• 综述 •
鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry[J]. Progress in Chemistry, 2023, 35(5): 699-708.
碳材料的发展极大地推动了人类科技的进步。碳材料通过碳原子之间不同的键合方式、结构和排列,使其具有丰富的性质,并且更多新型碳材料还不断地被发现或合成出来。作为新型碳材料的纳米碳分子由于其本身所拥有的潜在优良性质,在有机电子学、材料科学如生物材料等领域具有广阔的应用前景,因此被誉为是未来最有开发前景的材料。在过去的四十年里,新型纳米碳分子的发现和创造已彻底改变了碳材料的格局,打开了一扇通往全新科学领域的大门。本文重点介绍了近年来具有新颖拓扑结构的纳米碳分子的结构特征以及如何通过有机合成的手段对其进行精准构筑。
分享此文:
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666.
doi: 10.1126/science.1102896 URL |
[2] |
Xu X J, Qin J G, Li Z. Prog. Chem., 2009, 21(12): 2559.
|
(徐秀娟, 秦金贵, 李振. 化学进展, 2009, 21(12): 2559.).
|
|
[3] |
Huang C S, Li Y J, Wang N, Xue Y R, Zuo Z C, Liu H B, Li Y L. Chem. Rev., 2018, 118(16): 7744.
doi: 10.1021/acs.chemrev.8b00288 URL |
[4] |
Shang H, Gu Y, Wang Y B. University Chemistry, 2020, 35: 201.
|
(商虹, 顾宇, 王英滨. 大学化学, 2020, 35: 201. ).
|
|
[5] |
Georgakilas V, Perman J A, Tucek J, Zboril R. Chem. Rev., 2015, 115(11): 4744.
doi: 10.1021/cr500304f URL |
[6] |
Li P, Zhang J. Progress in Chemistry, 2013, 25: 167.
|
(李盼, 张锦. 化学进展, 2013, 25: 167. ).
doi: 10.7536/PC120758 |
|
[7] |
Li Y M, Kono H, Maekawa T, Segawa Y, Yagi A, Itami K. Acc. Mater. Res., 2021, 2(8): 681.
doi: 10.1021/accountsmr.1c00105 URL |
[8] |
Majewski M A, Stępień M. Angew. Chem. Int. Ed., 2019, 58(1): 86.
doi: 10.1002/anie.201807004 pmid: 30006951 |
[9] |
Itami K, Maekawa T. Nano Lett., 2020, 20(7): 4718.
doi: 10.1021/acs.nanolett.0c02143 URL |
[10] |
Jolly A, Miao D D, Daigle M, Morin J F. Angew. Chem. Int. Ed., 2020, 59(12): 4624.
doi: 10.1002/anie.v59.12 URL |
[11] |
Zheng X Q, Feng M, Zhan H B. Progress in Chemistry, 2012, 24: 2320.
|
(郑小青, 冯苗, 詹红兵. 化学进展, 2012, 24: 2320. ).
|
|
[12] |
Kolmer M, Steiner A K, Izydorczyk I, Ko W, Engelund M, Szymonski M, Li A P, Amsharov K. Science, 2020, 369(6503): 571.
doi: 10.1126/science.abb8880 pmid: 32586951 |
[13] |
Rizzo D J, Veber G, Jiang J W, McCurdy R, Cao T, Bronner C, Chen T, Louie S G, Fischer F R, Crommie M F. Science, 2020, 369(6511): 1597.
doi: 10.1126/science.aay3588 URL |
[14] |
Cai J M, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X L, Müllen K, Fasel R. Nature, 2010, 466(7305): 470.
doi: 10.1038/nature09211 |
[15] |
Jia X T, Hofmann M, Meunier V, Sumpter B G, Campos-Delgado J, Romo-Herrera J M, Son H, Hsieh Y P, Reina A, Kong J, Terrones M, Dresselhaus M S. Science, 2009, 323(5922): 1701.
doi: 10.1126/science.1166862 URL |
[16] |
Jia X T, Campos-Delgado J, Terrones M, Meunier V, Dresselhaus M S. Nanoscale, 2011, 3(1): 86.
doi: 10.1039/C0NR00600A URL |
[17] |
Chen L, Hernandez Y, Feng X L, Müllen K. Angew. Chem. Int. Ed., 2012, 51(31): 7640.
doi: 10.1002/anie.201201084 URL |
[18] |
Yang X Y, Dou X, Rouhanipour A, Zhi L J, Räder H J, Müllen K. J. Am. Chem. Soc., 2008, 130(13): 4216.
doi: 10.1021/ja710234t URL |
[19] |
Schwab M G, Narita A, Hernandez Y, Balandina T, Mali K S, De Feyter S, Feng X L, Müllen K. J. Am. Chem. Soc., 2012, 134(44): 18169.
doi: 10.1021/ja307697j URL |
[20] |
Miao Q, Yang D Y. Progress in Chemistry, 2020, 32: 1835.
doi: 10.7536/PC200633 |
(缪谦, 杨代月. 化学进展, 2020, 32: 1835.).
|
|
[21] |
Kim K, Lee T, Kwon Y, Seo Y, Song J, Park J K, Lee H, Park J Y, Ihee H, Cho S J, Ryoo R. Nature, 2016, 535(7610): 131.
doi: 10.1038/nature18284 |
[22] |
Pun S H, Wang Y J, Chu M, Chan C K, Li Y K, Liu Z F, Miao Q. J. Am. Chem. Soc., 2019, 141(24): 9680.
doi: 10.1021/jacs.9b03910 URL |
[23] |
Pun S H, Chan C K, Luo J Y, Liu Z F, Miao Q. Angew. Chem. Int. Ed., 2018, 57(6): 1581.
doi: 10.1002/anie.v57.6 URL |
[24] |
Zhang Y Q, Zhu Y K, Lan D N, Pun S H, Zhou Z, Wei Z, Wang Y, Lee H K, Lin C, Wang J P, Petrukhina M A, Li Q, Miao Q. J. Am. Chem. Soc., 2021, 143(13): 5231.
doi: 10.1021/jacs.1c01642 URL |
[25] |
Chaolumen, Stepek I A, Yamada K E, Ito H, Itami K. Angew. Chem. Int. Ed., 2021, 60(44): 23508.
doi: 10.1002/anie.202100260 pmid: 33547701 |
[26] |
Kato K, Takaba K, Maki-Yonekura S, Mitoma N, Nakanishi Y, Nishihara T, Hatakeyama T, Kawada T, Hijikata Y, Pirillo J, Scott L T, Yonekura K, Segawa Y, Itami K. J. Am. Chem. Soc., 2021, 143(14): 5465.
doi: 10.1021/jacs.1c00863 URL |
[27] |
Feng C N, Kuo M Y, Wu Y T. Angew. Chem. Int. Ed., 2013, 52(30): 7791.
doi: 10.1002/anie.v52.30 URL |
[28] |
Márquez I R, Fuentes N, Cruz C M, Puente-Muñoz V, Sotorrios L, Marcos M L, Choquesillo-Lazarte D, Biel B, Crovetto L, GÓmez-Bengoa E, Teresa González M, Martin R, Cuerva J M, Campaña A G. Chem. Sci., 2017, 8(2): 1068.
doi: 10.1039/c6sc02895k pmid: 28451246 |
[29] |
Qiu Z L, Chen X W, Huang Y D, Wei R J, Chu K S, Zhao X J, Tan Y Z. Angewandte Chemie Int. Ed., 2022, 61(18): e202116955.
|
[30] |
Pun S H, Miao Q. Acc. Chem. Res., 2018, 51(7): 1630.
doi: 10.1021/acs.accounts.8b00140 URL |
[31] |
Cheung K Y, Chan C K, Liu Z F, Miao Q. Angew. Chem. Int. Ed., 2017, 56(31): 9003.
doi: 10.1002/anie.201703754 pmid: 28471075 |
[32] |
González Miera G, Matsubara S, Kono H, Murakami K, Itami K. Chem. Sci., 2022, 13(7): 1848.
doi: 10.1039/d1sc05586k pmid: 35308842 |
[33] |
Omachi H, Nakayama T, Takahashi E, Segawa Y, Itami K. Nat. Chem., 2013, 5(7): 572.
doi: 10.1038/nchem.1655 |
[34] |
Zhou Q F, Jiang B, Yang H B. Progress in Chemistry, 2018, 30: 628.
|
(周启峰, 江波, 杨海波. 化学进展, 2018, 30: 628.).
doi: 10.7536/PC170909 |
|
[35] |
Parekh V, Guha P. J. Indian Chem. Soc. 1934, 11: 95.
|
[36] |
Jasti R, Bhattacharjee J, Neaton J B, Bertozzi C R. J. Am. Chem. Soc., 2008, 130(52): 17646.
doi: 10.1021/ja807126u URL |
[37] |
Takaba H, Omachi H, Yamamoto Y, Bouffard J, Itami K. Angew. Chem. Int. Ed., 2009, 48(33): 6112.
doi: 10.1002/anie.v48:33 URL |
[38] |
Zhang F, Götz G, Winkler H D, Schalley C, Bäuerle P. Angew. Chem. Int. Ed., 2009, 48(36): 6632.
doi: 10.1002/anie.200900101 pmid: 19562806 |
[39] |
Yamago S, Watanabe Y, Iwamoto T. Angewandte Chemie Int. Ed., 2010, 49(4): 644.
doi: 10.1002/anie.200906851 URL |
[40] |
Shudo H, Kuwayama M, Shimasaki M, Nishihara T, Takeda Y, Mitoma N, Kuwabara T, Yagi A, Segawa Y, Itami K. Nat. Commun., 2022, 13: 3713.
doi: 10.1038/s41467-022-31530-x |
[41] |
Lu D P, Zhuang G L, Wu H T, Wang S, Yang S F, Du P W. Angew. Chem. Int. Ed., 2017, 56(1): 158.
doi: 10.1002/anie.201608963 URL |
[42] |
Kayahara E, Iwamoto T, Takaya H, Suzuki T, Fujitsuka M, Majima T, Yasuda N, Matsuyama N, Seki S, Yamago S. Nat. Commun., 2013, 4: 2694.
doi: 10.1038/ncomms3694 pmid: 24165515 |
[43] |
Sun Z, Ikemoto K, Fukunaga T M, Koretsune T, Arita R, Sato S, Isobe H. Science, 2019, 363(6423): 151.
doi: 10.1126/science.aau5441 URL |
[44] |
Segawa Y, Kuwayama M, Hijikata Y, Fushimi M, Nishihara T, Pirillo J, Shirasaki J, Kubota N, Itami K. Science, 2019, 365(6450): 272.
doi: 10.1126/science.aav5021 URL |
[45] |
Huang Z A, Chen C, Yang X D, Fan X B, Zhou W, Tung C H, Wu L Z, Cong H. J. Am. Chem. Soc., 2016, 138(35): 11144.
doi: 10.1021/jacs.6b07673 URL |
[46] |
Li K, Xu Z Q, Deng H, Zhou Z N, Dang Y F, Sun Z. Angew. Chem. Int. Ed., 2021, 60(14): 7649.
doi: 10.1002/anie.v60.14 URL |
[47] |
Huang Q, Zhuang G L, Jia H X, Qian M M, Cui S S, Yang S F, Du P W. Angew. Chem. Int. Ed., 2019, 58(19): 6244.
doi: 10.1002/anie.v58.19 URL |
[48] |
Povie G, Segawa Y, Nishihara T, Miyauchi Y, Itami K. Science, 2017, 356(6334): 172.
doi: 10.1126/science.aam8158 URL |
[49] |
Cheung K Y, Gui S J, Deng C F, Liang H F, Xia Z M, Liu Z F, Chi L F, Miao Q. Chem, 2019, 5(4): 838.
doi: 10.1016/j.chempr.2019.01.004 |
[50] |
Cheung K Y, Watanabe K, Segawa Y, Itami K. Nat. Chem., 2021, 13(3): 255.
doi: 10.1038/s41557-020-00627-5 pmid: 33495606 |
[51] |
Han Y, Dong S Q, Shao J W, Fan W, Chi C Y. Angew. Chem. Int. Ed., 2021, 60(5): 2658.
doi: 10.1002/anie.202012651 pmid: 33047813 |
[52] |
Zhang Q, Zhang Y E, Tong S, Wang M X. J. Am. Chem. Soc., 2020, 142(3): 1196.
doi: 10.1021/jacs.9b12181 pmid: 31903753 |
[53] |
Shi T H, Guo Q H, Tong S, Wang M X. J. Am. Chem. Soc., 2020, 142(10): 4576.
doi: 10.1021/jacs.0c00112 URL |
[54] |
Li Y M, Segawa Y, Yagi A, Itami K. J. Am. Chem. Soc., 2020, 142(29): 12850.
doi: 10.1021/jacs.0c06007 URL |
[55] |
Xue B C, Cai W S, Shao X G. Progress in Chemistry, 2008, 20: 1501.
|
(薛冰纯, 蔡文生, 邵学广. 化学进展, 2008, 20: 1501. ).
|
|
[56] |
Fan W, Matsuno T, Han Y, Wang X H, Zhou Q F, Isobe H, Wu J S. J. Am. Chem. Soc., 2021, 143(39): 15924.
doi: 10.1021/jacs.1c08468 URL |
[57] |
Segawa Y, Watanabe T, Yamanoue K, Kuwayama M, Watanabe K, Pirillo J, Hijikata Y, Itami K. Nat. Synth, 2022, 1(7): 535.
doi: 10.1038/s44160-022-00075-8 |
[58] |
Zhu Y P, Xia Z M, Cai Z Y, Yuan Z Y, Jiang N Q, Li T, Wang Y G, Guo X Y, Li Z H, Ma S, Zhong D Y, Li Y, Wang J B. J. Am. Chem. Soc., 2018, 140(12): 4222.
doi: 10.1021/jacs.8b01447 URL |
[59] |
Hou H, Zhao X J, Tang C, Ju Y Y, Deng Z Y, Wang X R, Feng L B, Lin D H, Hou X, Narita A, Mu¨llen K, Tan Y Z. Nat. Commun., 2020, 11: 3976.
doi: 10.1038/s41467-020-17691-7 |
[60] |
Zhu Z Z, Chen Z C, Yao Y R, Cui C H, Li S H, Zhao X J, Zhang Q Y, Tian H R, Xu P Y, Xie F F, Xie X M, Tan Y Z, Deng S L, Quimby J M, Scott L T, Xie S Y, Huang R B, Zheng L S. Sci. Adv., 2019, 5(8): eaaw0982.
doi: 10.1126/sciadv.aaw0982 URL |
[61] |
Wang S H, Yuan J, Xie J L, Lu Z H, Jiang L, Mu Y X, Huo Y P, Tsuchido Y, Zhu K L. Angew. Chem. Int. Ed., 2021, 60(34): 18443.
doi: 10.1002/anie.v60.34 URL |
[62] |
Leonhardt E J, Jasti R. Nat. Rev. Chem., 2019, 3(12): 672.
doi: 10.1038/s41570-019-0140-0 |
[1] | 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297. |
[2] | 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217. |
[3] | 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300. |
[4] | 陈向娟, 王欢, 安伟佳, 刘利, 崔文权. 有机碳材料在光电催化系统中的作用[J]. 化学进展, 2022, 34(11): 2361-2372. |
[5] | 张天永, 吴畏, 朱剑, 李彬, 姜爽. 基于纳米碳填料可拉伸导电聚合物复合材料的制备[J]. 化学进展, 2021, 33(3): 417-425. |
[6] | 王娜娜, 王官武. 机械研磨条件下凝聚态有机合成探究[J]. 化学进展, 2020, 32(8): 1076-1085. |
[7] | 缪谦, 杨代月. 从含有八元环的稠环芳烃到具有负曲率的碳纳米结构:进展与展望[J]. 化学进展, 2020, 32(11): 1835-1845. |
[8] | 付如刚, 李政, 高磊. 直接以碳化钙为炔源合成有机化合物[J]. 化学进展, 2019, 31(9): 1303-1313. |
[9] | 朱红林, 李文英, 黎挺挺, Michael Baitinger, Juri Grin, 郑岳青. CO2电还原用氮掺杂碳基过渡金属单原子催化剂[J]. 化学进展, 2019, 31(7): 939-953. |
[10] | 郑亚楠, 王丹. 金属调控蛋白的结构、性质及应用[J]. 化学进展, 2019, 31(10): 1372-1383. |
[11] | 石颖, 闻雷, 吴敏杰, 李峰. 碳材料在钛酸锂负极材料中的应用[J]. 化学进展, 2017, 29(1): 149-161. |
[12] | 周宏伟, 丁小斌. Belousov-Zhabotinsky反应驱动的智能高分子材料:拓扑结构及仿生功能[J]. 化学进展, 2016, 28(1): 111-120. |
[13] | 邹怀波, 汪华华, 梅光泉, 刘海洋, 张启光. 铁咔咯配合物在有机合成中的催化应用[J]. 化学进展, 2015, 27(6): 666-674. |
[14] | 张慧, 周雅静, 宋肖锴. 基于金属-有机骨架前驱体的先进功能材料[J]. 化学进展, 2015, 27(2/3): 174-191. |
[15] | 徐艺凇, 张凤香, 厉嘉云, 白赢, 肖文军, 彭家建. 聚乙二醇功能化离子液体的制备及其在有机反应中的应用[J]. 化学进展, 2015, 27(10): 1400-1412. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||