English
新闻公告
More
化学进展 2023, Vol. 35 Issue (3): 349-359 DOI: 10.7536/PC220936   后一篇

• 综述 •

共价有机框架材料在光催化CO2还原中的应用

刘雨菲, 张蜜, 路猛*(), 兰亚乾*()   

  1. 华南师范大学化学学院 广州 510006
  • 收稿日期:2022-10-02 修回日期:2022-10-28 出版日期:2023-03-24 发布日期:2023-02-20
  • 作者简介:

    路猛 华南师范大学特聘副研究员。2021年获得南京师范大学化学博士学位,2021-至今在华南师范大学化学学院团簇中心工作。工作后获国家自然科学基金青年科学基金项目、中国博士后科学基金面上资助、华南师范大学青年教师科研培育基金项目、博士后创新人才支持计划“博新计划”等科研项目。主要从事COFs及其复合材料在能源领域的应用探索。近五年来在J. Am. Chem. Soc.Angew. Chem. Int. Ed.Nat. Commun.Adv. Mater.ACS Central ScienceApplied Catalysis B: Environmental.Science Bulletin等期刊上发表论文20余篇。论文被引1500多次, ESI高引论文2篇,个人H-index 12。

    兰亚乾 华南师范大学二级教授、博士生导师,教育部工程研究中心主任,英国皇家化学学会会士。2009年获得东北师范大学物理化学博士学位,2010-2012年日本学术振兴会(JSPS)博士后,日本产业技术综合研究所(AIST)关西中心外国人特别研究员。独立工作后获国家杰出青年基金、第四批国家“万人计划”科技创新领军人才、科技部中青年科技创新领军人才、教育部青年长江学者奖励计划、国家优秀青年科学基金、江苏省“双创团队”领军人才、江苏省杰出青年基金等人才称号。主要从事COF、MOF、团簇等晶态材料在能源领域的应用探索。近五年来以通讯作者在Nat. Commun.J. Am. Chem. Soc.Angew. Chem. Int. Ed.PNASAdv. Mater.MatterChemNatl. Sci. Rev.JACS Au等期刊上发表通讯作者论文180余篇。论文被他引20000多次, ESI高引论文25篇,个人H-index 74,连续入选科睿唯安 “高被引科学家”(化学)和爱思唯尔“高被引学者”(化学)。

  • 基金资助:
    国家自然科学基金项目(21871141); 国家自然科学基金项目(21871142); 国家自然科学基金项目(22071109); 国家自然科学基金项目(21901122); 国家自然科学基金项目(22105080); 国家自然科学基金项目(22201083); 中国博士后科学基金面上项目(2020M682747); 中国博士后科学基金面上项目(2021M701270); 广东省基础与应用基础研究基金面上项目(2023A1515010779); 广东省基础与应用基础研究基金面上项目(2023A1515010928)

Covalent Organic Frameworks for Photocatalytic CO2 Reduction

Liu Yvfei, Zhang Mi, Lu Meng(), Lan Yaqian()   

  1. School of Chemistry, South China Normal University, Guangzhou 510631, China
  • Received:2022-10-02 Revised:2022-10-28 Online:2023-03-24 Published:2023-02-20
  • Contact: *menglu@m.scnu.edu.cn(Meng Lu); yqlan@m.scnu.edu.cn(Ya-Qian Lan)
  • Supported by:
    National Natural Science Foundation of China(21871141); National Natural Science Foundation of China(21871142); National Natural Science Foundation of China(22071109); National Natural Science Foundation of China(21901122); National Natural Science Foundation of China(22105080); National Natural Science Foundation of China(22201083); China Postdoctoral Science Foundation(2020M682747); China Postdoctoral Science Foundation(2021M701270); Guangdong Basic and Applied Basic Research Foundation(2023A1515010779); Guangdong Basic and Applied Basic Research Foundation(2023A1515010928)

全球范围内化石燃料的大量消耗导致了能源危机,同时其所排放的CO2等温室气体使环境问题日渐突出。将CO2等废气进一步转化为高附加值燃料是解决能源与环境问题的理想方案。利用取之不尽的太阳能作为能源实现光催化CO2还原为能源化合物被认为是有效解决此问题的最佳途径之一。共价有机框架材料(COFs)是一类新型晶态多孔有机聚合物材料,具有结构稳定性、可设计性和结构多样化的特征,因此在光催化CO2还原领域表现出了巨大潜力。本文概述了近年来COFs在光催化CO2还原领域中的催化应用研究进展,包括引入不同金属离子提供活性位点、增加光敏性官能团提高其对可见光利用率等方法。最后对以COFs材料为光催化CO2还原催化剂的研究进行了总结和展望,我们认为更进一步的新材料合成、修饰与催化机理研究仍是前景广阔的研究领域。

With the massive global consumption of fossil fuels, the energy crisis is getting worse and the emission of greenhouse gases such as CO2 has made the environmental problems become increasingly prominent. Photocatalytic reduction of CO2 to energy compounds is considered to be one of the best ways to effectively solve this problem. Covalent organic frameworks (COFs) are a new type of crystalline porous organic polymer materials with high stability and pre-design ability, which makes COFs own great potential ability in the field of photocatalytic CO2 reduction. This paper summarizes the research progress of COFs in the field of photocatalytic CO2 reduction, including the introduction of different metal ions to provide the active site and increasing the photosensitive functional groups to improve their utilization of visible light. Since the research of COFs as photocatalytic CO2 reduction catalyst is still an initial field, further exploration of synthesis, modification, and mechanism of COFs for CO2 reduction is still promising research work.

Contents

1 Introduction

2 Covalent organic frameworks

2.1 Basic information of COFs

2.2 Application of COFs in photocatalysis

3 Basic principles of photocatalytic CO2 reduction

4 COFs for photocatalytic CO2 reduction

5 Conclusion and outlook

()
图1 (a)典型的2D COFs材料的拓扑结构示意图;(b)典型的3D COFs材料的拓扑结构示意图[5]
Fig. 1 (a) Schematic of topology of typical 2D COFs material; (b) Schematic of topology of typical 3D COFs material
图2 基于半导体能带理论的CO2光还原机理示意图[5]
Fig.2 Schematic diagram of the CO2 photoreduction mechanism based on the semiconductor band theory [5]
图3 (a)COF和Re-COF的合成;(b)晶体侧视图;(c)AA重叠堆积的COF单元;(d)CO2还原机理[21]
Fig. 3 (a) synthesis of COF and Re-COF; (b) side view of crystal; (c) AA overlapping stacked COF units; (d) CO2 reduction mechanism [21]
图4 DQTP COF和DATP COF的合成与金属配位过程及结构[22]
Fig. 4 Synthesis and metal coordination process of DQTP COF and DATP COF and its structure [22]
图5 COF-367NSs的合成与结构[9]
Fig. 5 Synthesis and structure of the COF-367 NSs[9]
图6 (a)CO2还原过程的DFT理论计算及其相对吉布斯自由能;(b)CO2分子在Ni-TpBpy上转化为CO的反应机理[24]
Fig. 6 (a) DFT-calculated and related Gibbs free energy profiles for the CO2 reduction reaction. (b) Reaction mechanism for the photoconversion of CO2 into CO on Ni-TpBpy[24]
图7 (a)MP-TPE-COF的合成示意图;(b)NiP-TPE-COF的PXRD图谱;(c)NiP-TPE-COF的AA堆积模式的顶部和侧视图[25]
Fig. 7 (a) Schematic depiction for the synthesis of MP-TPE-COF; (b) PXRD patterns of NiP-TPE-COF; (c) top and side views for AA-stacking mode of NiP-TPE-COF (color online)[25]
图8 (a)TTCOF-MCO2RR与水氧化的机理示意图;(b)TTCOF-Zn的紫外/visDRS理论模拟和光激发下PET路径 [26]
Fig. 8 (a) Schematic representation of the mechanism of TTCOF-MCO2RR with water oxidation;(b) UV-vis DRS theoretical simulations of TTCOF-Zn and PET paths under light excitation[26]
图9 无机半导体-晶态COFs Z-Scheme用于人工光合成[27]
Fig. 9 Schematic representation of the inorganic semiconductor-crystalline COFs Z-Scheme materials for artificial photosynthesis[27]
图10 COF-POM材料结构结构及在CO2还原上的应用[28]
Fig.10 Structure of COF-POM material and its application in CO2 reduction[28]
图11 Co-Py-CON的结构及光催化CO2还原[29]
Fig.11 Structure of Co-Py-CON material and its application in CO2 reduction[29]
图12 含具有不同自旋态Co的COF-367-Co的合成与光催化应用[31]
Fig. 12 Synthesis and photocatalytic applications of COF-367-Co with different spin states of Co[31]
图13 (a)CT-COF的合成示意图;(b)CT-COF光催化CO2还原过程CO产量随时间变化示意图[32]
Fig. 13 (a) Schematic representation of the synthesis of CT-COF; (b) Time courses of photocatalytic activity for CO production[32]
图14 不同形貌的MOF@COF异质结催化剂用于CO2光还原[33]
Fig. 14 Photocatalytic application of the MOF@COF heterojunction catalysts with different morphologies [33]
图15 PdIn@N3-COF的合成及光催化应用示意图[34]
Fig. 15 Schematic diagram of the synthesis and photocatalytic application of PdIn@N3-COF[34]
[1]
Guo K, Zhu X L, Peng L L, Fu Y H, Ma R, Lu X Q, Zhang F M, Zhu W D, Fan M H. Chem. Eng. J., 2021, 405: 127011.
[2]
Waller P J, Gándara F, Yaghi O M. Acc. Chem. Res., 2015, 48(12): 3053.

doi: 10.1021/acs.accounts.5b00369     URL    
[3]
El-Kaderi H M, Hunt J R, Mendoza-CortÉs J L, Coôteé A P, Taylor R E, O’Keeffe M, Yaghi O M. Science, 2007, 316(5822): 268.

pmid: 17431178
[4]
Meng Y, Luo Y, Shi J L, Ding H M, Lang X J, Chen W, Zheng A M, Sun J L, Wang C. Angew. Chem. Int. Ed., 2020, 59(9): 3624.

doi: 10.1002/anie.201913091     pmid: 31773844
[5]
Lu M, Doctoral Dissertation of Nanjing Normal University, 2021.
(路猛. 南京师范大学博士论文, 2021.).
[6]
Uribe-Romo F J, Doonan C J, Furukawa H, Oisaki K, Yaghi O M. J. Am. Chem. Soc., 2011, 133(30): 11478.

doi: 10.1021/ja204728y     pmid: 21721558
[7]
Chen R F, Shi J L, Ma Y, Lin G Q, Lang X J, Wang C. Angew. Chem. Int. Ed., 2019, 58(19): 6430.

doi: 10.1002/anie.v58.19     URL    
[8]
Chen X Y, Geng K Y, Liu R Y, Tan K T, Gong Y F, Li Z P, Tao S S, Jiang Q H, Jiang D L. Angew. Chem., 2020, 132(13): 5086.

doi: 10.1002/ange.v132.13     URL    
[9]
Liu W B, Li X K, Wang C M, Pan H H, Liu W P, Wang K, Zeng Q D, Wang R M, Jiang J Z. J. Am. Chem. Soc., 2019, 141(43): 17431.

doi: 10.1021/jacs.9b09502     URL    
[10]
Stegbauer L, Schwinghammer K, Lotsch B V. Chem. Sci., 2014, 5(7): 2789.

doi: 10.1039/C4SC00016A     URL    
[11]
Liu Y T, Wu H, Wu S Q, Song S Q, Guo Z Y, Ren Y X, Zhao R, Yang L X, Wu Y Z, Jiang Z Y. J. Membr. Sci., 2021, 618: 118693.

doi: 10.1016/j.memsci.2020.118693     URL    
[12]
Zeng Y F, Zou R Q, Zhao Y L. Adv. Mater., 2016, 28(15): 2855.

doi: 10.1002/adma.201505004     URL    
[13]
Lin S, Diercks C S, Zhang Y B, Kornienko N, Nichols E M, Zhao Y B, Paris A R, Kim D, Yang P D, Yaghi O M, Chang C J. Science, 2015, 349(6253): 1208.

doi: 10.1126/science.aac8343     URL    
[14]
Diercks C S, Lin S, Kornienko N, Kapustin E A, Nichols E M, Zhu C H, Zhao Y B, Chang C J, Yaghi O M. J. Am. Chem. Soc., 2018, 140(3): 1116.

doi: 10.1021/jacs.7b11940     URL    
[15]
Zhang H W, Zhu Q Q, Yuan R R, He H M. Sens. Actuat. B Chem., 2021, 329: 129144.

doi: 10.1016/j.snb.2020.129144     URL    
[16]
Wang Y J, Yue X L, Wu T, Huai Y J, Cheng Q L, Zhang M Y. Energy Environmental Protection, 2022, 36(2): 52.
(王玉杰, 岳喜龙, 吴彤, 怀燕瑾, 程庆霖, 张曼莹. 能源环境保护, 2022, 36(2): 52.).
[17]
Ge L, Qiao C Y, Tang Y K, Zhang X K, Jiang X Q. Nano Lett., 2021, 21(7): 3218.

doi: 10.1021/acs.nanolett.1c00488     URL    
[18]
Peng Y W, Zhao M T, Chen B, Zhang Z C, Huang Y, Dai F N, Lai Z C, Cui X Y, Tan C L, Zhang H. Adv. Mater., 2018, 30(3): 1705454.
[19]
Zhou Y S, Wang Z T, Huang L, Zaman S, Lei K, Yue T, Li Z A, You B, Xia B Y. Adv. Energy Mater., 2021, 11(8): 2003159.
[20]
Lu M, Zhang M, Liu J, Chen Y F, Liao J P, Yang M Y, Cai Y P, Li S L, Lan Y Q. Angewandte Chemie Int. Ed., 2022, 61(15): e202200003.
[21]
Yang S Z, Hu W H, Zhang X, He P L, Pattengale B, Liu C M, Cendejas M, Hermans I, Zhang X Y, Zhang J, Huang J E. J. Am. Chem. Soc., 2018, 140(44): 14614.

doi: 10.1021/jacs.8b09705     URL    
[22]
Lu M, Li Q, Liu J, Zhang F M, Zhang L, Wang J L, Kang Z H, Lan Y Q. Appl. Catal. B Environ., 2019, 254: 624.

doi: 10.1016/j.apcatb.2019.05.033     URL    
[23]
Bi J H, Xu B, Sun L, Huang H M, Fang S Q, Li L Y, Wu L. ChemPlusChem, 2019, 84(8): 1149.

doi: 10.1002/cplu.v84.8     URL    
[24]
Zhong W F, Sa R J, Li L Y, He Y J, Li L Y, Bi J H, Zhuang Z Y, Yu Y, Zou Z G. J. Am. Chem. Soc., 2019, 141(18): 7615.

doi: 10.1021/jacs.9b02997     URL    
[25]
Lv H W, Sa R J, Li P Y, Yuan D Q, Wang X C, Wang R H. Sci. China Chem., 2020, 63(9): 1289.

doi: 10.1007/s11426-020-9801-3    
[26]
Lu M, Liu J, Li Q, Zhang M, Liu M, Wang J L, Yuan D Q, Lan Y Q. Angew. Chem., 2019, 131(36): 12522.

doi: 10.1002/ange.v131.36     URL    
[27]
Zhang M, Lu M, Lang Z L, Liu J, Liu M, Chang J N, Li L Y, Shang L J, Wang M, Li S L, Lan Y Q. Angew. Chem. Int. Ed., 2020, 59(16): 6500.

doi: 10.1002/anie.202000929     pmid: 31989745
[28]
Lu M, Zhang M, Liu J, Yu T Y, Chang J N, Shang L J, Li S L, Lan Y Q. J. Am. Chem. Soc., 2022, 144(4): 1861.

doi: 10.1021/jacs.1c11987     URL    
[29]
Wang X Y, Fu Z W, Zheng L R, Zhao C X, Wang X, Chong S Y, McBride F, Raval R, Bilton M, Liu L J, Wu X F, Chen L J, Sprick R S, Cooper A I. Chem. Mater., 2020, 32(21): 9107.

doi: 10.1021/acs.chemmater.0c01642     URL    
[30]
Fu Z W, Wang X Y, Gardner A M, Wang X, Chong S Y, Neri G, Cowan A J, Liu L J, Li X B, Vogel A, Clowes R, Bilton M, Chen L J, Sprick R S, Cooper A I. Chem. Sci., 2020, 11(2): 543.

doi: 10.1039/C9SC03800K     URL    
[31]
Gong Y N, Zhong W H, Li Y, Qiu Y Z, Zheng L R, Jiang J, Jiang H L. J. Am. Chem. Soc., 2020, 142(39): 16723.

doi: 10.1021/jacs.0c07206     URL    
[32]
Lei K, Wang D, Ye L Q, Kou M P, Deng Y, Ma Z Y, Wang L, Kong Y. ChemSusChem, 2020, 13(7): 1725.

doi: 10.1002/cssc.v13.7     URL    
[33]
Zhang M, Chang J N, Chen Y F, Lu M, Yu T Y, Jiang C, Li S L, Cai Y P, Lan Y Q. Adv. Mater., 2021, 33(48): 2105002.
[34]
Huang Y M, Du P Y, Shi W X, Wang Y, Yao S, Zhang Z M, Lu T B, Lu X Q. Appl. Catal. B Environ., 2021, 288: 120001.

doi: 10.1016/j.apcatb.2021.120001     URL    
[1] 于江波, 于婧, 刘杰, 吴占超, 匡少平. 光催化去除水体中的抗生素[J]. 化学进展, 2024, 36(1): 95-105.
[2] 马云超, 姚宇新, 付跃, 刘春波, 胡波, 车广波. 共价有机框架材料在碘捕捉方面的研究进展[J]. 化学进展, 2023, 35(7): 1097-1105.
[3] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[4] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[5] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[6] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[7] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[8] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[9] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[10] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[11] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[12] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[13] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.
[14] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[15] 郭俊兰, 梁英华, 王欢, 刘利, 崔文权. 光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114.