English
新闻公告
More
化学进展 2022, Vol. 34 Issue (8): 1723-1733 DOI: 10.7536/PC220414 前一篇   后一篇

• 综述 •

酶响应性线形-树枝状嵌段共聚物的合成、性能及应用

宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅*()   

  1. 云南师范大学化学化工学院 昆明 650500
  • 收稿日期:2022-04-14 修回日期:2022-06-06 出版日期:2022-07-20 发布日期:2022-07-20
  • 通讯作者: 毕韵梅
  • 作者简介:

    作者简介:毕韵梅 教授,云南省中青年学术技术带头人。2001年,在中国科学院兰州化学物理研究所获博士学位。曾在美国宾夕法尼亚州立大学和加州大学戴维斯分校做访问学者。致力于药用高分子材料研究,设计合成出多种具有酶、pH和温度响应性的线形、线形-树枝状、环形等聚合物,在药物的主动和靶向释放系统具有应用价值。主持科研项目15项,其中国家自然科学基金4项。获授权发明专利9件。发表学术论文90余篇。

  • 基金资助:
    国家自然科学基金项目(21564017)

Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers

Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi()   

  1. College of Chemistry and Chemical Engineering, Yunnan Normal University,Kunming 650500, China
  • Received:2022-04-14 Revised:2022-06-06 Online:2022-07-20 Published:2022-07-20
  • Contact: Yunmei Bi
  • Supported by:
    National Natural Science Foundation of China(21564017)

酶响应性线形-树枝状嵌段共聚物(LDBCs)能对内源性酶产生特异性响应,与只能对外源性刺激信号(如温度、光等)产生响应的聚合物相比,酶响应性LDBCs具有高选择性和更好的生物相容性,作为生物医用材料更适合在人体内使用。通过变换LDBCs的酶响应基团、线形链和树枝化基元,可调控酶响应性两亲LDBCs的自组装和酶响应性解组装性能。由于其独特的酶响应性能和优良的生物相容性,在药物递送和生物医学影像等方面有广阔的应用前景。本文总结归纳了酶响应性LDBCs的合成方法、LDBCs的结构(如线形链长度和结构、树枝化基元的疏水性)对其自组装性能和酶响应性能的影响以及应用,并对酶响应性LDBCs的发展方向进行了展望。

Linear-dendritic block copolymers (LDBCs) are composed of a linear polymer and dendrimers (dendrons). They not only combine the characteristics of the two types of polymers, but also have unique structures and properties. Furthermore, stimuli-responsive LDBCs can be generated through the selection and structural modification of their linear chains and dendrons. Stimuli-responsive LDBCs have attracted much attention in recent years because of combining the ability to respond to a specific stimulus and different polymeric architectures for a broad range of applications, including drug delivery, gene therapy and materials science. Among them, enzyme responsive LDBCs are able to specifically respond to endogenous enzymes. Compared with the polymers that are able to only respond to exogenous stimuli such as temperature, light, etc, enzyme responsive LDBCs have high selectivity and better biocompatibility. Therefore, they are more suitable for application in in vivo as biomedical materials. Amphiphilic enzyme responsive LDBCs are capable of self-assembling in aqueous solution into nano-aggregates and disassembling to release payloads upon enzymatic stimuli. Additionally, the self-assembly and enzyme responsive disassembly properties of amphiphilic enzyme responsive LDBCs can be adjusted by changing the enzyme-responsive groups, linear chains and dendrons of LDBCs. Due to their unique enzyme response properties and excellent biocompatibility, enzyme responsive LDBCs have broad application prospects in drug delivery, biomedical imaging, etc. Herein, this review summarizes the synthetic approaches of enzyme responsive LDBCs, the effect of the structures such as the length and structure of linear chain, and hydrophobicity of dendrons of the LDBCs on their self-assembly properties and enzyme-responsive properties. The applications of these copolymers are also introduced. Finally, the research prospect of enzyme responsive LDBCs are proposed.

Contents

1 Introduction

2 Synthetic approaches for enzyme responsive linear-dendritic block copolymers (LDBCs)

2.1 The divergent approach

2.2 The convergent approach

2.3 The coupling approach

3 Effect of LDBCs structures and enzyme concentration on the properties of enzyme responsive LDBCs

3.1 The effect of different enzyme responsive groups in the LDBCs

3.2 The effect of linear chain length of the LDBCs

3.3 The effect of linear chain structure and type of the LDBCs

3.4 The effect of hydrophobicity of dendrons in the LDBCs

3.5 The effect of enzyme concentration

4 Application of enzyme responsive LDBCs

4.1 As a drug carrier

4.2 Application in the field of fluorescent imaging probes

5 Conclusion and outlook

()
图1 酶响应性LDBCs的结构[11,22,23]
Fig. 1 Structures of enzyme responsive LDBCs[11,22,23]
图2 发散法合成PNVP-b-dendr(Phe-Lys)n (n =1~3) 酶响应性LDBCs的合成路线[11]
Fig. 2 Synthesis of enzyme responsive LDBCs PNVP-b-dendr(Phe-Lys)n (n =1~3) by a chain-first approach[11]
图3 收敛法合成酶响应性LDBCs(bis-MPA-Gn-b-PHEG (n = 1, 2)[23]
Fig. 3 Synthesis of enzyme responsive LDBCs (bis-MPA-Gn-b-PHEG (n = 1, 2) ) by a dendron-first approach[23]
图4 偶合法合成酶响应性LDBCs[35]
Fig. 4 Synthesis of enzyme responsive LDBCs by a coupling approach[35]
表1 LDBCs中的酶响应性基团
Table 1 Enzyme responsive groups in LDBCs
图5 LDBCs胶束在酶作用下解组装的机理[22]
Fig. 5 Mechanism of disassembly of LDBCs micelles upon enzymatic activation[22]
图6 亲水性线形链的结构对LDBCs胶束酶响应性自组装的影响[36]
Fig. 6 Effect of linear and V-shaped hydrophilic blocks on enzyme responsive disassembly properties of LDBC micelles[36]
图7 以共价方式或非共价方式搭载疏水性小分子的LDBCs胶束的酶响应性释放[52]
Fig. 7 Enzyme-responsive release of LDBCs micelles loaded with hydrophobic small molecules in a covalent or non-covalent manner[52]
[1]
Wang L L, Zhao H, Chen D Z. Chinese Polymer Bulleti, 2007(1): 19.
王莉莉, 赵辉, 谌东中. 高分子通报, 2007(1): 19.).
[2]
Wurm F, Frey H. Prog. Polym. Sci., 2011, 36(1): 1.

doi: 10.1016/j.progpolymsci.2010.07.009     URL    
[3]
Fan X H, Zhao Y L, Xu W, Li L B. Mater. Sci. Eng. C, 2016, 62: 943.

doi: 10.1016/j.msec.2016.01.044     URL    
[4]
Blasco E, Piñol M, Oriol L. Macromol. Rapid Commun., 2014, 35(12): 1160.

doi: 10.1002/marc.201470041     URL    
[5]
Ge Z S, Luo S Z, Liu S Y. J. Polym. Sci. A Polym. Chem., 2006, 44(4): 1357.

doi: 10.1002/pola.21261     URL    
[6]
Bi Y M, Yan C X, Shao L D, Wang Y F, Ma Y C, Tang G. J. Polym. Sci. A Polym. Chem., 2013, 51(15): 3240.

doi: 10.1002/pola.26716     URL    
[7]
Chen L L, Chen T, Fang W X, Wen Y, Lin S L, Lin J P, Cai C H. Biomacromolecules, 2013, 14(12): 4320.

doi: 10.1021/bm401215w     URL    
[8]
Huang D, Wang Y Q, Yang F, Shen H, Weng Z Q, Wu D C. Polym. Chem., 2017, 8(43): 6675.

doi: 10.1039/C7PY01556A     URL    
[9]
del Barrio J, Oriol L, Alcalá R, Saánchez C. Macromolecules, 2009, 42(15): 5752.

doi: 10.1021/ma9003133     URL    
[10]
Blasco E, Barrio J D, Sánchez-Somolinos C, Piñol M, Oriol L. Polym. Chem., 2013, 4(7): 2246.

doi: 10.1039/c2py21025h     URL    
[11]
Wei J W, Lin F, You D, Qian Y Y, Wang Y J, Bi Y M. Polymers, 2019, 11(10): 1625.

doi: 10.3390/polym11101625     URL    
[12]
Qian Y Y, Wei J W, Wang Y J, You D, Lin F, Yue W Z, Bi Y M. Polym. Adv. Technol., 2020, 31(11): 2797.

doi: 10.1002/pat.5006     URL    
[13]
Zelzer M, Todd S J, Hirst A R, McDonald T O, Ulijn R V. Biomater. Sci., 2013, 1(1): 11.

doi: 10.1039/C2BM00041E     URL    
[14]
Wang H X, Xiong Y T, Qing G Y, Sun T L. Progress in Chemistry, 2017, 29(04): 348.
王宏喜, 熊雨婷, 卿光焱, 孙涛垒. 化学进展, 2017, 29(04): 348.).
[15]
Bruchard M, Mignot G, Derangère V, Chalmin F, Chevriaux A, VÉgran F, Boireau W, Simon B, Ryffel B, Connat J L, Kanellopoulos J, Martin F, RÉbÉ C, Apetoh L, Ghiringhelli F. Nat. Med., 2013, 19(1): 57.

doi: 10.1038/nm.2999     pmid: 23202296
[16]
Ferber S, Baabur-Cohen H, Blau R, Epshtein Y, Kisin-Finfer E, Redy O, Shabat D, Satchi-Fainaro R. Cancer Lett., 2014, 352(1): 81.

doi: 10.1016/j.canlet.2014.02.022     URL    
[17]
Murphy G, Nagase H. Mol. Aspects Med., 2008, 29(5): 290.

doi: 10.1016/j.mam.2008.05.002     URL    
[18]
Kessenbrock K, Plaks V, Werb Z. Cell, 2010, 141(1): 52.

doi: 10.1016/j.cell.2010.03.015     pmid: 20371345
[19]
Zhang J W, Gao J, Chen M S, Yang Z M. Antioxid. Redox Signal., 2014, 20(14): 2179.

doi: 10.1089/ars.2013.5701     URL    
[20]
Zhuang J M, Seçinti H, Zhao B, Thayumanavan S. Angew. Chem. Int. Ed., 2018, 57(24): 7111.

doi: 10.1002/anie.201803029     URL    
[21]
Wang H B, Wu Y, Liu G Y, Du Z L, Cheng X. Macromol. Chem. Phys., 2016, 217(18): 2004.

doi: 10.1002/macp.201600269     URL    
[22]
Harnoy A J, Rosenbaum I, Tirosh E, Ebenstein Y, Shaharabani R, Beck R, Amir R J. J. Am. Chem. Soc., 2014, 136(21): 7531.

doi: 10.1021/ja413036q     pmid: 24568366
[23]
Qian Y Y, You D, Lin F, Wei J W, Wang Y J, Bi Y M. Polym. Chem., 2019, 10(1): 94.

doi: 10.1039/C8PY01231H     URL    
[24]
CalderÓn M, Graeser R, Kratz F, Haag R. Bioorg. Med. Chem. Lett., 2009, 19(14): 3725.

doi: 10.1016/j.bmcl.2009.05.058     URL    
[25]
Olsen J V, Ong S E, Mann M. Mol. Cell. Proteom., 2004, 3(6): 608.

doi: 10.1074/mcp.T400003-MCP200     URL    
[26]
Emrick T, Hayes W, FrÉchet J M J. J. Polym. Sci. A Polym. Chem., 1999, 37(20): 3748.
[27]
Romberg B, Metselaar J M, de Vringer T, Motonaga K, den Bosch J J K V, Oussoren C, Storm G, Hennink W E. Bioconjugate Chem., 2005, 16(4): 767.

pmid: 16029017
[28]
Gitsov I. J. Polym. Sci. A Polym. Chem., 2008, 46(16): 5295.

doi: 10.1002/pola.22828     URL    
[29]
Choi J W, Cho B K. J. Polym. Sci. A Polym. Chem., 2011, 49(11): 2468.

doi: 10.1002/pola.24678     URL    
[30]
Kim J H, Lee E, Park J S, Kataoka K, Jang W D. Chem. Commun., 2012, 48(30): 3662.

doi: 10.1039/c2cc17205d     URL    
[31]
Kade M J, Burke D J, Hawker C J. J. Polym. Sci. A Polym. Chem., 2010, 48(4): 743.

doi: 10.1002/pola.23824     URL    
[32]
Yu B, Chan J W, Hoyle C E, Lowe A B. J. Polym. Sci. A Polym. Chem., 2009, 47(14): 3544.

doi: 10.1002/pola.23436     URL    
[33]
Franc G, Kakkar A K. Chem. Eur. J., 2009, 15(23): 5630.

doi: 10.1002/chem.200900252     URL    
[34]
Sanyal A. Macromol. Chem. Phys., 2010, 211(13): 1417.

doi: 10.1002/macp.201000108     URL    
[35]
Slor G, Olea A R, Pujals S, Tigrine A, de la Rosa V R, Hoogenboom R, Albertazzi L, Amir R J. Biomacromolecules, 2021, 22(3): 1197.

doi: 10.1021/acs.biomac.0c01708     URL    
[36]
Segal M, Ozery L, Slor G, Wagle S S, Ehm T, Beck R, Amir R J. Biomacromolecules, 2020, 21(10): 4076.

doi: 10.1021/acs.biomac.0c00882     URL    
[37]
Harnoy A J, Buzhor M, Tirosh E, Shaharabani R, Beck R, Amir R J. Biomacromolecules, 2017, 18(4): 1218.

doi: 10.1021/acs.biomac.6b01906     pmid: 28267318
[38]
Segal M, Avinery R, Buzhor M, Shaharabani R, Harnoy A J, Tirosh E, Beck R, Amir R J. J. Am. Chem. Soc., 2017, 139(2): 803.

doi: 10.1021/jacs.6b10624     URL    
[39]
Cai H, Tan P, Chen X T, Kopytynski M, Pan D Y, Zheng X L, Gu L, Gong Q Y, Tian X H, Gu Z W, Zhang H, Chen R J, Luo K. Adv. Mater., 2022, 34(8): 2108049.
[40]
Song W J, Wei J W, Li L D, Qian Y Y, Wang Y J, Bi Y M. Polym. Int., 2022, 71(3): 317.

doi: 10.1002/pi.6332     URL    
[41]
Raghupathi K R, Azagarsamy M A, Thayumanavan S. Chem. Eur. J., 2011, 17(42): 11752.
[42]
Knop K, Hoogenboom R, Fischer D, Schubert U. Angewandte Chemie Int. Ed., 2010, 49(36): 6288.

doi: 10.1002/anie.200902672     URL    
[43]
Armstrong J K, Hempel G, Koling S, Chan L S, Fisher T, Meiselman H J, Garratty G. Cancer, 2007, 110(1): 103.

pmid: 17516438
[44]
Barz M, Luxenhofer R, Zentel R, Vicent M J. Polym. Chem., 2011, 2(9): 1900.

doi: 10.1039/c0py00406e     URL    
[45]
Yin L G, Dalsin M C, Sizovs A, Reineke T M, Hillmyer M A. Macromolecules, 2012, 45(10): 4322.

doi: 10.1021/ma300218n     URL    
[46]
Wan D C, Satoh K, Kamigaito M, Okamoto Y. Macromolecules, 2005, 38(25): 10397.
[47]
Nakabayashi K, Mori H. Eur. Polym. J., 2013, 49(10): 2808.

doi: 10.1016/j.eurpolymj.2013.07.006     URL    
[48]
Kang H U, Yu Y C, Shin S J, Kim J, Youk J H. Macromolecules, 2013, 46(4): 1291.

doi: 10.1021/ma302372h     URL    
[49]
Drenth J, Jansonius J N, Koekoek R, Swen H M, Wolthers B G. Nature, 1968, 218(5145): 929.

doi: 10.1038/218929a0     URL    
[50]
Wei D H, Huang X Q, Liu J J, Tang M S, Zhan C G. Biochemistry, 2013, 52(30): 5145.

doi: 10.1021/bi400629r     URL    
[51]
D'Emanuele A, Attwood D. Adv. Drug Deliv. Rev., 2005, 57(15): 2147.

doi: 10.1016/j.addr.2005.09.012     URL    
[52]
Rosenbaum I, Harnoy A J, Tirosh E, Buzhor M, Segal M, Frid L, Shaharabani R, Avinery R, Beck R, Amir R J. J. Am. Chem. Soc., 2015, 137(6): 2276.

doi: 10.1021/ja510085s     pmid: 25607219
[53]
Cheng Z Z, Zhang N, Zhang W S, Tang B. Chinese Journal of Analytical Chemistry, 2006, 34(9): 7.
陈蓁蓁, 张宁, 张文申, 唐波. 分析化学, 2006, 34(9): 7.).
[54]
Prodi L. J. Cheminf., 2005, 29(1): 20.
[55]
Mancin F, Rampazzo E, Tecilla P, Tonellato U. Chem. Eur. J., 2006, 12(7): 1844.

doi: 10.1002/chem.200500549     URL    
[56]
Martinez-Manez R, Sancenon F. Chem. Rev., 2003, 103(11): 4419.

doi: 10.1021/cr010421e     URL    
[57]
Buzhor M, Harnoy A J, Tirosh E, Barak A, Schwartz T, Amir R J. Chem. Eur. J., 2015, 21(44): 15633.
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[3] 陈晓峰, 王开元, 梁芳铭, 姜睿祺, 孙进. 外泌体递药系统及其在肿瘤治疗中的应用[J]. 化学进展, 2022, 34(4): 773-786.
[4] 洪俊贤, 朱旬, 葛磊, 徐鸣川, 吕文珍, 陈润锋. CsPbX3(X = Cl, Br, I) 纳米晶的制备及其应用[J]. 化学进展, 2021, 33(8): 1362-1377.
[5] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.
[6] 张芬铭, 田语舒, 郑绩, 陈堃, 冯岸超, 张立群. 基于PHPMA的生物医用功能高分子[J]. 化学进展, 2020, 32(2/3): 331-343.
[7] 罗世鹏, 黄培强. 苹果酸——天然产物对映选择性全合成和合成方法学中多用途的手性合成砌块[J]. 化学进展, 2020, 32(11): 1846-1868.
[8] 刘德培, 田敬, 李静莎, 唐正, 王海燕, 唐有根. 锰铈二元氧化物的制备与应用[J]. 化学进展, 2019, 31(6): 811-830.
[9] 英启炜, 廖建国, 吴民行, 翟智皓, 刘欣茹. 球形生物活性玻璃作为运输载体的研究[J]. 化学进展, 2019, 31(5): 773-782.
[10] 冯泽, 孙旦, 唐有根, 王海燕. 富镍三元层状氧化物LiNi0.8Co0.1Mn0.1O2正极材料[J]. 化学进展, 2019, 31(2/3): 442-454.
[11] 刘亚迪, 刘锋, 王诚, 赵波, 王建龙. 固体聚合物电解池析氧催化剂[J]. 化学进展, 2018, 30(9): 1434-1444.
[12] 王国强, 姜敏*, 张强, 王瑞, 曲小玲, 周光远*. 基于可再生资源含呋喃环聚酯[J]. 化学进展, 2018, 30(6): 719-736.
[13] 郑啸, 黄培强*. 二碘化钐参与及二茂钛催化的氮α-位碳自由基偶联反应及其在含氮杂环合成中的应用[J]. 化学进展, 2018, 30(5): 528-546.
[14] 何天稀, 梁琼麟, 王九, 罗国安. 脂质体类药物载体的微流控制备[J]. 化学进展, 2018, 30(11): 1734-1748.
[15] 管杰, 孙玲娜, 徐琴*, 胡效亚*. 分子印迹型二氧化钛及其复合材料的合成和应用[J]. 化学进展, 2018, 30(11): 1749-1760.