English
新闻公告
More
化学进展 2022, Vol. 34 Issue (5): 1017-1025 DOI: 10.7536/PC210918 前一篇   后一篇

• 综述 •

共价有机框架在水中二价汞吸附去除中的应用

李诗宇1,2,3, 阴永光1,2,3, 史建波1,2,3,*(), 江桂斌1,2,3   

  1. 1.国科大杭州高等研究院环境学院 杭州 310000
    2.中国科学院生态环境研究中心环境化学与生态毒理学国家重点实验室 北京 100085
    3.中国科学院大学资源与环境学院 北京 100049
  • 收稿日期:2021-09-15 修回日期:2021-11-15 出版日期:2022-05-24 发布日期:2022-04-01
  • 通讯作者: 史建波
  • 基金资助:
    国家重点研发计划项目(2020YFA0907400); 国家自然科学基金项目(42025704); 中国科学院创新交叉团队项目(JCTD-2018-04)

Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water

Shiyu Li1,2,3, Yongguang Yin1,2,3, Jianbo Shi1,2,3(), Guibin Jiang1,2,3   

  1. 1. School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences,Hangzhou 310000, China
    2. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,Beijing 100085, China
    3. College of Resources and Environment, University of Chinese Academy of Sciences,Beijing 100049, China
  • Received:2021-09-15 Revised:2021-11-15 Online:2022-05-24 Published:2022-04-01
  • Contact: Jianbo Shi
  • Supported by:
    National Key Research and Development Program of China(2020YFA0907400); National Natural Science Foundation of China(42025704); CAS Interdisciplinary Innovation Team(JCTD-2018-04)

伴随现代工业的迅速发展,大量含汞化合物通过多种途径进入水环境。二价汞离子(Hg2+)是水体中汞的主要存在形态,开发先进的水体Hg2+去除技术对于降低健康风险和保障生态安全至关重要。作为有效的水处理技术之一,吸附法去除水中的Hg2+已得到了人们的关注,而寻找性能优异的吸附材料是取得突破的关键。近年来,共价有机框架(Covalent organic frameworks,COFs)凭借其高比表面积、有序的多孔结构和表面易功能化等优势,已被广泛应用于环境修复领域。本文主要综述了COFs在吸附去除水中Hg2+方面的最新进展,探讨COFs的结构设计、功能化合成、水中Hg2+吸附行为、反应机理、环境影响因素以及拓展至规模化应用的潜力,并展望该领域未来发展的新机遇。

With the rapid development of modern industry, large amounts of mercury-containing compounds are discharged into the aqueous environment through various ways. Developing advanced technology for divalent mercury ion (Hg2+) removal from water is critical to reduce health risks and ensure ecological safety. As one of the effective water treatment technologies, the adsorptive removal of Hg2+ from aqueous solution has been concerned, and the key to make a breakthrough is to design adsorption materials with excellent performance. In recent years, covalent organic frameworks (COFs) have been widely used in the environmental remediation because of their high specific surface area, ordered porous structure and facile surface functionalization. Herein, the latest applications of COFs in adsorptive removal of Hg2+ from water are reviewed. The structure design, functionalized synthesis, Hg2+ adsorption behavior, reaction mechanism, affecting factors and potential to expand to large-scale applications of COFs are also discussed. Eventually, the future opportunities and development directions for COFs in Hg2+ removal are prospected.

Contents

1 Introduction

2 The structure and topology design of COFs

3 Functionalized synthesis of COFs

3.1 Bottom-up method

3.2 Post-synthesis modification

3.3 Physical blending method

4 Adsorption of Hg2+ from aqueous solution by COFs

4.1 Adsorption isotherm

4.2 Adsorption kinetics

4.3 Mechanism of interaction between COFs and Hg2+

4.4 Influence of coexisting metal ions and pH value

4.5 Fluorescence characteristics of COFs during adsorption

5 Conclusions and perspectives

()
图1 二维和三维COFs材料的基本拓扑结构[37]
Fig. 1 Topological structure of 2D and 3D COFs materials[37]. Copyright 2017, AAAS
图2 功能化合成COFs材料的方法示意图[69⇓⇓⇓~73]
Fig. 2 Functionalized synthesis methods for COFs materials[69⇓⇓⇓~73]
表1 水中Hg2+的去除技术
Table 1 Removal technologies of Hg2+ from aqueous media
表2 用于吸附去除水中Hg2+的COFs材料
Table 2 COFs materials for adsorptive removing Hg2+ in water
表3 COFs对Hg2+吸附过程中的影响因素及再生方法
Table 3 The influencing factors and regeneration methods of COFs on Hg2+ adsorption process
表4 用于荧光检测和去除水中Hg2+的COFs材料
Table 4 COFs materials for fluorescent detection and removal of Hg2+ in water
[1]
Fu F L, Wang Q. J. Environ. Manage., 2011, 92(3): 407.

doi: 10.1016/j.jenvman.2010.11.011     URL    
[2]
Zou Y D, Wang X X, Khan A, Wang P Y, Liu Y H, Alsaedi A, Hayat T, Wang X K. Environ. Sci. Technol., 2016, 50(14): 7290.

doi: 10.1021/acs.est.6b01897     URL    
[3]
Carolin C F, Kumar P S, Saravanan A, Joshiba G J, Naushad M. J. Environ. Chem. Eng., 2017, 5(3): 2782.

doi: 10.1016/j.jece.2017.05.029     URL    
[4]
Gworek B, Dmuchowski W, Baczewska-Dᶏbrowska A H. Environ. Sci. Eur., 2020, 32: 128.

doi: 10.1186/s12302-020-00401-x     URL    
[5]
Balogh S J, Tsui M T, Blum J D, Matsuyama A, Woerndle G E, Yano S, Tada A. Environ. Sci. Technol., 2015, 49(9): 5399.

doi: 10.1021/acs.est.5b00631     URL    
[6]
Wang L W, Hou D Y, Cao Y N, Ok Y S, Tack F M G, Rinklebe J, O'connor D. Environ. Int., 2020, 134: 105281.

doi: 10.1016/j.envint.2019.105281     URL    
[7]
Selin H, Keane S E, Wang S X, Selin N E, Davis K, Bally D. Ambio., 2018, 47(2): 198.

doi: 10.1007/s13280-017-1003-x     URL    
[8]
He J, Reddy G K, Thiel S W, Smirniotis P G, Pinto N G. Energ. Fuel., 2013, 27(8): 4832.

doi: 10.1021/ef400718n     URL    
[9]
Ancora M P, Zhang L, Wang S X, Schreifels J J, Hao J M. Energy Policy., 2016, 88: 485.

doi: 10.1016/j.enpol.2015.10.048     URL    
[10]
Driscoll C T, Mason R P, Chan H M, Jacob D J, Pirrone N. Environ. Sci. Technol., 2013, 47(10): 4967.

doi: 10.1021/es305071v     pmid: 23590191
[11]
UNEP, Global Mercury Assessment 2018, Geneva, Switzerland, 2019.
[12]
Liu M D, Du P, Yu C H, He Y P, Zhang H R, Sun X J, Lin H M, Luo Y, Xie H, Guo J M, Tong Y D, Zhang Q G, Chen L, Zhang W, Li X Q, Wang X J. Environ. Sci. Technol., 2018, 52(1): 124.

doi: 10.1021/acs.est.7b05217     URL    
[13]
Streets D G, Horowitz H M, Lu Z F, Levin L, Thackray C P, Sunderland E M. Atmos. Environ., 2019, 201: 417.

doi: 10.1016/j.atmosenv.2018.12.031    
[14]
Ni Chadhain S M, Schaefer J K, Crane S, Zylstra G J, Barkay T. Environ. Microbiol., 2006, 8(10): 1746.

pmid: 16958755
[15]
Clifton J C. Pediatr. Clin. North Am., 2007, 54(2): 237.
[16]
Zahir F, Rizwi S J, Haq S K, Khan R H. Environ. Toxicol. Pharmacol., 2005, 20(2): 351.

doi: 10.1016/j.etap.2005.03.007     URL    
[17]
Bravo A G, Cosio C, Amouroux D, Zopfi J, Chevalley P A, Spangenberg J E, Ungureanu V G, Dominik J. Water Res., 2014, 49: 391.

doi: 10.1016/j.watres.2013.10.024     URL    
[18]
Kim K H, Kabir E, Jahan S A. J. Hazard. Mater., 2016, 306: 376.

doi: S0304-3894(15)30231-4     pmid: 26826963
[19]
Minoia C, Ronchi A, Pigatto P, Guzzi G. Crit. Rev. Toxicol., 2009, 39(7): 627.

doi: 10.1080/10408440903055353     URL    
[20]
Azevedo B F, Furieri L B, Pecanha F M, Wiggers G A, Vassallo P F, Simoes M R, Fiorim J, Batista P R D, Fioresi M, Rossoni L, Stefanon I, Alonso M J, Salaices M, Vassallo D V. J. Biomed. Biotechnol., 2012, 2012: 949048.
[21]
Colon-Rodriguez A, Hannon H E, Atchison W D. Neurotoxicology., 2017, 60: 308.

doi: 10.1016/j.neuro.2016.12.007     URL    
[22]
Luo J M, Fu K X, Yu D Y, Hristovski K D, Westerhoff P, Crittenden J C. ACS ES&T Engineering, 2021, 1(4): 623.
[23]
Vikrant K, Kim K H. Chem. Eng. J., 2019, 358: 264.

doi: 10.1016/j.cej.2018.10.022    
[24]
Xia M D, Chen Z X, Li Y, Li C H, Ahmad N M, Cheema W A, Zhu S M. RSC Adv., 2019, 9(36): 20941.

doi: 10.1039/C9RA01924C     URL    
[25]
Ai K L, Ruan C P, Shen M X, Lu L H. Adv. Funct. Mater., 2016, 26(30): 5542.

doi: 10.1002/adfm.201601338     URL    
[26]
Bruno R, Mon M, Escamilla P, Ferrando-Soria J, Esposito E, Fuoco A, Monteleone M, Jansen J C, Elliani R, Tagarelli A, Armentano D, Pardo E. Adv. Funct. Mater., 2020, 31(6): 2008499.

doi: 10.1002/adfm.202008499     URL    
[27]
Kim Y, Lin Z, Jeon I, Van Voorhis T, Swager T M. J. Am. Chem. Soc., 2018, 140(43): 14413.

doi: 10.1021/jacs.8b09119     URL    
[28]
Tunsu C, Wickman B. Nat. Commun., 2018, 9(1): 4876.

doi: 10.1038/s41467-018-07300-z     URL    
[29]
Candeago R, Kim K, Vapnik H, Cotty S, Aubin M, Berensmeier S, Kushima A, Su X. ACS Appl. Mater. Interfaces, 2020, 12(44): 49713.

doi: 10.1021/acsami.0c15570     URL    
[30]
Franco M W, Mendes L A, Windmöller C C, Moura K a F, Oliveira L G, Barbosa F R. Water Air Soil Pollut., 2018, 229(4): 127.

doi: 10.1007/s11270-018-3782-5     URL    
[31]
Luo J M, Yu D Y, Hristovski K D, Fu K X, Shen Y W, Westerhoff P, Crittenden J C. Environ. Sci. Technol., 2021, 55(8): 4287.

doi: 10.1021/acs.est.0c07936     URL    
[32]
Ma L J, Wang Q, Islam S M, Liu Y C, Ma S L, Kanatzidis M G. J. Am. Chem. Soc., 2016, 138(8): 2858.

doi: 10.1021/jacs.6b00110     URL    
[33]
Fu K X, Liu X, Yu D Y, Luo J M, Wang Z W, Crittenden J C. Environ. Sci. Technol., 2020, 54(24): 16212.

doi: 10.1021/acs.est.0c05532     URL    
[34]
Peng Y G, Huang H L, Zhang Y X, Kang C F, Chen S M, Song L, Liu D H, Zhong C L. Nat. Commun., 2018, 9(1): 187.

doi: 10.1038/s41467-017-02600-2     URL    
[35]
Xia Z J, Zhao Y S, Darling S B. Adv. Mater. Interfaces, 2020, 8(1): 2001507.

doi: 10.1002/admi.202001507     URL    
[36]
Huang N, Wang P, Jiang D L. Nat. Rev. Mater., 2016, 1: 10.
[37]
Diercks C S, Yaghi O M. Science, 2017, 355(6328): eaal1585.

doi: 10.1126/science.aal1585     URL    
[38]
Li J, Yang X D, Bai C Y, Tian Y, Li B, Zhang S, Yang X Y, Ding S D, Xia C Q, Tan X Y, Ma L J, Li S J. J. Colloid. Interface Sci., 2015, 437: 211.

doi: 10.1016/j.jcis.2014.09.046     URL    
[39]
Mondal S, Chatterjee S, Mondal S, Bhaumik A. ACS Sustain. Chem. Eng., 2019, 7(7): 7353.

doi: 10.1021/acssuschemeng.9b00567    
[40]
Ma Z Y, Liu F Y, Liu N S, Liu W, Tong M P. J. Hazard. Mater., 2021, 405: 124190.

doi: 10.1016/j.jhazmat.2020.124190     URL    
[41]
Kandambeth S, Dey K, Banerjee R. J. Am. Chem. Soc., 2019, 141(5): 1807.

doi: 10.1021/jacs.8b10334     pmid: 30485740
[42]
Wang J L, Zhuang S T. Coord. Chem. Rev., 2019, 400: 213046.

doi: 10.1016/j.ccr.2019.213046     URL    
[43]
Côté A P, Benin A I, Ockwig N W, O'keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310(5751): 1166.

doi: 10.1126/science.1120411     URL    
[44]
Ding X S, Guo J, Feng X, Honsho Y, Guo J D, Seki S, Maitarad P, Saeki A, Nagase S, Jiang D L. Angew. Chem. Int. Ed. Engl., 2011, 50(6): 1289.

doi: 10.1002/anie.201005919     URL    
[45]
Zhou T Y, Xu S Q, Wen Q, Pang Z F, Zhao X. J. Am. Chem. Soc., 2014, 136(45): 15885.

doi: 10.1021/ja5092936     URL    
[46]
Dalapati S, Addicoat M, Jin S B, Sakurai T, Gao J, Xu H, Irle S, Seki S, Jiang D L. Nat. Commun., 2015, 6: 7786.

doi: 10.1038/ncomms8786     pmid: 26178865
[47]
Uribe-Romo F J, Hunt J R, Furukawa H, Klöck C, O’keeffe M, Yaghi O M. J. Am. Chem. Soc., 2009, 131(13): 4570.

doi: 10.1021/ja8096256     pmid: 19281246
[48]
El-Kaderi H M, Hunt J R, Mendoza-Cortés J L, Côté A P, Taylor R E, O'keeffe M, Yaghi O M. Science, 2007, 316(5822): 268.

pmid: 17431178
[49]
Lin G Q, Ding H M, Yuan D Q, Wang B S, Wang C. J. Am. Chem. Soc., 2016, 138(10): 3302.

doi: 10.1021/jacs.6b00652     URL    
[50]
Geng K Y, He T, Liu R Y, Dalapati S, Tan K T, Li Z P, Tao S S, Gong Y F, Jiang Q H, Jiang D L. Chem. Rev., 2020, 120(16): 8814.

doi: 10.1021/acs.chemrev.9b00550     URL    
[51]
Waller P J, Gandara F, Yaghi O M. Acc. Chem. Res., 2015, 48(12): 3053.

doi: 10.1021/acs.accounts.5b00369     URL    
[52]
Jin E Q, Li J, Geng K Y, Jiang Q H, Xu H, Xu Q, Jiang D L. Nat. Commun., 2018, 9(1): 4143.

doi: 10.1038/s41467-018-06719-8     URL    
[53]
Lyu H, Diercks C S, Zhu C H, Yaghi O M. J. Am. Chem. Soc., 2019, 141(17): 6848.

doi: 10.1021/jacs.9b02848     URL    
[54]
Kuhn P, Antonietti M, Thomas A. Angew. Chem. Int. Ed. Engl., 2008, 47(18): 3450.

doi: 10.1002/anie.200705710     URL    
[55]
Mähringer A, Medina D D. Nat. Chem., 2020, 12: 985.

doi: 10.1038/s41557-020-00568-z     pmid: 33093679
[56]
Huang N, Zhai L P, Xu H, Jiang D L. J. Am. Chem. Soc., 2017, 139(6): 2428.

doi: 10.1021/jacs.6b12328     pmid: 28121142
[57]
Sun Q, Aguila B, Perman J, Earl L D, Abney C W, Cheng Y H, Wei H, Nguyen N, Wojtas L, Ma S Q. J. Am. Chem. Soc., 2017, 139(7): 2786.

doi: 10.1021/jacs.6b12885     pmid: 28222608
[58]
Biswal B P, Chandra S, Kandambeth S, Lukose B, Heine T, Banerjee R. J. Am. Chem. Soc., 2013, 135(14): 5328.

doi: 10.1021/ja4017842     URL    
[59]
Kappe C O. Angew. Chem. Int. Ed. Engl., 2004, 43(46): 6250.

doi: 10.1002/anie.200400655     URL    
[60]
Wang C B, Li Z Y, Chen J X, Li Z, Yin Y H, Cao L, Zhong Y L, Wu H. J. Membrane Sci., 2017, 523: 273.

doi: 10.1016/j.memsci.2016.09.055     URL    
[61]
Fang Q R, Zhuang Z B, Gu S, Kaspar R B, Zheng J, Wang J H, Qiu S L, Yan Y S. Nat. Commun., 2014, 5: 4503.

doi: 10.1038/ncomms5503     URL    
[62]
Huang N, Krishna R, Jiang D L. J. Am. Chem. Soc., 2015, 137(22): 7079.

doi: 10.1021/jacs.5b04300     pmid: 26028183
[63]
Yang Y J, Faheem M, Wang L L, Meng Q H, Sha H Y, Yang N, Yuan Y, Zhu G S. ACS Cent. Sci., 2018, 4(6): 748.

doi: 10.1021/acscentsci.8b00232     URL    
[64]
Lu Q Y, Ma Y C, Li H, Guan X Y, Yusran Y, Xue M, Fang Q R, Yan Y S, Qiu S L, Valtchev V. Angew. Chem. Int. Ed. Engl., 2018, 57(21): 6042.

doi: 10.1002/anie.201712246     URL    
[65]
Sun Q, Aguila B, Earl L D, Abney C W, Wojtas L, Thallapally P K, Ma S Q. Adv. Mater., 2018, 30(20): e1705479.
[66]
Merí-Bofí L, Royuela S, Zamora F, Ruiz-González M L, Segura J L, Muñoz-Olivas R, Mancheño M J. J. Mater. Chem. A., 2017, 5(34): 17973.

doi: 10.1039/C7TA05588A     URL    
[67]
Waller P J, Lyle S J, Osborn Popp T M, Diercks C S, Reimer J A, Yaghi O M. J. Am. Chem. Soc., 2016, 138(48): 15519.

pmid: 27934009
[68]
Bertrand G H, Michaelis V K, Ong T C, Griffin R G, Dinca M. Proc. Natl. Acad. Sci. U. S. A., 2013, 110(13): 4923.

doi: 10.1073/pnas.1221824110     URL    
[69]
Ding S Y, Gao J, Wang Q, Zhang Y, Song W G, Su C Y, Wang W. J. Am. Chem. Soc., 2011, 133(49): 19816.

doi: 10.1021/ja206846p     URL    
[70]
Colson J W, Woll A R, Mukherjee A, Levendorf M P, Spitler E L, Shields V B, Spencer M G, Park J, Dichtel W R. Science., 2011, 332(6026): 228.

doi: 10.1126/science.1202747     pmid: 21474758
[71]
Yoo J T, Cho S J, Jung G Y, Kim S H, Choi K H, Kim J H, Lee C K, Kwak S K, Lee S Y. Nano Lett., 2016, 16(5): 3292.

doi: 10.1021/acs.nanolett.6b00870     URL    
[72]
Fu J R, Das S, Xing G L, Ben T, Valtchev V, Qiu S L. J. Am. Chem. Soc., 2016, 138(24): 7673.

doi: 10.1021/jacs.6b03348     URL    
[73]
Yao B J, Zhang X M, Li F, Li C, Dong Y B. ACS Appl. Nano Mater., 2020, 3(10): 10360.

doi: 10.1021/acsanm.0c02276     URL    
[74]
Yuan S S, Li X, Zhu J Y, Zhang G, van Puyvelde P, van Der Bruggen B. Chem. Soc. Rev., 2019, 48(10): 2665.

doi: 10.1039/C8CS00919H     URL    
[75]
Ding S Y, Dong M, Wang Y W, Chen Y T, Wang H Z, Su C Y, Wang W. J. Am. Chem. Soc., 2016, 138(9): 3031.

doi: 10.1021/jacs.5b10754     URL    
[76]
Cui W R, Jiang W, Zhang C R, Liang R P, Liu J, Qiu J D. ACS Sustain. Chem. Eng., 2019, 8(1): 445.

doi: 10.1021/acssuschemeng.9b05725     URL    
[77]
Yang Z L, Gu Y Y, Yuan B L, Tian Y M, Shang J, Tsang D C W, Liu M X, Gan L H, Mao S, Li L C. J. Hazard. Mater., 2021, 403: 123702.

doi: 10.1016/j.jhazmat.2020.123702     URL    
[78]
Fu Y, Yu W G, Zhang W J, Huang Q, Yan J, Pan C Y, Yu G P. Polym. Chem., 2018, 9(30): 4125.

doi: 10.1039/C8PY00419F     URL    
[79]
Li Y, Wang C, Ma S J, Zhang H Y, Ou J J, Wei Y M, Ye M L. ACS Appl. Mater. Interfaces, 2019, 11(12): 11706.

doi: 10.1021/acsami.8b18502     URL    
[80]
Wang Z Y, Mi B X. Environ. Sci. Technol., 2017, 51(15): 8229.

doi: 10.1021/acs.est.7b01466     URL    
[81]
Huang L J, Shen R J, Liu R Q, Shuai Q. J. Hazard. Mater., 2020, 392: 122320.

doi: 10.1016/j.jhazmat.2020.122320     URL    
[82]
Wang L L, Xu H M, Qiu Y X, Liu X S, Huang W J, Yan N Q, Qu Z. J. Hazard. Mater., 2020, 389: 121824.

doi: 10.1016/j.jhazmat.2019.121824     URL    
[83]
Barakat M A. Arab. J. Chem., 2011, 4(4): 361.

doi: 10.1016/j.arabjc.2010.07.019     URL    
[84]
Burakov A E, Galunin E V, Burakova I V, Kucherova A E, Agarwal S, Tkachev A G, Gupta V K. Ecotoxicol. Environ. Saf., 2018, 148: 702.

doi: 10.1016/j.ecoenv.2017.11.034     URL    
[85]
Lu X F, Ji W H, Yuan L, Yu S, Guo D S. Ind. Eng. Chem. Res., 2019, 58(38): 17660.

doi: 10.1021/acs.iecr.9b03138     URL    
[86]
Li Y F, Hu T L, Chen R, Xiang R, Wang Q, Zeng Y F, He C Y. Chem. Eng. J., 2020, 398: 125566.

doi: 10.1016/j.cej.2020.125566     URL    
[87]
Yu Y X, Li G L, Liu J H, Yuan D Q. Chem. Eng. J., 2020, 401: 126139.

doi: 10.1016/j.cej.2020.126139     URL    
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[3] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[4] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[5] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[6] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[7] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[8] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[9] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[10] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[11] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[12] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[13] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[14] 康淳, 林延欣, 景远聚, 王新波. MXenes的制备及其在环境领域的应用[J]. 化学进展, 2022, 34(10): 2239-2253.
[15] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.