English
新闻公告
More
化学进展 2023, Vol. 35 Issue (4): 526-542 DOI: 10.7536/PC220930 前一篇   后一篇

• 综述 •

多肽及蛋白质的化学合成研究

王新月, 金康*()   

  1. 山东大学 齐鲁医学院 药学院药物化学系 化学生物学教育部重点实验室 济南 250012
  • 收稿日期:2022-09-26 修回日期:2022-11-07 出版日期:2023-04-24 发布日期:2023-02-16
  • 基金资助:
    山东省泰山学者工程、国家自然科学基金(22007059); 山东省重点研发计划(重大科技创新工程)项目资助(2021CXGC010501)

Chemical Synthesis of Peptides and Proteins

Xinyue Wang, Kang Jin()   

  1. Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Cheeloo College of Medicine, Shandong University,Jinan 250012, China
  • Received:2022-09-26 Revised:2022-11-07 Online:2023-04-24 Published:2023-02-16
  • Contact: *e-mail: jinkang@sdu.edu.cn
  • Supported by:
    Taishan Scholar Program in Shandong Province, the National Natural Science Foundation of China(22007059); Shandong Provincial Key Research and Development Program (Major Technological Innovation Project)(2021CXGC010501)

多肽与蛋白质作为生物体内的活性物质和生命活动的物质基础,在信号传递、能量利用、免疫应答等基础生理过程发挥着至关重要的作用,并与多种疾病的发生密切相关。获得一定数量高纯度的多肽和蛋白质是研究其结构、生物学功能以及开发相关药物的重要前提。天然多肽与蛋白质的来源主要有动植物的组织器官、微生物的次级代谢产物等。目前,自然提取、重组技术和化学合成是多肽与蛋白质的主要获得途径。相较于从天然产物中提取分离和基因重组表达,化学合成能够方便地在多肽与蛋白质的任意位点引入非天然氨基酸或特定类型的翻译后修饰基团,如糖基化、磷酸化、荧光团及光交联反应基团等,极大地促进了多肽与蛋白质在基础医学及生物医药研究领域的应用发展。本综述全面介绍了多肽与蛋白质的各种化学合成研究策略,并讨论了这些策略的基本原理、优缺点及应用价值,旨在为多肽及蛋白质的合成研究提供参考。

As the material basis of active substances and life activities in living organisms, peptides and proteins play vital roles in basic physiological processes such as signal transmission, energy utilization, immune response, etc. And they are closely related to the occurrence of a variety of diseases. An important prerequisite for studying their structure and biological function and developing related drugs is to obtain a certain number of high pure peptides and proteins. The sources of natural peptides and proteins mainly include tissues and organs of animals and plants, secondary metabolites of microorganisms, etc. Natural extraction, recombinant technology, and chemical synthesis are the main methods to obtain peptides and proteins. Chemical synthesis can conveniently introduce unnatural amino acids or specific types of post-translational modification groups at any site of peptides and proteins compared with the former two, such as glycosylation, phosphorylation, fluorophores, and photorelinking reaction groups, which has greatly promoted the application and development of peptides and proteins in the field of medicine research. This review comprehensively introduces the various chemical synthesis strategies of peptides and proteins, along with the basic principles, advantages and disadvantages, and application values, aiming to provide a novel sight for synthesizing peptides and proteins.

()
图1 固相多肽合成的基本过程
Fig.1 Basic procedures of Solid phase peptide synthesis
表1 Fmoc-SPPS过程中的常用树脂
Table 1 Common resins used in Fmoc-SPPS
表2 常用的缩合试剂
Table 2 Common coupling reagents
图2 氢键的形成导致多肽聚集
Fig.2 Hydrogen bonds contribute to aggregates of peptide
表3 困难多肽合成策略的应用范围及其特点
Table 3 Application scopes and advantages of difficult peptides synthesis strategies
图3 (a)伪脯氨酸结构在多肽全脱保护的酸性条件下即可方便除去;(b)正常的反式酰胺键和伪脯氨酸结构导致的顺势酰胺键,顺式构型有利于环肽的环化
Fig.3 (a)Pseudoproline removed conveniently during acidic global deprotection of peptides; (b)Normal trans-amide and cis-amide caused by pseudoproline, and the latter is preferred during cyclization of cyclic Peptides
图4 (a)下一个氨基酸引入到末端N被Hmb保护的接树脂多肽链的机制;(b) Hmsb和Hmnb的结构
Fig.4 (a) Mechanism of next amino acid introduction into N(Hmb)-peptidyl-resin; (b) Hmsb and Hmnb
图5 (a)使用二肽单元合成异肽;通过(b):pH和(c):光照射介导O/N酰基转移使异肽恢复为正常多肽的机制[57]
Fig.5 (a) Synthesis of isopeptide using dipeptide unit; Mechanism of isopeptide to peptide through O/N acyl shift mediated by (b): pH and (c): photoirradiation[57]
图6 连接PEG基团的氨基酸
Fig.6 Amino acids linked with PEG group
图7 使用MeDbz Linker进行接树脂的环化[67]
Fig.7 On-resin cyclization using the MeDbz Linker[67]
表4 多肽连接方法的应用范围及其特点
Table 4 Application scopes and advantages of peptide ligation methods
图8 自然化学连接的机制
Fig.8 Mechanism of NCL
图9 (a)自然化学连接中使用多肽酰肼作为硫酯供体[72];(b)使用2-Cl-(Trt)-NHNH2树脂合成多肽酰肼[73];(c)通过酰基吡唑结构产生多肽硫酯供体[72]
Fig.9 (a) Peptide hydrazide serves as thioester surrogate used in NCL[72]; (b) peptide hydrazide synthesis on 2-Cl-(Trt)-NHNH2 resin[73]; (c) generation of peptide thioester surrogate: acyl pyrazoles[72]
图10 隐形肽硫酯N-Hnb-Cys(StBu)的合成及其在自然化学连接过程中转化为肽硫酯的机制[75]
Fig.10 Synthesis of peptide crypto-thioesters: N-Hnb-Cys(StBu) and its Mechanism for transformation to peptide thioester during NCL[75]
图11 (a)使用硫醇化氨基酸进行自然化学连接并进一步脱硫[79];(b) γ-硫醇化的异亮氨酸、β-硫醇化的赖氨酸和γ-硫醇化的脯氨酸
Fig.11 (a) Using thiol-derived amino acids in NCL and further desulfurization[79]; (b) γ-thiol Ile, β-thiol Lys and γ-thiol Pro
图12 DSL(Diselenide-selenoester ligation)的步骤[18]
Fig.12 Steps of DSL[18]
图13 丝氨酸/苏氨酸连接的机制
Fig.13 Mechanism of Ser/Thr ligation
图14 (a) 使用“n+1”策略合成肽水杨醛酯;(b) 末端氨基酸的高位阻使肽聚酯中的α-N羰基失活;(c) 半胱氨酸/青霉胺连接的步骤[93]
Fig.14 (a) Synthesis of SAL ester by “n+1” strategy; (b) High hindrance of terminal AA contributes to the deactivation roles of the α-N-carbonyl in a peptidyl prolylester; (c) steps of CPL[93]
图15 KAHA连接发生于N末端多肽的α-酮酸与C末端多肽的羟胺之间
Fig.15 KAHA ligation: peptides ligate between an N-terminal peptide α-ketoacid and a C-terminal peptide hydroxylamine
图16 (a) 聚精氨酸和聚赖氨酸标签;(b)通过可移除的骨架修饰基团—RBM标签合成膜蛋白[103];(c)借助可被还原的增溶标签(RSTs)合成膜蛋白[90]
Fig.16 (a) Poly-arginine tag and Poly-lysine tag; (b) synthesis of membrane proteins through a removable backbone modification-RBM Tag[103]; (c) membrane protein synthesis via reducible solubilizing tags (RSTs)[90]
图17 酶催化介导的蛋白质半合成的步骤
Fig.17 Steps of Sortase-mediated protein Semisynthesis
[1]
Fischer E, Fourneau E. Ber. Dtsch. Chem. Ges., 1901, 34(2): 2868.

doi: 10.1002/cber.v34:2     URL    
[2]
Curtius T. J. Prakt. Chem., 1904, 70(1): 57.

doi: 10.1002/prac.19040700103     URL    
[3]
Fischer E. Ber. Dtsch. Chem. Ges., 1905, 38(1): 605.

doi: 10.1002/cber.v38:1     URL    
[4]
Vigneaud V D, Ressler C, Swan C J M, Roberts C W, Katsoyannis P G, Gordon S. J. Am. Chem. Soc., 1953, 75(19): 4879.

doi: 10.1021/ja01115a553     URL    
[5]
Schwyzer R, Sieber P. Nature, 1963, 199(4889): 172.
[6]
Merrifield B. Science, 1986, 232(4748): 341.

doi: 10.1126/science.3961484     pmid: 3961484
[7]
Merrifield R B. J. Am. Chem. Soc., 1963, 85(14): 2149.

doi: 10.1021/ja00897a025     URL    
[8]
Gong Y T, Du Y C, Huang W D, Chen C Q, Ge L J, Hu S Q, Jiang R Q, Zhu S Q, Niu J Y, Xu J C, Zhang W J, Chen L L, Li H X, Wang Y, Lu D P, Ji A X, Li C X, Shi F T, Ye Y H, Tang K L, Xing Q Y. Chin. Sci. Bull., 1965, 11: 941.
龚岳亭, 杜雨苍, 黄惟德, 陈常庆, 葛麟俊, 胡世全, 蒋荣庆, 朱尚权, 钮经义, 徐杰诚, 张伟君, 陈玲玲, 李鸿绪, 汪猷, 陆德培, 季爱雪, 李崇熙, 施溥涛, 叶蕴华, 汤卡罗, 邢其毅. 科学通报, 1965, 11: 941.).
[9]
Hattori K, Koike K, Okuda K, Hirayama T, Ebihara M, Takenaka M, Nagasawa H. Org. Biomol. Chem., 2016, 14(6): 2090.

doi: 10.1039/c5ob02505b     pmid: 26779679
[10]
Zhang T, Song W, Zhao J, Liu J. Ind. Eng. Chem. Res., 2017, 56: 11697.

doi: 10.1021/acs.iecr.7b03299     URL    
[11]
Fuse S, Koinuma H, Kimbara A, Izumikawa M, Mifune Y, He H Y, Shin-ya K, Takahashi T, Doi T, J. Am. Chem. Soc., 2014, 136(34): 12011.
[12]
Zhao Z G, Mousa R, Metanis N. Chem. A Eur. J., 2022, 28(16): e202200279.
[13]
Grygiel T L R, Teplyakov A, Obmolova G, Stowell N, Holland R, Nemeth J F, Pomerantz S C, Kruszynski M, Gilliland G L. Biopolymers, 2010, 94(3): 350.

doi: 10.1002/bip.21390     pmid: 20091676
[14]
Chang C D, Meienhofer J. Int. J. Pept. Protein Res., 1978, 11(3): 246.

pmid: 649259
[15]
SCHNölzer M, Alewood P, Jones A, Alewood D, Kent S B H. Int. J. Pept. Protein Res., 1992, 40(3/4): 180.

doi: 10.1111/j.1399-3011.1992.tb00291.x     URL    
[16]
Yamamoto N, Tanabe Y, Okamoto R, Dawson P E, Kajihara Y. J. Am. Chem. Soc., 2008, 130(2): 501.

pmid: 18085777
[17]
Behrendt R, White P, Offer J. J. Pept. Sci., 2016, 22(1): 4.

doi: 10.1002/psc.2836     pmid: 26785684
[18]
Kulkarni S S, Watson E E, Premdjee B, Conde-Frieboes K W, Payne R J. Nat. Protoc., 2019, 14(7): 2229.

doi: 10.1038/s41596-019-0180-4     pmid: 31227822
[19]
Tang S, Zuo C, Huang D L, Cai X Y, Zhang L H, Tian C L, Zheng J S, Liu L. Nat. Protoc., 2017, 12(12): 2554.

doi: 10.1038/nprot.2017.129     URL    
[20]
Zheng J S, Tang S, Qi Y K, Wang Z P, Liu L. Nat. Protoc., 2013, 8(12): 2483.

doi: 10.1038/nprot.2013.152    
[21]
Wang S S. J. Am. Chem. Soc., 1973, 95(4): 1328.

pmid: 4687686
[22]
Chatzi K B O, Gatos D, Stavropoulos G. Int. J. Pept. Protein Res., 1991, 37(6): 513.

doi: 10.1111/j.1399-3011.1991.tb00769.x     URL    
[23]
Tan X L, Pan M, Zheng Y, Gao S, Liang L J, Li Y M. Chem. Sci., 2017, 8(10): 6881.

doi: 10.1039/C7SC02937C     URL    
[24]
Carbajo D, El-Faham A, Royo M, Albericio F. ACS Omega, 2019, 4(5): 8674.

doi: 10.1021/acsomega.9b00974     pmid: 31459957
[25]
Acosta G A, Royo M, de la Torre B G, Albericio F. Tetrahedron Lett., 2017, 58(28): 2788.

doi: 10.1016/j.tetlet.2017.06.008     URL    
[26]
Rink H. Tetrahedron Lett., 1987, 28(33): 3787.

doi: 10.1016/S0040-4039(00)96384-6     URL    
[27]
García-Martín F, Quintanar-Audelo M, García-Ramos Y, Cruz L J, Gravel C, Furic R, CôtÉ S, Tulla-Puche J, Albericio F. J. Comb. Chem., 2006, 8(2): 213.

pmid: 16529516
[28]
Sheehan J C, Hess G P. J. Am. Chem. Soc., 1955, 77(4): 1067.

doi: 10.1021/ja01609a099     URL    
[29]
Leo Benoiton N, Chen F M F. J. Chem. Soc., Chem. Commun., 1981(11): 543.
[30]
Sheehan J, Cruickshank P, Boshart G. J. Org. Chem., 1961, 26(7): 2525.
[31]
SubirÃ3s-Funosas R, Prohens R, Barbas R, El-Faham A, Albericio F. Chem. Eur. J., 2009, 15(37): 9394.

doi: 10.1002/chem.v15:37     URL    
[32]
Coste J, Le-Nguyen D, Castro B. Tetrahedron Lett., 1990, 31(2): 205.

doi: 10.1016/S0040-4039(00)94371-5     URL    
[33]
Albericio F, Cases M, Alsina J, Triolo S A, Carpino L A, Kates S A. Tetrahedron Lett., 1997, 38(27): 4853.

doi: 10.1016/S0040-4039(97)01011-3     URL    
[34]
SubirÓs-Funosas R, El-Faham A, Albericio F. Org. Biomol. Chem., 2010, 8(16): 3665.

doi: 10.1039/c003719b     URL    
[35]
Carpino L A, Imazumi H, El-Faham A, Ferrer F J, Zhang C W, Lee Y, Foxman B M, Henklein P, Hanay C, Mügge C, Wenschuh H, Klose J, Beyermann M, Bienert M. Angewandte Chemie Int. Ed., 2002, 41(3): 441.

doi: 10.1002/1521-3773(20020201)41:3【-逻*辑*与-】lt;【-逻*辑*与-】gt;1.0.CO;2-9     URL    
[36]
Ehrlich A, Rothemund S, Brudel M, Beyermann M, Carpino L A, Bienert M. Tetrahedron Lett., 1993, 34(30): 4781.

doi: 10.1016/S0040-4039(00)74087-1     URL    
[37]
El-Faham A, Funosas R S, Prohens R, Albericio F. Chem. Eur. J., 2009, 15(37): 9404.

doi: 10.1002/chem.v15:37     URL    
[38]
Gutte B, Merrifield R B. J. Biol. Chem., 1971, 246(6): 1922.

pmid: 5102153
[39]
Kent S B H. Annu. Rev. Biochem., 1988, 57: 957.

pmid: 3052294
[40]
Bedford J, Hyde C, Johnson T, Jun W, Owen D, Quibell M, Sheppard R C. Int. J. Pept. Protein Res., 1992, 40(3/4): 300.

doi: 10.1111/j.1399-3011.1992.tb00305.x     URL    
[41]
Paradís-Bas M, Tulla-Puche J, Albericio F. Chem. Soc. Rev., 2016, 45(3): 631.

doi: 10.1039/c5cs00680e     pmid: 26612670
[42]
Wöhr T, Wahl F, Nefzi A, Rohwedder B, Sato T, Sun X C, Mutter M. J. Am. Chem. Soc., 1996, 118(39): 9218.

doi: 10.1021/ja961509q     URL    
[43]
Coïc Y M, Le Lan C, Neumann J M, Jamin N, Baleux F. J. Peptide Sci., 2010, 16(2): 98.

doi: 10.1002/psc.1203     URL    
[44]
Noden M, Moreira R, Huang E, Yousef A, Palmer M, Taylor S D. J. Org. Chem., 2019, 84(9): 5339.

doi: 10.1021/acs.joc.9b00364     URL    
[45]
Abedini A, Raleigh D P. Org. Lett., 2005, 7(4): 693.

doi: 10.1021/ol047480+     URL    
[46]
Jolliffe K A. Aust. J. Chem., 2018, 71(10): 723.

doi: 10.1071/CH18292     URL    
[47]
Liu Y, Zhao X Y, Wang H B, Liu H L, Sui Z Y, Yan B F, Du Y G. J. Org. Chem., 2021, 86(1): 1065.

doi: 10.1021/acs.joc.0c02541     pmid: 33295775
[48]
Wang P, Aussedat B, Vohra Y, Danishefsky S J. Angew. Chem. Int. Ed., 2012, 51(46): 11571.

doi: 10.1002/anie.201205038     URL    
[49]
Zeng C, Sun B, Cao X F, Zhu H L, Oluwadahunsi O M, Liu D, Zhu H, Zhang J B, Zhang Q, Zhang G L, Gibbons C A, Liu Y P, Zhou J, Wang P G. Org. Lett., 2020, 22(21): 8349.

doi: 10.1021/acs.orglett.0c02971     URL    
[50]
Johnson T, Quibell M, Owen D, Sheppard R C. J. Chem. Soc., Chem. Commun., 1993(4): 369.
[51]
Li T L, Liu H, Li X C. Org. Lett., 2016, 18(22): 5944.

doi: 10.1021/acs.orglett.6b03056     URL    
[52]
Huang Y C, Guan C J, Tan X L, Chen C C, Guo Q X, Li Y M. Org. Biomol. Chem., 2015, 13(5): 1500.

doi: 10.1039/C4OB02260B     URL    
[53]
Abdel-Aal A B M, Papageorgiou G, Raz R, Quibell M, Burlina F, Offer J. J. Pept. Sci., 2016, 22(5): 360.

doi: 10.1002/psc.v22.5     URL    
[54]
Sohma Y, Sasaki M, Hayashi Y, Kimura T, Kiso Y. Chemical Communications, 2004, 124.
[55]
Sohma Y, Taniguchi A, Skwarczynski M, Yoshiya T, Fukao F, Kimura T, Hayashi Y, Kiso Y. Tetrahedron Lett., 2006, 47(18): 3013.

doi: 10.1016/j.tetlet.2006.03.017     URL    
[56]
Youhei S. Biopolymers, 2007, 88: 253.

pmid: 17236207
[57]
Taniguchi A, Skwarczynski M, Sohma Y, Okada T, Ikeda K, Prakash H, Mukai H, Hayashi Y, Kimura T, Hirota S, Matsuzaki K, Kiso Y. ChemBioChem, 2008, 9(18): 3055.

doi: 10.1002/cbic.200800503     pmid: 19025862
[58]
Hojo H, Takei T, Asahina Y, Okumura N, Takao T, So M, Suetake I, Sato T, Kawamoto A, Hirabayashi Y. Angew. Chem. Int. Ed., 2021, 60(25): 13900.

doi: 10.1002/anie.v60.25     URL    
[59]
Lu Y A, Felix A M. Int. J. Pept. Protein Res., 1994, 43(2): 127.

pmid: 8200730
[60]
Yang B, Gelfanov V M, Perez-Tilve D, DuBois B, Rohlfs R, Levy J, Douros J D, Finan B, Mayer J P, DiMarchi R D. J. Med. Chem., 2021, 64(8): 4697.

doi: 10.1021/acs.jmedchem.0c02069     pmid: 33821647
[61]
Wang C, Xiong M R, Yang C, Yang D, Zheng J J, Fan Y, Wang S, Gai Y K, Lan X L, Chen H, Zheng L, Huang K. J. Med. Chem., 2020, 63(24): 16028.

doi: 10.1021/acs.jmedchem.0c01913     URL    
[62]
Jing X S, Jin K. Med. Res. Rev., 2020, 40(2): 753.

doi: 10.1002/med.v40.2     URL    
[63]
Dunetz J R, Xiang Y Q, Baldwin A, Ringling J. Org. Lett., 2011, 13(19): 5048.

doi: 10.1021/ol201875q     URL    
[64]
Ollivier N, Toupy T, Hartkoorn R C, Desmet R, Monbaliu J C M, Melnyk O. Nat. Commun., 2018, 9: 2847.

doi: 10.1038/s41467-018-05264-8    
[65]
Wong C T T, Lam H Y, Li X C. Tetrahedron, 2014, 70(42): 7770.

doi: 10.1016/j.tet.2014.05.080     URL    
[66]
Chow H Y, Zhang Y, Matheson E, Li X C. Chem. Rev., 2019, 119(17): 9971.

doi: 10.1021/acs.chemrev.8b00657     pmid: 31318534
[67]
Gless B H, Olsen C A. J. Org. Chem., 2018, 83(17): 10525.

doi: 10.1021/acs.joc.8b01237     URL    
[68]
Payne R J, Wong C H. Chem. Commun., 2010, 46(1): 21.

doi: 10.1039/B913845E     URL    
[69]
Ma W J, Deng Y Q, Xu Z J, Liu X B, Chapla D G, Moremen K W, Wen L Q, Li T H. J. Am. Chem. Soc., 2022, 144(20): 9057.

doi: 10.1021/jacs.2c01819     URL    
[70]
Dawson P E, Muir T W, Clark-Lewis I, Kent S B H. Science, 1994, 266(5186): 776.

pmid: 7973629
[71]
Nakamura T, Shigenaga A, Sato K, Tsuda Y, Sakamoto K, Otaka A. Chem. Commun., 2014, 50(1): 58.

doi: 10.1039/C3CC47228K     URL    
[72]
Fang G M, Li Y M, Shen F, Huang Y C, Li J B, Lin Y, Cui H K, Liu L. Angew. Chem. Int. Ed., 2011, 50(33): 7645.

doi: 10.1002/anie.201100996     URL    
[73]
Tian X B, Li J, Huang W. Tetrahedron Lett., 2016, 57(38): 4264.

doi: 10.1016/j.tetlet.2016.07.101     URL    
[74]
Flood D T, Hintzen J C J, Bird M J, Cistrone P A, Chen J S, Dawson P E. Angew. Chem. Int. Ed., 2018, 57(36): 11634.

doi: 10.1002/anie.v57.36     URL    
[75]
Terrier V P, Adihou H, Arnould M, Delmas A F, Aucagne V. Chem. Sci., 2016, 7(1): 339.

doi: 10.1039/c5sc02630j     pmid: 29861986
[76]
Lelièvre D, Terrier V P, Delmas A F, Aucagne V. Org. Lett., 2016, 18(5): 920.

doi: 10.1021/acs.orglett.5b03612     URL    
[77]
Yan L Z, Dawson P E. J. Am. Chem. Soc., 2001, 123(4): 526.

pmid: 11456564
[78]
Wan Q, Danishefsky S. Angew. Chem. Int. Ed., 2007, 46(48): 9248.

doi: 10.1002/(ISSN)1521-3773     URL    
[79]
Pasunooti K K, Yang R L, Banerjee B, Yap T, Liu C F. Org. Lett., 2016, 18(11): 2696.

doi: 10.1021/acs.orglett.6b01160     pmid: 27218276
[80]
Wang S Y, Zhou Q Q, Li Y X, Wei B C, Liu X L, Zhao J, Ye F R, Zhou Z N, Ding B, Wang P. J. Am. Chem. Soc., 2022, 144(3): 1232.

doi: 10.1021/jacs.1c10324     URL    
[81]
Loibl S F, Harpaz Z, Seitz O. Angew. Chem. Int. Ed., 2015, 54(50): 15055.

doi: 10.1002/anie.201505274     URL    
[82]
Dao Y K, Han L, Wang H X, Dong S W. Org. Lett., 2019, 21(9): 3265.

doi: 10.1021/acs.orglett.9b00980     URL    
[83]
Ding H, Shigenaga A, Sato K, Morishita K, Otaka A. Org. Lett., 2011, 13(20): 5588.

doi: 10.1021/ol202316v     pmid: 21916452
[84]
Yin H L, Zheng M J, Chen H, Wang S Y, Zhou Q Q, Zhang Q, Wang P. J. Am. Chem. Soc., 2020, 142(33): 14201.

doi: 10.1021/jacs.0c04994     URL    
[85]
Liczner C, Hanna C C, Payne R J, Wilds C J. Chem. Sci., 2022, 13(2): 410.

doi: 10.1039/D1SC04937B     URL    
[86]
Zhang Y F, Xu C, Lam H Y, Lee C L, Li X C. Proc. Natl. Acad. Sci. U. S. A., 2013, 110(17): 6657.

doi: 10.1073/pnas.1221012110     URL    
[87]
Wong C T T, Li T, Lam H Y, Zhang Y, Li X. Front. Chem., 2014, 2: 1.
[88]
Chen D L, Laam Po K H, Blasco P, Chen S, Li X C. Org. Lett., 2020, 22(12): 4749.

doi: 10.1021/acs.orglett.0c01544     URL    
[89]
Wei T Y, Liu H, Chu B Z, Blasco P, Liu Z, Tian R J, Li D X, Li X C. Cell Chem. Biol., 2021, 28(5): 722.

doi: 10.1016/j.chembiol.2021.01.007     URL    
[90]
Liu J M, Wei T Y, Tan Y, Liu H, Li X C. Chem. Sci., 2022, 13(5): 1367.
[91]
Lee C L, Liu H, Wong C T T, Chow H Y, Li X C. J. Am. Chem. Soc., 2016, 138(33): 10477.

doi: 10.1021/jacs.6b04238     URL    
[92]
Newberry R W, Raines R T. Acc. Chem. Res., 2017, 50(8): 1838.

doi: 10.1021/acs.accounts.7b00121     URL    
[93]
Tan Y, Li J S, Jin K, Liu J M, Chen Z Y, Yang J, Li X C. Angew. Chem. Int. Ed., 2020, 59(31): 12741.

doi: 10.1002/anie.202003652     pmid: 32343022
[94]
Bode J W, Fox R M, Baucom K D. Angew. Chem. Int. Ed., 2006, 45(8): 1248.

doi: 10.1002/(ISSN)1521-3773     URL    
[95]
Pusterla I, Bode J W. Angew. Chem. Int. Ed., 2012, 51(2): 513.

doi: 10.1002/anie.201107198     pmid: 22125261
[96]
Baldauf S, Ogunkoya A O, Boross G N, Bode J W. J. Org. Chem., 2020, 85(3): 1352.

doi: 10.1021/acs.joc.9b02271     pmid: 31840512
[97]
Kumarswamyreddy N, Reddy D N, Robkis D M, Kamiya N, Tsukamoto R, Kanaoka M M, Higashiyama T, Oishi S, Bode J W. RSC Chem. Biol., 2022, 3(6): 721.

doi: 10.1039/D2CB00039C     URL    
[98]
Murar C E, Ninomiya M, Shimura S, Karakus U, Boyman O, Bode J W. Angew. Chem. Int. Ed., 2020, 59(22): 8425.

doi: 10.1002/anie.v59.22     URL    
[99]
Rohrbacher F, Wucherpfennig T G, Bode J W. Top. Curr. Chem., 2014: 1.
[100]
Wallin E, Von Heijne G. Protein Sci., 1998, 7(4): 1029.

doi: 10.1002/pro.5560070420     pmid: 9568909
[101]
Wang L, Zhang J G, Wang D L, Song C. PLoS Comput. Biol., 2022, 18(3): e1009972.

doi: 10.1371/journal.pcbi.1009972     URL    
[102]
Paradís-Bas M, Albert-Soriano M, Tulla-Puche J, Albericio F. Org. Biomol. Chem., 2014, 12(37): 7194.

doi: 10.1039/c4ob01354a     pmid: 25162452
[103]
Zheng J S, He Y, Zuo C, Cai X Y, Tang S, Wang Z A, Zhang L H, Tian C L, Liu L. J. Am. Chem. Soc., 2016, 138(10): 3553.

doi: 10.1021/jacs.6b00515     URL    
[104]
Chen Z, Cole P A. Curr. Opin. Chem. Biol., 2015, 28: 115.

doi: 10.1016/j.cbpa.2015.07.001     pmid: 26196731
[105]
Agouridas V, El Mahdi O, Melnyk O. J. Med. Chem., 2020, 63(24): 15140.

doi: 10.1021/acs.jmedchem.0c01082     pmid: 33236900
[106]
Qiao Y C, Yu G, Kratch K C, Wang X A, Wang W W, Leeuwon S Z, Xu S Q, Morse J S, Liu W R. J. Am. Chem. Soc., 2020, 142(15): 7047.

doi: 10.1021/jacs.0c00252     URL    
[107]
Henager S H, Chu N, Chen Z, Bolduc D, Dempsey D R, Hwang Y, Wells J, Cole P A. Nat. Methods, 2016, 13(11): 925.

doi: 10.1038/nmeth.4004     pmid: 27669326
[108]
Jia X Y, Kwon S, Wang C I A, Huang Y H, Chan L Y, Tan C C, Rosengren K J, Mulvenna J P, Schroeder C I, Craik D J. J. Biol. Chem., 2014, 289(10): 6627.

doi: 10.1074/jbc.M113.539262     URL    
[109]
Thompson R E, Muir T W. Chem. Rev., 2020, 120(6): 3051.

doi: 10.1021/acs.chemrev.9b00450     pmid: 31774265
[110]
Siman P, Brik A. Org. Biomol. Chem., 2012, 10(30): 5684.

doi: 10.1039/c2ob25149c     URL    
[111]
Li F X, Zhang Q Z, Li S J, Lin G, Huo X Y, Lan Y, Yang Z. Org. Lett., 2021, 23(9): 3421.

doi: 10.1021/acs.orglett.1c00881     URL    
[112]
Ye F R, Zhao J, Xu P, Liu X L, Yu J, Shangguan W, Liu J Z, Luo X S, Li C, Ying T L, Wang J, Yu B, Wang P. Angew. Chem. Int. Ed., 2021, 60(23): 12610.

doi: 10.1002/anie.v60.23     URL    
[113]
Zhao J, Liu J Z, Liu X N, Cao Q, Zhao H B, Liu L Z, Ye F R, Wang C, Shao H, Xue D X, Tao H C, Li B, Yu B, Wang P. Chin. J. Chem., 2022, 40(7): 787.

doi: 10.1002/cjoc.v40.7     URL    
[114]
Adamo A, Beingessner R L, Behnam M, Chen J, Jamison T F, Jensen K F, Monbaliu J C M, Myerson A S, Revalor E M, Snead D R, Stelzer T, Weeranoppanant N, Wong S Y, Zhang P. Science, 2016, 352(6281): 61.

doi: 10.1126/science.aaf1337     URL    
[1] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
阅读次数
全文


摘要

多肽及蛋白质的化学合成研究