English
新闻公告
More
化学进展 2022, Vol. 34 Issue (9): 1972-1981 DOI: 10.7536/PC211207 前一篇   后一篇

• 综述 •

磷酸酯类前药的合成方法与应用

龚智华1, 胡莎1, 金学平2, 余磊2, 朱园园3,*(), 古双喜1,*()   

  1. 1 武汉工程大学化工与制药学院 绿色化工过程教育部重点实验室 & 新型反应器与绿色化学工艺湖北省重点实验室 武汉 430205
    2 武汉软件工程职业学院 武汉市药物增溶工程技术研究中心 武汉 430205
    3 武汉工程大学化学与环境工程学院 武汉 430205
  • 收稿日期:2021-12-07 修回日期:2022-03-02 出版日期:2022-09-20 发布日期:2022-04-01
  • 基金资助:
    国家自然科学基金项目(21877087); 国家自然科学基金项目(22074114); 国家自然科学基金项目(20602164); 湖北省自然科学基金项目(2020CFB623); 湖北省自然科学基金项目(2021CFB556); 绿色化工过程教育部重点实验室开放基金项目(GCP20200201); 催化材料制备及应用湖北省重点实验室开放基金项目(202023504); 新型反应器与绿色化学工艺湖北省重点实验室(武汉工程大学)开放基金项目(40201002)

Synthetic Methods and Application of Phosphoester Prodrugs

Zhihua Gong1, Sha Hu1, Xueping Jin2, Lei Yu2, Yuanyuan Zhu3(), Shuangxi Gu1()   

  1. 1 Key Laboratory for Green Chemical Process of Ministry of Education & Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology,Wuhan 430205, China
    2 Wuhan Drug Solubilization and Delivery Technology Research Center, Wuhan Vocational College of Software and Engineering,Wuhan 430205, China
    3 School of Chemistry and Environmental Engineering, Wuhan Institute of Technology,Wuhan 430205, China
  • Received:2021-12-07 Revised:2022-03-02 Online:2022-09-20 Published:2022-04-01
  • Contact: *e-mail: yyzhu531@163.com (Yuanyuan Zhu);shuangxigu@163.com (Shuangxi Gu)
  • Supported by:
    National Natural Science Foundation of China(21877087); National Natural Science Foundation of China(22074114); National Natural Science Foundation of China(20602164); Hubei Provincial Department of Education of China(2020CFB623); Hubei Provincial Department of Education of China(2021CFB556); Key Laboratory for Green Chemical Process of Ministry of Education Open Fund(GCP20200201); Hubei Key Laboratory for Processing and Application of Catalytic Materials(202023504); Hubei Key Laboratory of Novel Reactor and Green Chemical Technology (Wuhan Institute of Technology) Open Fund(40201002)

磷酸酯类前药与原药相比,不仅能够提高药物靶向性、稳定性和生物利用度,减少药物毒副作用,还能掩蔽药物不适气味、提高水溶性从而改善给药途径。含羟基药物的磷酸酯化是该类药物前药设计的重要方法之一。本文根据中心磷原子的价态和化合物结构进行分类,综述了各种P(Ⅴ)四配位分子、P(Ⅲ)三配位分子和H-亚磷酸酯类化合物作为磷酸酯化试剂在磷酸酯类前药合成方法中的研究进展,并阐述了这些磷酸酯类药物的应用,最后总结了各类磷酸酯化试剂的优势与局限,并结合连续流反应技术应用案例展望了其发展趋势。

Compared with the original drugs, the phosphoester prodrugs can not only improve the targeting, stability and bioavailability of the drugs, reduce toxicity and side effects, but also mask the unpleasant odor of the drugs, improve water solubility, and provide better access to the drugs. Phosphorylation of hydroxyl-containing drugs is one of the most important methods for their prodrug design. According to different valences of central phosphorus atoms and chemical structures, the phosphorylation reagents include tetracoordinated P(Ⅴ) compounds, tricoordinated P(Ⅲ) compounds and H-phosphite esters. The advances of these reagents in the synthesis of phosphoester prodrugs were reviewed, and the applications of these prodrugs were elaborated. Finally, the advantages and limitations of various phosphorylation reagents were summarized, and the development trend was prospected based on the application cases of continuous flow reaction technology.

Contents

1 Introduction

2 Phosphorylation reagent classification

3 Synthesis method of phosphoester prodrugs

3.1 P(Ⅴ) tetracyclic molecules

3.2 P(Ⅲ) tri coordination molecules

3.3 H-phosphite compounds

4 Conclusion and outlook

()
图1 代表性的磷酸酯类前药[3]
Fig. 1 Representative phosphoesters as prodrugs[3]
图2 三类磷酸化试剂[7]
Fig. 2 Three types of phosphorylation reagents[7]
图3 POCl3与羟基化合物的磷酸酯化反应[9,13,17]
Fig. 3 Phosphorylation of POCl3 with different hydroxyl-containing drugs[9,13,17]
图4 核苷的连续流磷酸酯化反应[19]
Fig. 4 Continuous-flow phosphorylation reaction of nucleoside[19]
图5 代表性氯代磷酸酯试剂
Fig. 5 Representative chlorophosphoester reagents
图6 氯代磷酸酯与羟基化合物的磷酸酯化反应[21,22]
Fig. 6 Phosphorylation reaction of chlorophosphoester with hydroxyl compounds[21,22]
图7 氟化磷酸酯与羟基化合物的磷酸酯化反应[24,25]
Fig. 7 Phosphorylation reaction of fluorophoester with hydroxyl compounds[24,25]
图8 叔丁基氯化镁活化胞苷的磷酸酯化反应[27]
Fig. 8 Phosphorylation reaction of cytidine activated by tert-butyl magnesium chloride[27]
图9 磷酸与羟基化合物的磷酸酯化反应
Fig. 9 Phosphorylation reaction of phosphoric acid with hydroxyl compounds
图10 H3PO4/P2O5体系与羟基化合物的磷酸酯化反应[32]
Fig. 10 Phosphorylation reaction of H3PO4/P2O5 system with hydroxyl compounds[32]
图11 咪唑促进的磷酸酯化反应[34]
Fig. 11 Imidazole-promoted phosphorylation reaction[34]
图12 磷酸二苄酯与2-甲氧基雌二醇的磷酸酯化反应[36]
Fig. 12 Phosphorylation reaction of dibenzyl phosphate with 2-methoxyestradiol[36]
图13 芳香基磷酸酯与拓扑昔康的磷酸酯化反应[37]
Fig. 13 Phosphorylation reaction of aromatic phosphoester with topotecan[37]
图14 焦磷酸酯与醇的酯化[38]
Fig. 14 Esterification of pyrophosphate and alcohols[38]
图15 焦磷酸酯与羟基化合物的磷酸酯化反应[39,40,43]
Fig. 15 Phosphorylation reaction of pyrophosphates with hydroxyl compounds[39,40,43]
图16 PCl3与羟基化合物的磷酸酯化反应[43⇓~45]
Fig. 16 Phosphorylation reaction of PCl3 with hydroxyl compounds[43⇓~45]
图17 亚磷酰胺与羟基化合物的磷酸酯化反应[49]
Fig. 17 Phosphorylation reaction of phosphoramidites with hydroxyl compounds[49]
图18 羟基化合物40的磷酸酯化反应[50]
Fig. 18 Phosphorylation reaction of hydroxyl compound 40[50]
图19 二叔丁基N,N-二异丙基亚磷酰胺的磷酸酯反应[52]
Fig. 19 Phosphorization reaction of di-tert-butyl N,N-diisopropylphosphoramidite with PF-00835321[52]
图20 H-亚磷酸单酯的合成[7]
Fig. 20 Synthesis of H-phosphite monoester[7]
图21 5'-胸腺嘧啶二核苷磷酸酯的合成[53]
Fig. 21 Synthesis of 5'-thymine dinucleoside phosphate[53]
图22 H-亚磷酸二苄酯与儿茶酚胺的磷酸酯化反应[62]
Fig. 22 Phosphorylation reaction of H-dibenzyl phosphite with catecholamine[62]
[1]
Schultz C. Bioorg. Med. Chem., 2003, 11(6): 885.

doi: 10.1016/S0968-0896(02)00552-7     URL    
[2]
Yao Q L, Ren L J, Ran M G, He J X, Xiang D. Chem. Reag., 2019, 41(2): 139.
( 姚秋丽, 任林静, 冉茂刚, 何佳芯, 向丹. 化学试剂, 2019, 41(2): 139. ).
[3]
Ji X, Wang J, Zhang L, Zhao L X, Jiang H L, Liu H. Acta Pharm. Sin., 2013, 48(5): 621.
( 姬勋, 王江, 张磊, 赵临襄, 蒋华良, 柳红. 药学学报, 2013, 48(5): 621. ).
[4]
Reddy K R, Matelich M C, Ugarkar B G, GÓmez-Galeno J E, DaRe J, Ollis K, Sun Z L, Craigo W, Colby T J, Fujitaki J M, Boyer S H, van Poelje P D, Erion M D. J. Med. Chem., 2008, 51(3): 666.

doi: 10.1021/jm7012216     pmid: 18173234
[5]
Choi J R, Cho D G, Roh K Y, Hwang J T, Ahn S, Jang H S, Cho W Y, Kim K W, Cho Y G, Kim J, Kim Y Z. J. Med. Chem., 2004, 47(11): 2864.

doi: 10.1021/jm0305265     URL    
[6]
Du G X, Peng C Y, Fang D. Central South Pharm., 2008, 6(1): 82.
( 杜国新, 彭彩云, 方渡. 中南药学, 2008, 6(1): 82.).
[7]
Stawinski J, Kraszewski A. Acc. Chem. Res., 2002, 35(11): 952.

doi: 10.1021/ar010049p     URL    
[8]
Amin S, Alam M M, Akhter M, Najmi A K, Siddiqui N, Husain A, Shaquiquzzaman M. Phosphorus Sulfur Silicon Relat. Elem., 2021, 196(3): 211.

doi: 10.1080/10426507.2020.1831499     URL    
[9]
Cho M J, Kurtz R R, Lewis C, Machkovech S M, Houser D J. J. Pharm. Sci., 1982, 71(4): 410.

doi: 10.1002/jps.2600710409     URL    
[10]
Li P, Ye J Z, Zeng S D, Yang C L. Fish Shellfish. Immunol., 2019, 94: 479.

doi: 10.1016/j.fsi.2019.08.073     URL    
[11]
Lan W X, Xiao X, Jiang Y J, Jiang L J, Zhao X, Yu Z Y, Zhu B W, Li C C, Bian L, Wang Z Q. J. Vet. Pharmacol. Ther., 2019, 42(3): 355.

doi: 10.1111/jvp.12761     URL    
[12]
Rattanapanadda P, Kuo H C, Vickroy T W, Sung C H, Rairat T, Lin T L, Yeh S Y, Chou C C. Front. Microbiol., 2019, 10: 2430.

doi: 10.3389/fmicb.2019.02430     pmid: 31749775
[13]
Gu S X, Du J W, Ju X L, Chen Q P. Org. Process Res. Dev., 2014, 18(4): 552.

doi: 10.1021/op500038s     URL    
[14]
Ju X L, Gu S X, Zhao Y, Chen Q P, Du J W. CN 103242363A, 2013.
[15]
Chen Q, Ju X L, Gu S X, Wang C L, Sun X M, Du J W, Wu D L, Luo C Q, Wu Z Y, Guo J W, Guan Z X. 2014-12-12.
( 陈清平, 巨修练, 古双喜, 王存亮, 孙先明, 杜嘉文, 吴东林, 罗澄清, 伍重远, 郭建武, 关早霞. 氟苯尼考磷酸二酯合成及小试工艺研究. 湖北省科技成果登记证书. 2014-12-12.).
[16]
Chen S H. J. Shanxi Med.Univ., 2002, 33(2): 116.
( 陈树红. 山西医科大学学报, 2002, 33(2): 116.).
[17]
Li J J, Xu L. Chin. J. Pharm., 2018, 49(4): 466.
( 李坚军, 许磊. 中国医药工业杂志, 2018, 49(4): 466. ).
[18]
Fan Y, Cao Y, Zang W, Cheng Y, Yu Y, An J, Gong Y, Wu G, Zhang Y, Chen J, Zhang C, Xue J, Wang X, Liu X. CN 110066301 A, 2019.
[19]
Zhu C J, Tang C L, Cao Z, He W, Chen Y, Chen X C, Guo K, Ying H J. Org. Process Res. Dev., 2014, 18(11): 1575.

doi: 10.1021/op5002066     URL    
[20]
Croft S L, Hogg J, Gutteridge W E, Hudson A T, Randall A W. J. Antimicrob. Chemother., 1992, 30(6): 827.

doi: 10.1093/jac/30.6.827     URL    
[21]
Mäntylä A, Garnier T, Rautio J, Nevalainen T, Vepsälainen J, Koskinen A, Croft S L, Järvinen T. J. Med. Chem., 2004, 47(1): 188.

pmid: 14695832
[22]
Elder F C T, Feil E J, Snape J, Gaze W H, Kasprzyk-Hordern B. Environ. Int., 2020, 139: 105681.

doi: 10.1016/j.envint.2020.105681     URL    
[23]
Murray J I, Woscholski R, Spivey A C. Chem. Commun., 2014, 50(88): 13608.

doi: 10.1039/C4CC05388E     URL    
[24]
Ali M A, Tsai T H, Braun P V. ACS Omega, 2018, 3(11): 14665.

doi: 10.1021/acsomega.8b01519     URL    
[25]
Ozaki S, Watanabe Y. e-EROS Encyclopedia of Reagents for Organic Synthesis, 2001, 1. DOI: 10.1002/047084289X.rd026.

doi: 10.1002/047084289X.rd026    
[26]
Misiura K, Szymanowicz D, Kuśnierczyk H. Bioorg. Med. Chem., 2001, 9(6): 1525.

doi: 10.1016/S0968-0896(01)00025-6     URL    
[27]
Hayakawa Y, Wakabayashi S, Nobori T, Noyori R. Tetrahedron Lett., 1987, 28(20): 2259.
[28]
Barker R, Olsen K W, Shaper J H, Hill R L. J. Biol. Chem., 1972, 247(22): 7135.

pmid: 4674085
[29]
Torijano-GutiÉrrez S, Díaz-Oltra S, Falomir E, Murga J, Carda M, Marco J A. Bioorg. Med. Chem., 2013, 21(23): 7267.

doi: 10.1016/j.bmc.2013.09.064     URL    
[30]
Shao Y Y, Wang X Q, Zhou Y, Jiang Y M, Wu R M, Lu C F. Toxicology, 2021, 461: 152923.

doi: 10.1016/j.tox.2021.152923     URL    
[31]
Su C, Liu S Q, Ma X Y, Liu J J, Liu J W, Lei M, Cao Y O. Cell Biol. Int., 2021, 45(12): 2420.

doi: 10.1002/cbin.11684     URL    
[32]
Gu J, Wu J, Ning X. CN 110407868A, 2019.
[33]
Mizuno C S, Ma G, Khan S, Patny A, Avery M A, Rimando A M. Bioorg. Med. Chem., 2008, 16: 3800.

doi: 10.1016/j.bmc.2008.01.051     URL    
[34]
Sakakura A, Katsukawa M, Ishihara K. Org. Lett., 2005, 7(10): 1999.

pmid: 15876039
[35]
Zheng S, Ni J, Li Y, Lu M, Hu W. Pharmacol. Res., 2021, 169:105685.

doi: 10.1016/j.phrs.2021.105685     URL    
[36]
Edsall A B, Agoston G E, Treston A M, Plum S M, McClanahan R H, Lu T S, Song W, Cushman M. J. Med. Chem., 2007, 50(26): 6700.

doi: 10.1021/jm070639e     URL    
[37]
Xu M. WO 2021032075 A1, 2021.
[38]
Cramer F, Wittmann R. Angew. Chem., 1960, 72(17): 628.
[39]
Kern J C, Cancilla M, Dooney D, Kwasnjuk K, Garbaccio R M. J. Am. Chem. Soc., 2016, 138: 1430.

doi: 10.1021/jacs.5b12547     URL    
[40]
Wang P, Liu W, Li N, Pu F, Zhang H. CN 112094311 A, 2020.
[41]
Hao H X, Wang J K, Wang Y L. J. Chem. Eng. Data, 2004, 49:1697.

doi: 10.1021/je0498412     URL    
[42]
Hata T, Furusawa K, Sekine M. J. Chem. Soc., Chem. Commun., 1975(6): 196.
[43]
Senthilvelan A, Shanmugasundaram M, Kore A R. Nucleosides Nucleotides Nucleic Acids, 2020, 39(7): 1011.

doi: 10.1080/15257770.2020.1738457     pmid: 32189563
[44]
Yoshikawa M, Sakuraba M, Kusashio K. B. Bull. Chem. Soc. Jpn., 1970, 43:456.
[45]
Bentley A, Butters M, Green S P, Learmonth W J, MacRae J A, Morland M C, O’Conno G, Skuse J. Org. Process Res. Dev., 2002, 6(2): 109.

doi: 10.1021/op010064+     URL    
[46]
Sobue S, Tan K, Haug-Pihale G. Br. J. Clin. Pharmacol., 2005, 59(2): 160.

doi: 10.1111/j.1365-2125.2004.02234.x     URL    
[47]
Durgam G G, Tsukahara R, Makarova N, Walker M D, Fujiwara Y, Pigg K R, Baker D L, Sardar V M, Parrill A L, Tigyi G, Miller D D. Bioorg. Med. Chem. Lett., 2006, 16(3): 633.

doi: 10.1016/j.bmcl.2005.10.031     URL    
[48]
Beier M, Pfleiderer W. Helvetica Chimica Acta, 1999, 82(6): 879.

doi: 10.1002/(SICI)1522-2675(19990609)82:6【-逻*辑*与-】#x00026;lt;879::AID-HLCA879【-逻*辑*与-】#x00026;gt;3.0.CO;2-5     URL    
[49]
Durgam G G, Virag T, Walker M D, Tsukahara R, Yasuda S, Liliom K, van Meeteren L A, Moolenaar W H, Wilke N, Siess W, Tigyi G, Miller D D. J. Med. Chem., 2005, 48(15): 4919.

doi: 10.1021/jm049609r     URL    
[50]
Grzesk G, Karasek D, Kusiak M. J. Cardiovasc. Pharmacol., 2020, 75(5): 421.

doi: 10.1097/FJC.0000000000000806     URL    
[51]
Hoffman R L, Kania R S, Brothers M A, Davies J F, Ferre R A, Gajiwala K S, He M Y, Hogan R J, Kozminski K, Li L Y, Lockner J W, Lou J H, Marra M T, Mitchell L J Jr, Murray B W, Nieman J A, Noell S, Planken S P, Rowe T, Ryan K, Smith G J III, Solowiej J E, Steppan C M, Taggart B. J. Med. Chem., 2020, 63(21): 12725.

doi: 10.1021/acs.jmedchem.0c01063     pmid: 33054210
[52]
Boras B, Jones R M, Anson B J, Dan A, Allerton C. bioRxiv, 2020, DOI: 10.1101/2020.09.12.293498.

doi: 10.1101/2020.09.12.293498    
[53]
Lin C X, Fu H, Tu G Z, Zhao Y F. ChemInform, 2003, 34(46): 203.
[54]
Eenkhoorn J A, Osmund D, Snieckus V. Can. J. Chem., 2011, 51: 792.

doi: 10.1139/v73-120     URL    
[55]
Lera M, Hayes C. J. Org. Lett., 2000, 2: 3873.

doi: 10.1021/ol0066173     URL    
[56]
Yasuike S, Dong Y, Kakusawa N, Matsumura M. Chem. Pharm. Bull., 2015, 63: 130.

doi: 10.1248/cpb.c14-00727     URL    
[57]
Hazeri N, Maghsoodlou M T, Habibi-Khorassani S M, Aboonajmi J, Lashkari M, Sajadikhah S S. Res. Chem. Intermed., 2014, 40(5): 1781.

doi: 10.1007/s11164-013-1081-8     URL    
[58]
Dal-Maso A D, Legendre F, Blonski C, Hoffmann P. Synth.Commun., 2008, 38: 1688.
[59]
Hu A F, Xu P X, Zhu M X, Ji T, Tang G, Zhao Y F. Synth.Commun., 2009, 39: 1342.
[60]
Liu D, Wikström H V, Dijkstra D, Vries J B D, Venhuis B J. J. Med. Chem., 2006, 49:1494.

doi: 10.1021/jm051111h     URL    
[61]
Kostakis I K, Pouli N, Marakos P, Kousidou O C, Roussidis A, Tzanakakis G N, Karamanos N K. Bioorg. Med. Chem., 2008, 16(6): 3445.

doi: 10.1016/j.bmc.2007.03.003     URL    
[62]
Morten J, Erhad A, Martin J, Klaus-Gjervig J, Ask P, Benny B A. WO 2020234276 A1, 2020.
[63]
Kirby S A, Dowd C S. Med. Chem. Res., 2022, 31, 207-216.

doi: 10.1007/s00044-021-02766-x     URL    
[64]
Liu J, Xu S J, Ju X L. J. Wuhan Inst. Technol., 2021, 43(5):487.
( 刘洁, 徐诗琦, 巨修练. 武汉工程大学学报, 2021, 43: 487.).
[65]
Liu D, Zhu Y Y, Gu S X, Chen F E. Chin. J. Org. Chem., 2021, 41(3): 1002.

doi: 10.6023/cjoc202007051     URL    
( 刘玎, 朱园园, 古双喜, 陈芬儿. 有机化学, 2021, 41: 1002.).

doi: 10.6023/cjoc202007051    
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[3] 洪俊贤, 朱旬, 葛磊, 徐鸣川, 吕文珍, 陈润锋. CsPbX3(X = Cl, Br, I) 纳米晶的制备及其应用[J]. 化学进展, 2021, 33(8): 1362-1377.
[4] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.
[5] 罗世鹏, 黄培强. 苹果酸——天然产物对映选择性全合成和合成方法学中多用途的手性合成砌块[J]. 化学进展, 2020, 32(11): 1846-1868.
[6] 刘德培, 田敬, 李静莎, 唐正, 王海燕, 唐有根. 锰铈二元氧化物的制备与应用[J]. 化学进展, 2019, 31(6): 811-830.
[7] 冯泽, 孙旦, 唐有根, 王海燕. 富镍三元层状氧化物LiNi0.8Co0.1Mn0.1O2正极材料[J]. 化学进展, 2019, 31(2/3): 442-454.
[8] 刘亚迪, 刘锋, 王诚, 赵波, 王建龙. 固体聚合物电解池析氧催化剂[J]. 化学进展, 2018, 30(9): 1434-1444.
[9] 王国强, 姜敏*, 张强, 王瑞, 曲小玲, 周光远*. 基于可再生资源含呋喃环聚酯[J]. 化学进展, 2018, 30(6): 719-736.
[10] 谭晓晓, 李国帅, 王庆鹏, 王炳全, 李大成, 王鹏. 作为抗肿瘤药物的小分子四价铂[J]. 化学进展, 2018, 30(6): 831-846.
[11] 郑啸, 黄培强*. 二碘化钐参与及二茂钛催化的氮α-位碳自由基偶联反应及其在含氮杂环合成中的应用[J]. 化学进展, 2018, 30(5): 528-546.
[12] 管杰, 孙玲娜, 徐琴*, 胡效亚*. 分子印迹型二氧化钛及其复合材料的合成和应用[J]. 化学进展, 2018, 30(11): 1749-1760.
[13] 黄启同, 林小凤, 李飞明, 翁文, 林丽萍, 胡世荣. 碳量子点的合成与应用[J]. 化学进展, 2015, 27(11): 1604-1614.
[14] 刘小波, 寇宗魁, 木士春. 多孔石墨烯材料[J]. 化学进展, 2015, 27(11): 1566-1577.
[15] 白莹, 李雨, 仲云霞, 陈实, 吴锋, 吴川. 锂离子电池富锂过渡金属氧化物xLi2MnO3·(1-x)LiMO2(M=Ni,Co或Mn)正极材料[J]. 化学进展, 2014, 26(0203): 259-269.
阅读次数
全文


摘要

磷酸酯类前药的合成方法与应用