English
新闻公告
More
化学进展 2023, Vol. 35 Issue (5): 683-698 DOI: 10.7536/PC221112 前一篇   后一篇

• 综述 •

化学稳定金属有机框架的合成策略

杨孟蕊, 谢雨欣, 朱敦如*()   

  1. 南京工业大学化工学院 材料化学工程国家重点实验室 南京 211816
  • 收稿日期:2022-11-17 修回日期:2023-03-01 出版日期:2023-05-24 发布日期:2023-04-30
  • 基金资助:
    国家自然科学基金项目(21476115); 江苏省研究生科研与实践创新计划(KYCX23_1472)

Synthetic Strategies of Chemically Stable Metal-Organic Frameworks

Mengrui Yang, Yuxin Xie, Dunru Zhu()   

  1. College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
  • Received:2022-11-17 Revised:2023-03-01 Online:2023-05-24 Published:2023-04-30
  • Contact: * e-mail: zhudr@njtech.edu.cn
  • Supported by:
    National Natural Science Foundation of China(21476115); Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX23_1472)

金属有机框架(Metal-Organic Frameworks)是由金属离子或簇与有机配体通过配位键形成的具有孔洞结构的新一代晶态多孔材料,是近20年来配位化学领域的研究热点。作为新型多功能材料,MOFs具有高孔隙率、低密度、大比表面积、孔径可调、拓扑结构多样和可裁剪等优点,广泛应用于各种领域。尽管MOFs有许多优点,但是大多数MOFs材料的水和化学稳定性相对较差,在恶劣条件下结构无法保持,极大限制了它们的实际应用。因此,化学稳定的MOFs材料具有更大的应用前景。近年来,研究人员在提高MOFs化学稳定性方面进行了大量的探索,发展了一些非常好的方法合成化学稳定的MOFs材料。本文主要综述了近五年来化学稳定MOFs材料合成的最新研究进展。

Metal-organic frameworks (MOFs) are a new generation of crystalline porous materials with void space structures constructed from metal ions or clusters and organic ligands through coordination bonds, and have been a hot research topic in the field of coordination chemistry over the past two decades. As the novel multifunctional materials, MOFs have been widely used in various fields due to their high porosities, low densities, large surface areas, tunable pore sizes, diverse topological structures and tailorabilities. Although MOFs have many advantages, most of MOFs materials have relatively lower water and chemical stability and cannot maintain their structures under harsh conditions, which greatly restrict their practical applications under moisture-rich conditions. Therefore, chemically stable MOFs materials will have greater application prospects. In recent years, researchers have carried out a lot of exploration in improving the chemical stability of MOFs, and developed some excellent methods to synthesize chemically stable MOFs. This review will mainly focus on the latest research progress in the syntheses of chemically stable MOFs during the past five years.

Contents

1 Introduction

2 Synthetic strategies of chemically stable MOFs

2.1 Increase the strength of coordination bonds

2.2 Attaching hydrophobic groups onto the linker

2.3 Using pore-partioning ligands for the pore space partition

2.4 Post-synthetic exchange method

2.5 Hydrophobic surface treatment

2.6 Other methods

3 Conclusion and Outlook

()
表1 早期稳定的MOFs比较
Table 1 Comparison of some stable MOFs in the early stages
图1 基于HSAB理论构筑稳定MOFs的策略[12]
Fig. 1 Strategies to construct stable MOFs guided by HSAB theory[12]. Copyright 2018, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图2 (a) 设计BUT-53~58的晶体工程方法; (b) BUT-53的PXRD图[28]
Fig. 2 (a) The crystal engineering approach used to design BUT-53~58; (b) PXRD patterns of BUT-53[28]. Copyright 2022, Springer Nature
图3 (a) ZnF(daTZ)的晶体结构; (b) 不同pH值的酸和碱处理ZnF(daTZ)后的PXRD图[29]
Fig. 3 (a) Crystal structure of ZnF(daTZ); (b) PXRD patterns of ZnF(daTZ) after treatment with acids and bases at various pH values[29]. Copyright 2020, ACS
图4 (a) Cr-soc-MOF-1中明确的孔道和笼; (b) 计算和多次水吸附循环后Cr-soc-MOF-1的PXRD图[36]
Fig. 4 (a) The well-defined channels and cages in Cr-soc-MOF-1; (b) the calculated and the experimental PXRD pattern of the Cr-soc-MOF-1 after multiple water adsorption cycles[36]. Copyright 2020, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences
图5 (a) Al-MOF-1的结构; (b) Al-MOF-1用pH = 2~12的水溶液处理后的PXRD图[38]
Fig. 5 (a) The structure of Al-MOF-1; (b) PXRD patterns of Al-MOF-1 after treatment with aqueous solutions ranging from pH = 2~12[38]. Copyright 2022, ACS
图6 (a) PCN-226的结构; (b) ztt拓扑网络; (c) PCN-226(Cu)在pH = 1~13溶液中处理7天后的PXRD图[41]
Fig. 6 (a) The structure of PCN-226; (b) The ztt topological net; (c) PXRD patterns of PCN-226(Cu) after being treated in pH = 1~13 solutions for 7 days[41]. Copyright 2020, ACS
图7 (a) 8-连接Zr6簇和4-连接的BBCPPP构筑的PCN-625; (b) 不同溶液浸泡PCN-625后的PXRD图[43]
Fig. 7 (a) Construction of PCN-625 using an 8-connected Zr6 cluster and 4-connected BBCPPP ligand; (b) PXRD patterns of soaked PCN-625 in different solutions[43]. Copyright 2021, ACS
图8 (a) 由4-连接的配体和8-连接的Zr节点构筑的flu-a网络; (b) CE-1在不同条件下的PXRD图[47]
Fig. 8 (a) A flu-a network constructed by 4-connected ligands and 8-connected Zr nodes; (b) PXRD patterns of CE-1 under different conditions[47]. Copyright 2021, ACS
图9 (a) MIP-201的soc拓扑网络; (b) MIP-201样品经各种化学条件处理后的PXRD图[48]
Fig. 9 (a) The soc topological net of MIP-201; (b) PXRD patterns of MIP-201 samples treated under various chemical conditions[48]. Copyright 2022, Springer Nature
图10 (a) IEF-11的3D结构; (b) 不同pH值的酸和碱处理IEF-11后的PXRD图[49]
Fig. 10 (a) 3D structure of IEF-11; (b) PXRD patterns of IEF-11 after treatment with acids and bases at various pH values[49]. Copyright 2021, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图11 (a) 1中沿c轴的1D菱形孔道; (b) 1D无机棒状链[Eu(-CO2)2]n; (c) 3D bnn网络; (d) 水处理LnMOF 1后的PXRD图[52]
Fig.11 (a) 1D rhombus channels in 1 along the c axis; (b) 1D inorganic rod-shaped chain [Eu(-CO2)2]n; (c) the 3D bnn network; (d) PXRD patterns for water-treated LnMOF 1[52]. Copyright 2017, ACS
图12 H3L5与Ln3+构筑的3D Ln-MOFs[53]
Fig. 12 3D Ln-MOFs constructed from H3L5 and Ln3+[53]. Copyright 2022, RSC
图13 (a) Fe-HAF-1的球棍图; (b) 不同pH的水溶液处理Fe-HAF-1一周后的PXRD图[58]
Fig. 13 (a) Ball-and-stick representation of Fe-HAF-1; (b) PXRD patterns of Fe-HAF-1 after exposure to aqueous solutions at different pH for one week[58]. Copyright 2020, ACS
图14 (a) FJU-112的3D结构; (b) 不同pH值的酸和碱处理FJU-112后的PXRD图[60]
Fig. 14 (a) 3D structure of FJU-112; (b) PXRD patterns of FJU-112 after treatment with acids and bases at various pH values[60]. Copyright 2023, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图15 由Zr6O8簇和3,3'-二(烷氧基)-4,4'-联苯二甲酸构筑的超疏水UiO-67-Rs[63]
Fig. 15 Construction of superhydrophobic UiO-67-Rs from Zr6O8 clusters and 3,3'-dialkyloxy-4,4'-biphenyldicarboxylic acids (H2Ln, n = 7~10)[63]. Copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图16 (a) CPM-243的结构组件及其沿c轴的框架; (b) 精选MOFs的稳定性比较。箭头表示pH < 0或pH > 14的稳定性[68]
Fig. 16 (a) The structural components of CPM-243, together with the framework along the c axis; (b) stability comparison of select MOFs. The arrow indicates stability under pH < 0 or pH > 14[68]. Copyright 2021, ACS
图17 (a) Pd-MOF:BUT-33(Pd)的合成方法; (b) 不同条件处理后BUT-33(Pd)的PXRD图[69]
Fig. 17 (a) Synthetic approach of Pd-MOF: BUT-33(Pd); (b) PXRD patterns of BUT-33(Pd) after different conditions treatments[69]. Copyright 2021, ACS
图18 (a) 通过H2LM的后合成交换法将非手性UiO-68-Me转化为手性UiO-68-M; (b) UiO-68-Cu在不同溶液中处理24 h后的PXRD图[71]
Fig. 18 (a) The as-synthesized achiral UiO-68-Me was converted to chiral UiO-68-M via PSE of H2LM; (b) PXRD patterns of UiO-68-Cu after treatment in different solutions for 24 h[71]. Copyright 2018, ACS
图19 (a) 在HKUST-1表面一步聚合制备疏水HKUST-1-P复合材料的示意图; (b) HKUST-1和HKUST-1-P在水中处理3天前后的PXRD图[74]
Fig. 19 (a) Scheme showing the one-step surface polymerization of HKUST-1 to afford hydrophobic HKUST-1-P composite; (b) PXRD profiles of HKUST-1 and HKUST-1-P before and after treatment in water for 3 days[74]. Copyright 2020, Chinese Chemical Society
图20 (a, b) Zr-IAM-4中的12-连接Zr6节点和螺二芴连接体H4L; (c, d) 不互穿和二重互穿Zr-IAM-4的3D框架; (e) Zr-IAM-4和Eu-IAM-4在沸水和酸、碱溶液中处理24 h后的PXRD图[76]
Fig. 20 (a, b) The 12-connected Zr6 node and the spirobifluorene-linker H4L in Zr-IAM-4; (c, d) 3D framework of Zr-IAM-4 without and with a two-fold interpenetrating structure; (e) PXRD patterns of Zr-IAM-4 and Eu-IAM-4 upon treatment in boiling water and acidic and basic solutions for 24 h[76]. Copyright 2020, ACS
[1]
Furukawa H, Cordova K E, O’Keeffe M, Yaghi O M. Science, 2013, 341(6149): 1230444.

doi: 10.1126/science.1230444     URL    
[2]
Li B, Wen H M, Cui Y J, Zhou W, Qian G D, Chen B L. Adv. Mater., 2016, 28(40): 8819.

doi: 10.1002/adma.v28.40     URL    
[3]
Zhu D R, Zhou J, Yang J, Bao W W, Shen X. J. Nanjing Univ. Tech. Nat. Sci. Ed., 2007, 29(3): 103.
(朱敦如, 周俊, 杨捷, 包魏魏, 沈旋. 南京工业大学学报(自然科学版), 2007, 29(3): 103.).
[4]
Wang J, Zhang Y, Su Y, Liu X, Zhang P X, Lin R B, Chen S X, Deng Q, Zeng Z L, Deng S G, Chen B L. Nat. Commun., 2022, 13: 200.

doi: 10.1038/s41467-021-27929-7     pmid: 35017555
[5]
Li J, Huang H L, Xue W J, Sun K, Song X H, Wu C R, Nie L, Li Y, Liu C Y, Pan Y, Jiang H L, Mei D H, Zhong C L. Nat. Catal., 2021, 4(8): 719.

doi: 10.1038/s41929-021-00665-3    
[6]
Feng X, Ren Y W, Jiang H F. Prog. Chem., 2020, 32(11): 1697.
(封啸, 任颜卫, 江焕峰. 化学进展, 2020, 32(11): 1697.).

doi: 10.7536/PC200407    
[7]
Li Z H, Zeng H, Zeng G, Ru C Y, Li G H, Yan W F, Shi Z, Feng S H. Angew. Chem. Int. Ed., 2021, 60(51): 26577.

doi: 10.1002/anie.v60.51     URL    
[8]
Lai X Y, Wang Z Y, Zheng Y T, Chen Y M. Prog. Chem., 2019, 31(6): 783.
(赖欣宜, 王志勇, 郑永太, 陈永明. 化学进展, 2019, 31(6): 783.).

doi: 10.7536/PC181029    
[9]
Li H L, Eddaoudi M, O'Keeffe M, Yaghi O M. Nature, 1999, 402(6759): 276.

doi: 10.1038/46248    
[10]
Chui S S Y, Lo S M F, Charmant J P H, Orpen A G, Williams I D. Science, 1999, 283(5405): 1148.

pmid: 10024237
[11]
Feng L, Wang K Y, Day G S, Ryder M R, Zhou H C. Chem. Rev., 2020, 120(23): 13087.

doi: 10.1021/acs.chemrev.0c00722     URL    
[12]
Yuan S, Feng L, Wang K C, Pang J D, Bosch M, Lollar C, Sun Y J, Qin J S, Yang X Y, Zhang P, Wang Q, Zou L F, Zhang Y M, Zhang L L, Fang Y, Li J L, Zhou H C. Adv. Mater., 2018, 30(37): 1704303.

doi: 10.1002/adma.v30.37     URL    
[13]
Howarth A J, Liu Y Y, Li P, Li Z Y, Wang T C, Hupp J T, Farha O K. Nat. Rev. Mater., 2016, 1(3): 15018.

doi: 10.1038/natrevmats.2015.18    
[14]
Ding M L, Cai X C, Jiang H L. Chem. Sci., 2019, 10(44): 10209.

doi: 10.1039/C9SC03916C     URL    
[15]
Wang C H, Liu X L, Demir N K, Chen J P, Li K. Chem. Soc. Rev., 2016, 45(18): 5107.

doi: 10.1039/C6CS00362A     URL    
[16]
Devic T, Serre C. Chem. Soc. Rev., 2014, 43(16): 6097.

doi: 10.1039/C4CS00081A     URL    
[17]
FÉrey G, Serre C, Mellot-Draznieks C, Millange F, SurblÉ S, Dutour J, Margiolaki I. Angew. Chem. Int. Ed., 2004, 43(46): 6296.

doi: 10.1002/anie.200460592     URL    
[18]
FÉrey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, SurblÉ S, Margiolaki I. Science, 2005, 309(5743): 2040.

doi: 10.1126/science.1116275     URL    
[19]
Park K S, Ni Z, CôtÉ A P, Choi J Y, Huang R D, Uribe-Romo F J, Chae H K, O’Keeffe M, Yaghi O M. Proc. Natl. Acad. Sci. U. S. A., 2006, 103(27): 10186.

doi: 10.1073/pnas.0602439103     URL    
[20]
Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P. J. Am. Chem. Soc., 2008, 130(42): 13850.

doi: 10.1021/ja8057953     URL    
[21]
Low J J, Benin A I, Jakubczak P, Abrahamian J F, Faheem S A, Willis R R. J. Am. Chem. Soc., 2009, 131(43): 15834.

doi: 10.1021/ja9061344     URL    
[22]
Kang I J, Khan N A, Haque E, Jhung S H. Chem. Eur. J., 2011, 17(23): 6437.

doi: 10.1002/chem.v17.23     URL    
[23]
Moumen E, Assen A H, Adil K, Belmabkhout Y. Coord. Chem. Rev., 2021, 443: 214020.

doi: 10.1016/j.ccr.2021.214020     URL    
[24]
Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O'Keeffe M, Yaghi O M. Science, 2008, 319(5865): 939.

doi: 10.1126/science.1152516     pmid: 18276887
[25]
Wang Z S, Li M, Peng Y L, Zhang Z J, Chen W, Huang X C. Angew. Chem. Int. Ed., 2019, 58(45): 16071.

doi: 10.1002/anie.v58.45     URL    
[26]
Colombo V, Galli S, Choi H J, Han G D, Maspero A, Palmisano G, Masciocchi N, Long J R. Chem. Sci., 2011, 2(7): 1311.

doi: 10.1039/c1sc00136a     URL    
[27]
He T, Huang Z H, Yuan S, Lv X L, Kong X J, Zou X D, Zhou H C, Li J R. J. Am. Chem. Soc., 2020, 142(31): 13491.

doi: 10.1021/jacs.0c05074     URL    
[28]
He T, Kong X J, Bian Z X, Zhang Y Z, Si G R, Xie L H, Wu X Q, Huang H L, Chang Z, Bu X H, Zaworotko M J, Nie Z R, Li J R. Nat. Mater., 2022, 21(6): 689.

doi: 10.1038/s41563-022-01237-x    
[29]
Shi Z L, Tao Y, Wu J S, Zhang C Z, He H L, Long L L, Lee Y J, Li T, Zhang Y B. J. Am. Chem. Soc., 2020, 142(6): 2750.

doi: 10.1021/jacs.9b12879     URL    
[30]
Lin J B, Nguyen T T T, Vaidhyanathan R, Burner J, Taylor J M, Durekova H, Akhtar F, Mah R K, Ghaffari-Nik O, Marx S, Fylstra N, Iremonger S S, Dawson K W, Sarkar P, Hovington P, Rajendran A, Woo T K, Shimizu G K H. Science, 2021, 374(6574): 1464.

doi: 10.1126/science.abi7281     URL    
[31]
Serre C, Millange F, Thouvenot C, Noguès M, Marsolier G, Louër D, FÉrey G. J. Am. Chem. Soc., 2002, 124(45): 13519.

doi: 10.1021/ja0276974     URL    
[32]
Seo Y K, Yoon J W, Lee J S, Hwang Y K, Jun C H, Chang J S, Wuttke S, Bazin P, Vimont A, Daturi M, Bourrelly S, Llewellyn P L, Horcajada P, Serre C, FÉrey G. Adv. Mater., 2012, 24(6): 806.

doi: 10.1002/adma.201104084     URL    
[33]
Liu T F, Zou L F, Feng D W, Chen Y P, Fordham S, Wang X, Liu Y Y, Zhou H C. J. Am. Chem. Soc., 2014, 136(22): 7813.

doi: 10.1021/ja5023283     URL    
[34]
Lian X Z, Feng D W, Chen Y P, Liu T F, Wang X, Zhou H C. Chem. Sci., 2015, 6(12): 7044.

doi: 10.1039/C5SC02587G     URL    
[35]
Abtab S M T, Alezi D, Bhatt P M, Shkurenko A, Belmabkhout Y, Aggarwal H, Aggarwal H, Weseliński Ł J, Alsadun N, Samin U, Hedhili M N, Eddaoudi M. Chem, 2018, 4(1): 94.

doi: 10.1016/j.chempr.2017.11.005     URL    
[36]
Zhang J, Li P, Zhang X, Ma X, Wang B. Acta Chim. Sinica, 2020, 78: 597.

doi: 10.6023/A20050153     URL    
(张晋维, 李平, 张馨凝, 马小杰, 王博. 化学学报, 2020, 78: 597.).

doi: 10.6023/A20050153    
[37]
Jian M P, Qiu R S, Xia Y, Lu J, Chen Y, Gu Q F, Liu R P, Hu C Z, Qu J H, Wang H T, Zhang X W. Sci. Adv., 2020, 6(23): eaay3998.

doi: 10.1126/sciadv.aay3998     URL    
[38]
Evangelou D, Pournara A, Tziasiou C, Andreou E, Armatas G S, Manos M J. Inorg. Chem., 2022, 61(4): 2017.

doi: 10.1021/acs.inorgchem.1c03199     URL    
[39]
Gu Y M, Qi H F, Sun T T, Liu X W, Qadir S, Sun T J, Li D F, Zhao S S, Fairen-Jimenez D, Wang S D. Chem. Mater., 2022, 34(6): 2708.

doi: 10.1021/acs.chemmater.1c04168     URL    
[40]
Bai Y, Dou Y B, Xie L H, Rutledge W, Li J R, Zhou H C. Chem. Soc. Rev., 2016, 45(8): 2327.

doi: 10.1039/C5CS00837A     URL    
[41]
Cichocka M O, Liang Z Z, Feng D W, Back S, Siahrostami S, Wang X, Samperisi L, Sun Y J, Xu H Y, Hedin N, Zheng H Q, Zou X D, Zhou H C, Huang Z H. J. Am. Chem. Soc., 2020, 142(36): 15386.

doi: 10.1021/jacs.0c06329     URL    
[42]
Wang X N, Zhang Y, Shi Z X, Lu T T, Wang Q, Li B. ACS Appl. Mater. Interfaces, 2021, 13(45): 54217.

doi: 10.1021/acsami.1c18130     URL    
[43]
Yang L T, Cai P Y, Zhang L L, Xu X Y, Yakovenko A A, Wang Q, Pang J D, Yuan S, Zou X D, Huang N, Huang Z H, Zhou H C. J. Am. Chem. Soc., 2021, 143(31): 12129.

doi: 10.1021/jacs.1c03960     URL    
[44]
Feng D W, Gu Z Y, Li J R, Jiang H L, Wei Z W, Zhou H C. Angew. Chem. Int. Ed., 2012, 51(41): 10307.

doi: 10.1002/anie.201204475     URL    
[45]
Deria P, Mondloch J E, Tylianakis E, Ghosh P, Bury W, Snurr R Q, Hupp J T, Farha O K. J. Am. Chem. Soc., 2013, 135(45): 16801.

doi: 10.1021/ja408959g     URL    
[46]
Yang S L, Li G, Guo M Y, Liu W S, Bu R, Gao E Q. J. Am. Chem. Soc., 2021, 143(23): 8838.

doi: 10.1021/jacs.1c03432     URL    
[47]
Jiang H, Yang K W, Zhao X X, Zhang W Q, Liu Y, Jiang J W, Cui Y. J. Am. Chem. Soc., 2021, 143(1): 390.

doi: 10.1021/jacs.0c11276     pmid: 33356210
[48]
Wang S J, Ly H G T, Wahiduzzaman M, Simms C, Dovgaliuk I, Tissot A, Maurin G, Parac-Vogt T N, Serre C. Nat. Commun., 2022, 13: 1284.

doi: 10.1038/s41467-022-28886-5    
[49]
Salcedo-Abraira P, Babaryk A A, Montero-Lanzuela E, Contreras-Almengor O R, Cabrero-Antonino M, Grape E S, Willhammar T, NavalÓn S, Elkäim E, García H, Horcajada P. Adv. Mater., 2021, 33(52): 2106627.

doi: 10.1002/adma.v33.52     URL    
[50]
Xing K, Fan R Q, Liu X Y, Gai S, Chen W, Yang Y L, Li J. Chem. Commun., 2020, 56(4): 631.

doi: 10.1039/C9CC07869J     URL    
[51]
Wang X, Qin T, Bao S S, Zhang Y C, Shen X, Zheng L M, Zhu D R. J. Mater. Chem. A, 2016, 4(42): 16484.

doi: 10.1039/C6TA06792A     URL    
[52]
Zhao J, He X, Zhang Y C, Zhu J, Shen X, Zhu D R. Cryst. Growth Des., 2017, 17(10): 5524.

doi: 10.1021/acs.cgd.7b01061     URL    
[53]
Zhang S L, Xie Y X, Yang M R, Zhu D R. Inorg. Chem. Front., 2022, 9(6): 1134.

doi: 10.1039/D1QI01610E     URL    
[54]
Lv X L, Feng L, Xie L H, He T, Wu W, Wang K Y, Si G R, Wang B, Li J R, Zhou H C. J. Am. Chem. Soc., 2021, 143(7): 2784.

doi: 10.1021/jacs.0c11546     URL    
[55]
Lv X L, Feng L, Wang K Y, Xie L H, He T, Wu W, Li J R, Zhou H C. Angew. Chem. Int. Ed., 2021, 60(4): 2053.

doi: 10.1002/anie.v60.4     URL    
[56]
Zhang X, Wang B, Alsalme A, Xiang S C, Zhang Z J, Chen B L. Coord. Chem. Rev., 2020, 423: 213507.

doi: 10.1016/j.ccr.2020.213507     URL    
[57]
Padial N M, Castells-Gil J, Almora-Barrios N, Romero-Angel M, da Silva I, Barawi M, García-Sánchez A, de la Peña O’Shea V A, Martí-Gastaldo C. J. Am. Chem. Soc., 2019, 141(33): 13124.

doi: 10.1021/jacs.9b04915     URL    
[58]
Chiong J A, Zhu J, Bailey J B, Kalaj M, Subramanian R H, Xu W Q, Cohen S M, Tezcan F A. J. Am. Chem. Soc., 2020, 142(15): 6907.

doi: 10.1021/jacs.0c01626     URL    
[59]
Lai Q X, Chu Z Q, Xiao X Y, Dai D J, Song T, Luo T Y, Tang W L, Feng X, Zhang Z Y, Li T, Xiao H, Su J, Liu C. Chem. Commun., 2022, 58(22): 3601.

doi: 10.1039/D2CC00213B     URL    
[60]
Xiang F H, Zhang H, Yang Y S, Li L, Que Z N, Chen L J, Yuan Z, Chen S M, Yao Z Z, Fu J W, Xiang S C, Chen B L, Zhang Z J. Angew. Chem. Int. Ed., 2023, 62(13): e202300638.
[61]
Chen Y, Wang B, Wang X Q, Xie L H, Li J P, Xie Y B, Li J R. ACS Appl. Mater. Interfaces, 2017, 9(32): 27027.

doi: 10.1021/acsami.7b07920     URL    
[62]
Zhou D D, Chen P, Wang C, Wang S S, Du Y F, Yan H, Ye Z M, He C T, Huang R K, Mo Z W, Huang N Y, Zhang J P. Nat. Mater., 2019, 18(9): 994.

doi: 10.1038/s41563-019-0427-z    
[63]
Zhu N X, Wei Z W, Chen C X, Wang D W, Cao C C, Qiu Q F, Jiang J J, Wang H P, Su C Y. Angew. Chem. Int. Ed., 2019, 58(47): 17033.

doi: 10.1002/anie.v58.47     URL    
[64]
Zhu N X, Wei Z W, Chen C X, Xiong X H, Xiong Y Y, Zeng Z, Wang W, Jiang J J, Fan Y N, Su C Y. Angew. Chem. Int. Ed., 2022, 61(4): e202112097.
[65]
Qin T, Gong J, Ma J H, Wang X, Wang Y H, Xu Y, Shen X, Zhu D R. Chem. Commun., 2014, 50(100): 15886.

doi: 10.1039/C4CC06588C     URL    
[66]
Geng S B, Lin E, Li X, Liu W S, Wang T, Wang Z F, Sensharma D, Darwish S, Andaloussi Y H, Pham T, Cheng P, Zaworotko M J, Chen Y, Zhang Z J. J. Am. Chem. Soc., 2021, 143(23): 8654.

doi: 10.1021/jacs.1c02108     URL    
[67]
Zhai Q G, Bu X H, Zhao X, Li D S, Feng P Y. Acc. Chem. Res., 2017, 50(2): 407.

doi: 10.1021/acs.accounts.6b00526     URL    
[68]
Yang H J, Peng F, Hong A N, Wang Y X, Bu X H, Feng P Y. J. Am. Chem. Soc., 2021, 143(36): 14470.

doi: 10.1021/jacs.1c07277     URL    
[69]
He T, Kong X J, Zhou J, Zhao C, Wang K C, Wu X Q, Lv X L, Si G R, Li J R, Nie Z R. J. Am. Chem. Soc., 2021, 143(26): 9901.

doi: 10.1021/jacs.1c04077     URL    
[70]
Nguyen H T T, Tu T N, Nguyen M V, Lo T H N, Furukawa H, Nguyen N N, Nguyen M D. ACS Appl. Mater. Interfaces, 2018, 10(41): 35462.

doi: 10.1021/acsami.8b11037     URL    
[71]
Tan C X, Han X, Li Z J, Liu Y, Cui Y. J. Am. Chem. Soc., 2018, 140(47): 16229.

doi: 10.1021/jacs.8b09606     URL    
[72]
Feng L, Yuan S, Qin J S, Wang Y, Kirchon A, Qiu D, Cheng L, Madrahimov S T, Zhou H C. Matter, 2019, 1(1): 156.

doi: 10.1016/j.matt.2019.02.002     URL    
[73]
Cao L H, Yang Y, Tang X H, Wang X, Yin Z. Cryst. Growth Des., 2022, 22(1): 37.
[74]
Ding M L, Jiang H L. CCS Chem., 2021, 3(8): 2740.

doi: 10.31635/ccschem.020.202000515     URL    
[75]
Lv X L, Yuan S, Xie L H, Darke H F, Chen Y, He T, Dong C, Wang B, Zhang Y Z, Li J R, Zhou H C. J. Am. Chem. Soc., 2019, 141(26): 10283.

doi: 10.1021/jacs.9b02947     URL    
[76]
Duan Z G, Li Y, Xiao X, Huang X L, Li X T, Li Y Y, Zhang C, Zhang H, Li L, Lin Z H, Zhao Y G, Huang W. ACS Appl. Mater. Interfaces, 2020, 12(16): 18715.

doi: 10.1021/acsami.0c03336     URL    
[1] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[2] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[3] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[4] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[5] 董秀婷, 张文, 赵颂, 刘新磊, 王宇新. 金属有机骨架材料的复合成型[J]. 化学进展, 2021, 33(12): 2173-2187.
[6] 严壮, 刘雅玲, 唐智勇. 二维导电金属有机骨架材料[J]. 化学进展, 2021, 33(1): 25-41.
[7] 王晓晗, 刘彩霞, 宋春风, 马德刚, 李振国, 刘庆岭. 金属有机骨架材料在氨低温催化还原氮氧化物反应中的应用[J]. 化学进展, 2020, 32(12): 1917-1929.
[8] 刘景昊, 伍学谦, 吴玉锋, 俞嘉梅. 计算模拟研究金属有机骨架材料吸附分离C2、C3烃类气体[J]. 化学进展, 2020, 32(1): 133-144.
[9] 李春雪, 乔宇, 林雪, 车广波. 量子点@金属有机骨架材料的制备及在光催化降解领域的应用[J]. 化学进展, 2018, 30(9): 1308-1316.
[10] 董玉, 李海波, 李津, 冯磊, 张志伟*. 高三尖杉酯碱和三尖杉酯碱的合成研究[J]. 化学进展, 2018, 30(12): 1827-1835.
[11] 邱健豪, 何明, 贾明民, 姚建峰. 金属有机骨架材料制备双金属或多金属催化材料及其应用[J]. 化学进展, 2016, 28(7): 1016-1028.
[12] 宋莉芳, 夏慧芸, 陈华鑫, 李卓, 卢佳佳. 中孔金属有机骨架材料的制备与应用[J]. 化学进展, 2014, 26(07): 1132-1142.
[13] 庄长福, 刘建路, 戴文, 吴中平, 王瑛, 高爽*. 卟啉金属有机骨架材料的合成及其在催化反应[J]. 化学进展, 2014, 26(0203): 277-292.
[14] 汪南方, 刘素琴*. 全钒液流电池隔膜的制备与性能[J]. 化学进展, 2013, 25(01): 60-68.
[15] 黎林清, 吕迎, 李军, 董晓丽, 高爽. 金属-有机骨架材料在烯烃氧化中的应用[J]. 化学进展, 2012, 24(05): 747-756.