzchen S, Jarosch F, Bordusa F, Klussmann S. Nucleic Acids Res, 2017, 45(7): 3997.
[41]
Xu W L, Jiang W J, Wang J X, Yu L P, Chen J, Liu X Y, Liu L, Zhu T F. Cell Discov., 2017, 3: 17008.
[42]
Weinstock M T, Jacobsen M T, Kay M S. Proc. Natl. Acad. Sci. U. S. A., 2014, 111(32): 11679.
[43]
Kumar K S A, Bavikar S N, Spasser L, Moyal T, Ohayon S, Brik A. Angew. Chem. Int. Ed., 2011, 50(27): 6137.
[44]
Shi W W, Shi C W, Wang T Y, Li Y L, Zhou Y K, Zhang X H, Bierer D, Zheng J S, Liu L. J. Am. Chem. Soc., 2022, 144(1): 349.
[45]
Li Y L, Heng J, Sun D M, Zhang B C, Zhang X, Zheng Y P, Shi W W, Wang T Y, Li J Y, Sun X O, Liu X Y, Zheng J S, Kobilka B K, Liu L. J. Am. Chem. Soc., 2021, 143(42): 17566.
[46]
Wang J X, Fang G M, He Y, Qu D L, Yu M, Hong Z Y, Liu L. Angew. Chem. Int. Ed., 2015, 54(7): 2194.
[47]
Wu H X, Wei T Y, Ngai W L, Zhou H Y, Li X C. J. Am. Chem. Soc., 2022, 144(32): 14748.
[48]
Hojo H, Takei T, Asahina Y, Okumura N, Takao T, So M, Suetake I, Sato T, Kawamoto A, Hirabayashi Y. Angew. Chem. Int. Ed., 2021, 60(25): 13900.
[49]
Zhou X M, Zuo C, Li W Q, Shi W W, Zhou X W, Wang H F, Chen S M, Du J F, Chen G Y, Zhai W J, Zhao W S, Wu Y H, Qi Y M, Liu L, Gao Y F. Angew. Chem. Int. Ed., 2020, 59(35): 15114.
[50]
Zuo C, Tang S, Zheng J S. J. Pept. Sci., 2015, 21: 540.
[51]
Shen F, Huang Y C, Tang S, Chen Y X, Liu L. Isr. J. Chem., 2011, 51(8/9): 940.
[52]
Venkatakrishnan A J, Deupi X, Lebon G, Tate C G, Schertler G F, Babu M M. Nature, 2013, 494(7436): 185.
[53]
Gouaux E, MacKinnon R. Science, 2005, 310(5753): 1461.
[54]
Bill R M, Henderson P J F, Iwata S, Kunji E R S, Michel H, Neutze R, Newstead S, Poolman B, Tate C G, Vogel H. Nat. Biotechnol., 2011, 29(4): 335.
[55]
Yıldırım M A, Goh K I, Cusick M E, Barabási A L, Vidal M. Nat. Biotechnol., 2007, 25(10): 1119.
[56]
Zheng J S, Yu M, Qi Y K, Tang S, Shen F, Wang Z P, Xiao L, Zhang L H, Tian C L, Liu L. J. Am. Chem. Soc., 2014, 136(9): 3695.
[57]
Rohrbacher F, Zwicky A, Bode J W. Chem. Sci., 2017, 8(5): 4051.
[58]
Shen F, Tang S, Liu L. Sci. China Chem., 2011, 54(1): 110.
[59]
Valiyaveetil F I, MacKinnon R, Muir T W. J. Am. Chem. Soc., 2002, 124(31): 9113.
[60]
Tailhades J, Patil N A, Hossain M A, Wade J D. J. Pept. Sci., 2015, 21(3): 139.
[61]
Liu F, Luo E Y, Flora D B, Mezo A R. Angew. Chem. Int. Ed., 2014, 53(15): 3983.
[62]
Sohma Y, Chiyomori Y, Kimura M, Fukao F, Taniguchi A, Hayashi Y, Kimura T, Kiso Y. Bioorg. Med. Chem., 2005, 13(22): 6167.
[63]
Zhang B C, Li Y L, Shi W W, Wang T Y, Zhang F, Liu L. Chem. Res. Chin. Univ., 2020, 36(5): 733.
[64]
Chang H N, Liu B Y, Qi Y K, Zhou Y, Chen Y P, Pan K M, Li W W, Zhou X M, Ma W W, Fu C Y, Qi Y M, Liu L, Gao Y F. Angew. Chem. Int. Ed., 2015, 54(40): 11760.
[65]
Lahiri S, Brehs M, Olschewski D, Becker C F W. Angew. Chem. Int. Ed., 2011, 50(17): 3988.
[66]
Bianchi E, Ingenito R, Simon R J, Pessi A. J. Am. Chem. Soc., 1999, 121(33): 7698.
[67]
Johnson E C B, Kent S B H. Tetrahedron Lett., 2007, 48(10): 1795.
[68]
Loomis C R, Walsh J P, Bell R M. J. Biol. Chem., 1985, 260(7): 4091.
[69]
Sohma Y, Pentelute B, Whittaker J, Hua Q X, Whittaker L, Weiss M, Kent S B H. Angew. Chem. Int. Ed., 2008, 47(6): 1102.
[70]
Johnson E C B, Malito E, Shen Y Q, Rich D, Tang W J, Kent S B H. J. Am. Chem. Soc., 2007, 129(37): 11480.
[71]
Paradís-Bas M, Tulla-Puche J, Albericio F. Org. Lett., 2015, 17(2): 294.
[72]
Harris P W R, Brimble M A. Biopolymers, 2010, 94(4): 542.
[73]
Englebretsen D R, Robillard G T. Tetrahedron, 1999, 55(21): 6623.
[74]
Bello C, Farbiarz K, Möller J F, Becker C F W, Schwientek T. Chem. Sci., 2014, 5(4): 1634.
[75]
Englebretsen D R, Choma C T, Robillard G T. Tetrahedron Lett., 1998, 39(27): 4929.
[76]
Englebretsen D R, Choma C T, Robillard G T. Tetrahedron Lett., 1998, 39(27): 2417.
[77]
Englebretsen D R, Alewood P F. Tetrahedron Lett., 1996, 37(46): 8431.
[78]
Maity S K, Mann G, Jbara M, Laps S, Kamnesky G, Brik A. Org. Lett., 2016, 18(12): 3026.
[79]
McGinty R K, Tan S. Chem. Rev., 2015, 115(6): 2255.
[80]
Li J B, Li Y Y, He Q Q, Li Y M, Li H T, Liu L. Org. Biomol. Chem., 2014, 12(29): 5435.
[81]
Tsuda S, Mochizuki M, Ishiba H, Yoshizawa-Kumagaye K, Nishio H, Oishi S, Yoshiya T. Angew. Chem. Int. Ed., 2018, 57(8): 2105.
[82]
Birnbaum F, Nassal M. J. Virol., 1990, 64(7): 3319.
[83]
Tsuda S, Masuda S, Yoshiya T. ChemBioChem, 2019, 20(16): 2063.
[84]
Pomroy N C, Deber C M. Tetrahedron, 1999, 275(2): 224.
[85]
Liu J M, Wei T Y, Tan Y, Liu H, Li X C. Chem. Sci., 2022, 13(5): 1367.
[86]
Cao W, Rosen D B, Ito T, Bover L, Bao M S, Watanabe G, Yao Z B, Zhang L, Lanier L L, Liu Y J. J. Exp. Med., 2006, 203(6): 1399.
[87]
Agouridas V, El Mahdi O, Cargoët M, Melnyk O. Bioorg. Med. Chem., 2017, 25(18): 4938.
[88]
H􀱼iberg-Nielsen R, Westh P, Arleth L. Biophys. J., 2009, 96(1): 153.
[89]
Tan Z P, Shang S Y, Danishefsky S J. Proc. Natl. Acad. Sci. U. S. A., 2011, 108(11): 4297.
[1]
Kulkarni S S, Sayers J, Premdjee B, Payne R J. Nat. Rev. Chem., 2018, 2(4): 0122.
[2]
Lin H N, Caroll K S. Chem. Rev., 2018, 118(3): 887.
[3]
Ai H S, Sun M S, Liu A J, Sun Z X, Liu T T, Cao L, Liang L J, Qu Q, Li Z C, Deng Z H, Tong Z B, Chu G C, Tian X L, Deng H T, Zhao S W, Li J B, Lou Z Y, Liu L. Nat. Chem. Biol., 2022, 18(9): 972.
[4]
Yu Y Y, Zheng Q Y, Erramilli S K, Pan M, Park S, Xie Y, Li J X, Fei J Y, Kossiakoff A A, Liu L, Zhao M L. Nat. Chem. Biol., 2021, 17(8): 896.
[5]
Pan M, Zheng Q Y, Wang T, Liang L J, Mao J X, Zuo C, Ding R C, Ai H S, Xie Y, Si D, Yu Y Y, Liu L, Zhao M L. Nature, 2021, 600(7888): 334.
[6]
Liang L J, Chu G C, Qu Q, Zuo C, Mao J X, Zheng Q Y, Chen J N, Meng X B, Jing Y, Deng H T, Li Y M, Liu L. Angew. Chem. Int. Ed., 2021, 60(31): 17171.
[7]
Pan M, Zheng Q Y, Ding S, Zhang L J, Qu Q, Wang T, Hong D N, Ren Y J, Liang L J, Chen C L, Mei Z Q, Liu L. Angew. Chem. Int. Ed., 2019, 58(9): 2627.
[8]
Zuo C, Shi W W, Chen X X, Glatz M, Riedl B, Flamme I, Pook E, Wang J W, Fang G M, Bierer D, Liu L. Sci. China Chem., 2019, 62(10): 1371.
[9]
Muttenthaler M, King G F, Adams D J, Alewood P F. Nat. Rev. Drug Discov., 2021, 20(4): 309.
[10]
Christou G A, Katsiki N, Blundell J, Fruhbeck G, Kiortsis D N. Obes. Rev., 2019, 20(6): 805.
[11]
Bassotti G, Usai-Satta P, Bellini M. Expert Opin. Pharmacother., 2018, 19(11): 1261.
[12]
Scheen A J. Expert. Opin. Biol. Ther., 2017, 17: 485.
[13]
Hamano N, Komaba H, Fukagawa M. Expert Opin. Pharmacother., 2017, 18(5): 529.
[14]
Chang R, Chen J L, Zhang G Y, Li Y, Duan H Z, Luo S Z, Chen Y X. J. Am. Chem. Soc., 2022, 144(27): 12147.
[15]
Sun J, Xiao L L, Li B, Zhao K L, Wang Z L, Zhou Y, Ma C, Li J J, Zhang H J, Herrmann A, Liu K. Angew. Chem. Int. Ed., 2021, 60(44): 23687.
[16]
Ma C, Dong J J, Viviani M, Tulini I, Pontillo N, Maity S, Zhou Y, Roos W H, Liu K, Herrmann A, Portale G. Sci. Adv., 2020, 6(29): eabc0810.
[17]
Li J J, Li B, Sun J, Ma C, Wan S K, Li Y X, Göstl R, Herrmann A, Liu K, Zhang H J. Adv. Mater., 2020, 32(17): 2000964.
[18]
Wu D D, Sinha N, Lee J, Sutherland B P, Halaszynski N I, Tian Y, Caplan J, Zhang H V, Saven J G, Kloxin C J, Pochan D J. Nature, 2019, 574(7780): 658.
[19]
Conibear A C, Watson E E, Payne R J, Becker C F W. Chem. Soc. Rev., 2018, 47(24): 9046.
[20]
Gao S, Pan M, Zheng Y, Huang Y C, Zheng Q Y, Sun D M, Lu L N, Tan X D, Tan X L, Lan H, Wang J X, Wang T, Wang J W, Liu L. J. Am. Chem. Soc., 2016, 138(43): 14497.
[21]
Pan M, Gao S, Zheng Y, Tan X D, Lan H, Tan X L, Sun D M, Lu L N, Wang T, Zheng Q Y, Huang Y C, Wang J W, Liu L. J. Am. Chem. Soc., 2016, 138(23): 7429.
[22]
Wang Z M, Xu W L, Liu L, Zhu T F. Nat. Chem., 2016, 8(7): 698.
[23]
Sun H, Brik A. Acc. Chem. Res., 2019, 52(12): 3361.
[24]
Merrifield R B. J. Am. Chem. Soc., 1963, 85(14): 2149.
[25]
Hartrampf N, Saebi A, Poskus M, Gates Z P, Callahan A J, Cowfer A E, Hanna S, Antilla S, Schissel C K, Quartararo A J, Ye X, Mijalis A J, Simon M D, Loas A, Liu S, Jessen C, Nielsen T E, Pentelute B L. Science, 2020, 368(6494): 980.
[26]
Sato K, Farquhar C E, Rodriguez J, Pentelute B L. J. Am. Chem. Soc., 2023, 145(24): 12992.
[27]
Dawson P E, Muir T W, Clark-Lewis I, Kent S B H. Science, 1994, 266(5186): 776.
[28]
Li Y M, Li Y T, Pan M, Kong X Q, Huang Y C, Hong Z Y, Liu L. Angew. Chem. Int. Ed., 2014, 53(8): 2198.
[29]
Zheng J S, Tang S, Qi Y K, Wang Z P, Liu L. Nat. Protoc., 2013, 8(12): 2483.
[30]
Fang G M, Li Y M, Shen F, Huang Y C, Li J B, Lin Y, Cui H K, Liu L. Angew. Chem. Int. Ed., 2011, 50(33): 7645.
[31]
Liu H, Li X C. Acc. Chem. Res., 2018, 51(7): 1643.
[32]
Zhang Y F, Xu C, Lam H Y, Lee C L, Li X C. Proc. Natl. Acad. Sci. U. S. A., 2013, 110(17): 6657.
[90]
Thevis M, Schanzer W. Mini Rev. Med. Chem., 2007, 7(5): 533.
[91]
Asahina Y, Komiya S, Ohagi A, Fujimoto R, Tamagaki H, Nakagawa K, Sato T, Akira S, Takao T, Ishii A, Nakahara Y, Hojo H. Angew. Chem. Int. Ed., 2015, 54(28): 8226.
[92]
Taniguchi T, Matsui H, Fujita T, Takaoka C, Kashima N, Yoshimoto R, Hamuro J. Nature, 1983, 302(5906): 305.
[93]
Chhabra S R, Hothi B, Evans D J, White P D, Bycroft B W, Chan W C. Tetrahedron Lett., 1998, 39(12): 1603.
[94]
Jacobsen M T, Petersen M E, Ye X, Galibert M, Lorimer G H, Aucagne V, Kay M S. J. Am. Chem. Soc., 2016, 138(36): 11775.
[95]
Ellis R J, Hemmingsen S M. Trends Biochem. Sci., 1989, 14(8): 339.
[96]
Fulcher J M, Petersen M E, Giesler R J, Cruz Z S, Eckert D M, Francis J N, Kawamoto E M, Jacobsen M T, Kay M S. Org. Biomol. Chem., 2019, 17(48): 10237.
[97]
Tsuda S, Nishio H, Yoshiya T. Chem. Commun., 2018, 54(64): 8861.
[98]
Aggeli A, Bell M, Boden N, Keen J N, Knowles P F, McLeish T C B, Pitkeathly M, Radford S E. Nature, 1997, 386(6622): 259.
[99]
Bosques C J, Imperiali B. J. Am. Chem. Soc., 2003, 125(25): 7530.
[100]
Huang Y C, Li Y M, Chen Y, Pan M, Li Y T, Yu L, Guo Q X, Liu L. Angew. Chem. Int. Ed., 2013, 52(18): 4858.
[101]
Tanida I, Ueno T, Kominami E. Methods Mol. Biol., 2008, 445: 77.
[102]
Johnson E C B, Kent S B H. J. Am. Chem. Soc., 2006, 128(22): 7140.
[103]
Li J B, Tang S, Zheng J S, Tian C L, Liu L. Acc. Chem. Res., 2017, 50(5): 1143.
[104]
Johnson T, Quibell M, Owen D, Sheppard R C. J. Chem. Soc., Chem. Commun., 1993(4): 369.
[105]
Weygand F, Steglich W, Bjarnason J, Akhtar R, Khan N M. Tetrahedron Lett., 1966, 7(29): 3483.
[106]
Zheng J S, He Y, Zuo C, Cai X Y, Tang S, Wang Z A, Zhang L H, Tian C L, Liu L. J. Am. Chem. Soc., 2016, 138(10): 3553.
[107]
Sakai A, St Claire M, Faulk K, Govindarajan S, Emerson S U, Purcell R H, Bukh J. Proc. Natl. Acad. Sci. U. S. A., 2003, 100(20): 11646.
[108]
Gan S W, Surya W, Vararattanavech A, Torres J. PLoS One, 2014, 9(1): e78494.
[109]
Tang S, Zuo C, Huang D L, Cai X Y, Zhang L H, Tian C L, Zheng J S, Liu L. Nat. Protoc., 2017, 12(12): 2554.
[110]
Zhang B C, Deng Q, Zuo C, Yan B J, Zuo C, Cao X X, Zhu T F, Zheng J S, Liu L. Angew. Chem. Int. Ed., 2019, 58(35): 12231.
[111]
Chemuru S, Kodali R, Wetzel R. Pept. Sci., 2014, 102(2): 206.
[112]
Zhang B C, Zheng Y P, Chu G C, Deng X Y, Wang T Y, Shi W W, Zhou Y K, Tang S, Zheng J S, Liu L. Angew. Chem. Int. Ed., 2023, 62(33): e202306270.
[113]
Ollivier N, SÉnÉchal M, Desmet R, Snella B, Agouridas V, Melnyk O. Nat. Commun., 2022, 13: 6667.
[114]
Chisholm T S, Kulkarni S S, Hossain K R, Cornelius F, Clarke R J, Payne R J. J. Am. Chem. Soc., 2020, 142(2): 1090.
[115]
Jin S J, Brea R J, Rudd A K, Moon S P, Pratt M R, Devaraj N K. Nat. Commun., 2020, 11: 2793.
[1] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[2] 林建云, 罗时荷, 杨崇岭, 肖颖, 杨丽庭, 汪朝阳. 生物基高分子型止血材料和伤口敷料[J]. 化学进展, 2021, 33(4): 581-595.
[3] 于帅兵, 王召璐, 庞绪良, 王蕾, 李连之, 林英武. 多肽基金属离子传感器[J]. 化学进展, 2021, 33(3): 380-393.
[4] 张晗, 丁家旺, 秦伟. 基于多肽识别的电化学生物传感技术[J]. 化学进展, 2021, 33(10): 1756-1765.
[5] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[6] 白凌闯, 赵静, 冯亚凯. 多功能基因递送系统促进内皮细胞增殖[J]. 化学进展, 2019, 31(2/3): 300-310.
[7] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[8] 徐柳, 钱晨, 朱辰奇, 陈志鹏, 陈瑞*. 基于多肽的纳米药物递送系统的研究[J]. 化学进展, 2018, 30(9): 1341-1348.
[9] 王志鹏, 田长麟, 郑基深. 聚酰胺类多肽二级结构模拟物的结构设计与性质分析[J]. 化学进展, 2016, 28(9): 1328-1340.
[10] 马晓川, 费浩. 金属配位在多肽与蛋白质研究中的应用[J]. 化学进展, 2016, 28(2/3): 184-192.
[11] 王见伟, 宋利锋, 赵瑾, 原续波. 基于多肽结构的聚合物水凝胶[J]. 化学进展, 2015, 27(4): 373-384.
[12] 王军, 张阿方. 多肽基超分子螺旋聚合物[J]. 化学进展, 2015, 27(10): 1413-1424.
[13] 梁妍钰, 唐姗, 郑基深. 细胞穿透环肽[J]. 化学进展, 2014, 26(11): 1793-1800.
[14] 宋利锋, 赵瑾, 袁晓燕. 多糖多肽水凝胶的增强研究[J]. 化学进展, 2014, 26(0203): 385-393.
[15] 高帅, 郭叶, 李海燕, 方葛敏. 订书肽的合成与应用[J]. 化学进展, 2014, 26(01): 100-109.
阅读次数
全文


摘要

蛋白化学合成中的片段增溶策略