English
新闻公告
More
化学进展 2023, Vol. 35 Issue (6): 904-917 DOI: 10.7536/PC221224 前一篇   后一篇

• 综述 •

固氮反应中的凝聚态化学

王雪丽1, 王倩茹2, 李缔2, 魏俊年1, 郭建平2, 于良2, 邓德会2,*(), 陈萍2,*(), 席振峰1,*()   

  1. 1 北京大学化学学院 北京 100871
    2 中国科学院大连化学物理研究所 大连 116023
  • 收稿日期:2022-12-28 修回日期:2023-02-24 出版日期:2023-06-24 发布日期:2023-06-12
  • 基金资助:
    国家自然科学基金项目(21988101)

Condensed Matter Chemistry in Nitrogen Fixation

Xueli Wang1, Qianru Wang2, Di Li2, Junnian Wei1, Jianping Guo2, Liang Yu2, Dehui Deng2(), Ping Chen2(), Zhenfeng Xi1()   

  1. 1 College of Chemistry, Peking University,Beijing 100871, China
    2 Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
  • Received:2022-12-28 Revised:2023-02-24 Online:2023-06-24 Published:2023-06-12
  • Contact: *e-mail: dhdeng@dicp.ac.cn(Dehui Deng); pchen@dicp.ac.cn(Ping Chen); zfxi@pku.edu.cn(Zhenfeng Xi)
  • About author:
    †These authors contributed equally to this work.
  • Supported by:
    The National Natural Science Foundation of China(21988101)

氮是构成生命和物质世界不可或缺的元素,发展高效的转化方法将氮气分子转变为具有各种功能的含氮化合物,具有重要的经济价值和科学意义。氮气分子的活化转化是化学学科永恒的课题,而凝聚态化学的研究方法和多层面认识对固氮研究具有深刻意义。本文列举了一些固氮化学中的凝聚态现象,从均相溶液固氮、多相合成氨以及氮气/氧气多能耦合转化等三方面,讨论了目前固氮化学领域中存在的关键科学问题,期望启发更多学者从凝聚态化学角度思考固氮化学反应本质,为解决相关问题提供更多新的思路。

Nitrogen is an indispensable element for life and the material world. The development of efficient conversion strategies to transform dinitrogen gas into various valuable nitrogen-containing compounds is of great economic and scientific importance. The activation and transformation of dinitrogen molecule is an eternal topic in chemistry, and it is of profound significance to understand nitrogen fixation from the level of condensed matter chemistry. Several related examples have been illustrated here to discuss the effects of condensed matter phenomena in nitrogen fixation chemistry. Some critical scientific problems in the field are discussed from three aspects: nitrogen fixation in homogeneous solution, heterogeneous ammonia synthesis, and coupling multiple energy for N2/O2 conversion. We hope this review will inspire more chemists to think about the fundamental nature of nitrogen fixation chemistry from the perspective of condensed matter chemistry, offering more ideas to solve the related problems.

Contents

1 Introduction

2 Condensed matter chemistry in nitrogen fixation in homogeneous solution systems

3 Condensed matter chemistry in heterogeneous ammonia synthesis

4 Condensed matter chemistry in the coupling multiple energy for N2/O2 conversion

4.1 N2/O2 conversion by non-thermal plasmas

4.2 N2/O2 conversion by electrochemistry

4.3 N2/O2 conversion by ultra sound

4.4 N2/O2 conversion by photochemistry

5 Conclusion and outlook

()
图1 过渡金属-氮气配合物常见的配位模式
Fig.1 Typical coordination modes of transition metal-nitrogen complexes
图2 过渡金属氮气配合物的DCD模型
Fig.2 DCD model for transition metal-nitrogen complexes
图式1 五甲基取代的茂基金属钛-氮气配合物[26?~28]
Scheme 1 Pentamethyl-substituted metallocene titanium-nitrogen complexes[26?-28]
图式2 三甲基与二甲基取代的茂基金属钛-氮气配合物[29,30]
Scheme 2 Trimethyl- and dimethyl-substituted metallocene titanium-nitrogen complexes[29,30]
图3 Mo-Mg簇氮气配合物的晶体结构[31]
Fig.3 Crystal structure of the [Mg2Mo8O22(OMe)6(MeOH)4]2- anion[31]
图式3 环戊二烯-有机膦配体支持的一价铬氮气配合物[33]
Scheme 3 Cp-phosphine ligand-supported Cr(I)-N2 complexes[33]
图式4 环戊二烯-有机膦配体支持的零价铬氮气配合物[33]
Scheme 4 Cp-phosphine ligand-supported Cr(0)-N2 complexes[33]
图4 (A)固体催化剂表面合成氨反应的直接解离式机理示意图;(B)金属Fe表面上合成氨反应势能图,能量单位为kJ·mol-1[37]
Fig.4 (A) Schematic representation of ammonia synthesis on a solid surface via the dissociative mechanism; (B) potential energy diagram of ammonia synthesis on Fe surface. The energies are given in kJ·mol-1. Reprinted with permission[37]. Copyright John Wiley and Sons
图5 各种过渡金属表面台阶位上的N吸附能与合成氨活性之间呈火山型曲线关系[39]
Fig.5 Volcano plot of ammonia synthesis rates with the nitrogen adsorption energy at stepped metal surface[39]
图6 (A)Fe催化剂的C7活性位点示意图;(B)Ru催化剂的B5活性位点示意图[50]
Fig.6 Schematic representation of the C7 active site on Fe catalyst (A), and B5 active site on Ru catalyst (B)[50]
图7 从基态(蓝色)或振动激发态(绿色)开始的N2离解活化能的反应坐标图,红色和黄色虚线曲线对应于不同的振动效率(α= E t E α ( v ) + E v )[76]
Fig.7 Reaction coordinate of activation energies for N2 dissociation starting from ground (blue) or vibrationally excited states. The dashed red and yellow curves correspond to different vibrational efficiency(α= E t E α ( v ) + E v )[76]
图8 Ru/TiO2复合电催化剂上的NOR反应示意图[96]
Fig.8 The scheme of NOR on Ru/TiO2 composite electrocatalysts[96]
图9 单原子Cu/TiO2上光催化空气转化到硝酸盐过程示意图[103]
Fig.9 The scheme of NOR on Ru/TiO2 composite electrocatalysts[103]
[1]
Xu R R. Natl. Sci. Rev., 2018, 5: 1.

doi: 10.1093/nsr/nwx155     URL    
[2]
Xu R R, Wang K, Chen G, Yan W F. Natl. Sci. Rev., 2019, 6(2): 191.

doi: 10.1093/nsr/nwy128     URL    
[3]
Xu R R, Yu J H, Yan W F. Prog. Chem., 2020, 32(8): 1017.
( 徐如人, 于吉红, 闫文付. 化学进展, 2020, 32(8): 1017.).

doi: 10.7536/PC200428    
[4]
Transition Metal-Dinitrogen Complexes. Ed.: Nishibayashi Y. Wiley-VCH, 2018.
[5]
Lv Z J, Huang Z, Shen J H, Zhang W X, Xi Z F. J. Am. Chem. Soc., 2019, 141(51): 20547.

doi: 10.1021/jacs.9b11631     URL    
[6]
Chen X, Xu H H, Shi X H, Wei J N, Xi Z F. Acta Chim. Sinica, 2022, 80: 1299.

doi: 10.6023/A22060253     URL    
( 陈霄, 许汉华, 石向辉, 魏俊年, 席振峰. 化学学报, 2022, 80(9): 1299.).

doi: 10.6023/A22060253    
[7]
Wang G X, Yan X C, Yin J H, Yin Z B, Wei J N, Xi Z F. Chem. A Eur. J., 2022, 28(67): e202202803.
[8]
Li H J, Feng R, Wang G X, Wei J N, Xi Z F. Dalton Trans., 2022, 51(44): 16811.

doi: 10.1039/D2DT03320H     URL    
[9]
Wang G X, Yin J H, Li J P, Yin Z B, Wu B T, Wei J N, Zhang W X, Xi Z F. CCS Chem., 2021, 3(12): 308.

doi: 10.31635/ccschem.021.202000712     URL    
[10]
Wang C H, Yin Z B, Wei J N, Zhang W X, Xi Z F. Tetrahedron, 2020, 76(50): 131703.

doi: 10.1016/j.tet.2020.131703     URL    
[11]
Li J P, Yin J H, Wang G X, Yin Z B, Zhang W X, Xi Z F. Chem. Commun., 2019, 55(65): 9641.

doi: 10.1039/C9CC02960E     URL    
[12]
Walter M D. Advances in Organometallic Chemistry. New York: Academic Press, 2016. 261.
[13]
Allen A D, Senoff C V. Chem. Commun. (London), 1965(24): 621.
[14]
Enemark J H, Davis B R, McGinnety J A, Ibers J A. Chem. Commun. (London), 1968,(2): 96.
[15]
Lv Z J, Wei J N, Zhang W X, Chen P, Deng D H, Shi Z J, Xi Z F. Natl. Sci. Rev., 2020, 7(10): 1564.

doi: 10.1093/nsr/nwaa142     URL    
[16]
Kim S, Loose F, Chirik P J. Chem. Rev., 2020, 120(12): 5637.

doi: 10.1021/acs.chemrev.9b00705     URL    
[17]
Li J P, Yin J H, Yu C, Zhang W X, Xi Z F. Acta Chim. Sinica, 2017, 75: 733.

doi: 10.6023/A17040170     URL    
( 李嘉鹏, 殷剑昊, 俞超, 张文雄, 席振峰. 化学学报, 2017, 75(8): 733.).

doi: 10.6023/A17040170    
[18]
Zhai D D, Zhang S Q, Xie S J, Wu R K, Liu F, Xi Z F, Hong X, Shi Z J. J. Am. Chem. Soc., 2022, 144(31): 14071.

doi: 10.1021/jacs.2c01507     URL    
[19]
Zhong M D, Cui X L, Wu B T, Wang G X, Zhang W X, Wei J N, Zhao L L, Xi Z F. CCS Chem., 2022, 4(2): 532.

doi: 10.31635/ccschem.021.202100945     URL    
[20]
Shi X H, Wang Q R, Qin C, Wu L J, Chen Y J, Wang G X, Cai Y L, Gao W B, He T, Wei J N, Guo J P, Chen P, Xi Z F. Natl. Sci. Rev., 2022, 9(12): nwac168.

doi: 10.1093/nsr/nwac168     URL    
[21]
Chatt J, Pearman A J, Richards R L. Nature, 1975, 253(5486): 39.
[22]
Yandulov D V, Schrock R R. Science, 2003, 301(5629): 76.

doi: 10.1126/science.1085326     pmid: 12843387
[23]
Arashiba K, Miyake Y, Nishibayashi Y. Nat. Chem., 2011, 3(2): 120.

doi: 10.1038/nchem.906     pmid: 21258384
[24]
Anderson J S, Rittle J, Peters J C. Nature, 2013, 501(7465): 84.

doi: 10.1038/nature12435    
[25]
Brintzinger H, Bercaw J E. J. Am. Chem. Soc., 1971, 93(8): 2045.

doi: 10.1021/ja00737a033     URL    
[26]
Sanner R D, Duggan D M, McKenzie T C, Marsh R E, Bercaw J E. J. Am. Chem. Soc., 1976, 98(26): 8358.

doi: 10.1021/ja00442a008     URL    
[27]
Manriquez J M, McAlister D R, Rosenberg E, Shiller A M, Williamson K L, Chan S I, Bercaw J E. J. Am. Chem. Soc., 1978, 100(10): 3078.

doi: 10.1021/ja00478a020     URL    
[28]
Hanna T E, Lobkovsky E, Chirik P J. Organometallics, 2009, 28(14): 4079.

doi: 10.1021/om900282u     URL    
[29]
Hanna T E, Bernskoetter W H, Bouwkamp M W, Lobkovsky E, Chirik P J. Organometallics, 2007, 26(9): 2431.

doi: 10.1021/om0611913     URL    
[30]
Semproni S P, Milsmann C, Chirik P J. Organometallics, 2012, 31(9): 3672.

doi: 10.1021/om300156z     URL    
[31]
Didenko L P, Gavrilov A B, Shilova A K, Strelets V V, Tsarev V N, Shilov A E, Makhaev V D, Banerjee A K, Pospisil L. Nouveau J. de Chim.-New J. Chem., 1987, 18(11): 583.
[32]
Kuznetsov D A, Fedyanin I V, Lyssenko K A, Bazhenova T A. Dalton Trans., 2014, 43(34): 12876.

doi: 10.1039/c4dt01035c     pmid: 25019529
[33]
Yin J H, Li J P, Wang G X, Yin Z B, Zhang W X, Xi Z F. J. Am. Chem. Soc., 2019, 141(10): 4241.

doi: 10.1021/jacs.9b00822     URL    
[34]
Guo J P, Chen P. Chem. Bull., 2019, 64(11):1114.
( 郭建平, 陈萍. 科学通报, 2019, 64 (11): 1114.).
[35]
Wang Q R, Guo J P, Chen P. J. Energy Chem., 2019, 36: 25.

doi: 10.1016/j.jechem.2019.01.027     URL    
[36]
Liu H Z. Chin. J. Catal., 2014, 35(10): 1619.

doi: 10.1016/S1872-2067(14)60118-2     URL    
[37]
Ertl G. Angew. Chem. Int. Ed., 2008, 47(19): 3524.

doi: 10.1002/(ISSN)1521-3773     URL    
[38]
Ertl G. Catal. Rev., 1980, 21(2): 201.

doi: 10.1080/03602458008067533     URL    
[39]
Vojvodic1 A, Nørskov J K. Natl. Sci. Rev., 2015, 2: 140.

doi: 10.1093/nsr/nwv023     URL    
[40]
Nørskov J K, Bligaard T, Rossmeisl J, Christensen C H. Nat. Chem., 2009, 1(1): 37.

doi: 10.1038/nchem.121     pmid: 21378799
[41]
van der Ham C J M, Koper M T M, Hetterscheid D G H. Chem. Soc. Rev., 2014, 43(15): 5183.

doi: 10.1039/C4CS00085D     URL    
[42]
Dumesic J A, Topsøe H, Khammouma S, Boudart M. J. Catal., 1975, 37: 503.

doi: 10.1016/0021-9517(75)90185-2     URL    
[43]
Somorjai G A, Materer N. Top. Catal., 1994, 1(3/4): 215.

doi: 10.1007/BF01492277     URL    
[44]
Mortensen J J, Morikawa Y, Hammer B, Nørskov J K. J. Catal., 1997, 169(1): 85.

doi: 10.1006/jcat.1997.1661     URL    
[45]
Dahl S, Tornqvist E, Chorkendorff I. J. Catal., 2000, 192(2): 381.

doi: 10.1006/jcat.2000.2858     URL    
[46]
Li J P, Wang W Y, Chen W X, Gong Q M, Luo J, Lin R Q, Xin H L, Zhang H, Wang D S, Peng Q, Zhu W, Chen C, Li Y D. Nano Res., 2018, 11(9): 4774.

doi: 10.1007/s12274-018-2062-4    
[47]
Li L L, Jiang Y F, Zhang T H, Cai H F, Zhou Y L, Lin B Y, Lin X Y, Zheng Y, Zheng L R, Wang X Y, Xu C Q, Au C T, Jiang L L, Li J. Chem, 2022, 8(3): 749.

doi: 10.1016/j.chempr.2021.11.008     URL    
[48]
Liu J C, Ma X L, Li Y, Wang Y G, Xiao H, Li J. Nat. Commun., 2018, 9: 1610.

doi: 10.1038/s41467-018-03795-8    
[49]
Ma X L, Liu J C, Xiao H, Li J. J. Am. Chem. Soc., 2018, 140(1): 46.

doi: 10.1021/jacs.7b10354     URL    
[50]
Guo J P, Chen P. Acc. Chem. Res., 2021, 54(10): 2434.

doi: 10.1021/acs.accounts.1c00076     URL    
[51]
Kitano M, Inoue Y, Yamazaki Y, Hayashi F, Kanbara S, Matsuishi S, Yokoyama T, Kim S W, Hara M, Hosono H. Nat. Chem., 2012, 4(11): 934.

doi: 10.1038/nchem.1476    
[52]
Lu Y F, Li J, Tada T, Toda Y, Ueda S, Yokoyama T, Kitano M, Hosono H. J. Am. Chem. Soc., 2016, 138(12): 3970.

doi: 10.1021/jacs.6b00124     URL    
[53]
Hosono H, Kitano M. Chem. Rev., 2021, 121(5): 3121.

doi: 10.1021/acs.chemrev.0c01071     pmid: 33606511
[54]
Ogura Y, Sato K, Miyahara S I, Kawano Y, Toriyama T, Yamamoto T, Matsumura S, Hosokawa S, Nagaoka K. Chem. Sci., 2018, 9(8): 2230.

doi: 10.1039/c7sc05343f     pmid: 29719696
[55]
Ogura Y, Tsujimaru K, Sato K, Miyahara S I, Toriyama T, Yamamoto T, Matsumura S, Nagaoka K. ACS Sustainable Chem. Eng., 2018, 6(12): 17258.

doi: 10.1021/acssuschemeng.8b04683     URL    
[56]
Zhang X L, Liu L, Wu A N, Zhu J F, Si R, Guo J P, Chen R T, Jiang Q K, Ju X H, Feng J, Xiong Z T, He T, Chen P. ACS Catal., 2022, 12(4): 2178.

doi: 10.1021/acscatal.1c05985     URL    
[57]
Aika K I, Ozaki A. J. Catal., 1970, 19: 350.

doi: 10.1016/0021-9517(70)90257-5     URL    
[58]
Ertl G, Weiss M, Lee S B. Chem. Phys. Lett., 1979, 60(3): 391.

doi: 10.1016/0009-2614(79)80595-3     URL    
[59]
Aika K I, Hori H, Ozaki A. J. Catal., 1972, 27: 424.

doi: 10.1016/0021-9517(72)90179-0     URL    
[60]
Strongin D R, Somorjai G A. J. Catal. 1988, 109: 51.

doi: 10.1016/0021-9517(88)90184-4     URL    
[61]
Mortensen J J, Hammer B, Nørskov J K. Phys. Rev. Lett., 1998, 80(19): 4333.

doi: 10.1103/PhysRevLett.80.4333     URL    
[62]
Cao A, Bukas V J, Shadravan V, Wang Z B, Li H, Kibsgaard J, Chorkendorff I, Nørskov J K. Nat. Commun., 2022, 13: 2382.

doi: 10.1038/s41467-022-30034-y    
[63]
Wang P K, Chang F, Gao W B, Guo J P, Wu G T, He T, Chen P. Nat. Chem., 2017, 9(1): 64.

doi: 10.1038/nchem.2595    
[64]
Wang P K, Xie H, Guo J P, Zhao Z, Kong X T, Gao W B, Chang F, He T, Wu G T, Chen M S, Jiang L, Chen P. Angew. Chem. Int. Ed., 2017, 56(30): 8716.

doi: 10.1002/anie.v56.30     URL    
[65]
Wang Q R, Pan J, Guo J P, Hansen H A, Xie H, Jiang L, Hua L, Li H Y, Guan Y Q, Wang P K, Gao W B, Liu L, Cao H J, Xiong Z T, Vegge T, Chen P. Nat. Catal., 2021, 4(11): 959.

doi: 10.1038/s41929-021-00698-8    
[66]
Bielawa H, Hinrichsen O, Birkner A, Muhler M. Angew. Chem. Int. Ed., 2001, 40(6): 1061.

pmid: 11268073
[67]
Jennings J R. Catalytic Ammonia Synthesis: Fundamentals and Practice. New York: Plenum Press, 1991.
[68]
Gao W B, Guo J P, Wang P K, Wang Q R, Chang F, Pei Q J, Zhang W J, Liu L, Chen P. Nat. Energy, 2018, 3(12): 1067.

doi: 10.1038/s41560-018-0268-z    
[69]
Guan Y Q, Liu C W, Wang Q R, Gao W B, Hansen H A, Guo J P, Vegge T, Chen P. Angew. Chem. Int. Ed., 2022, 61(39): e202205805.

doi: 10.1002/anie.v61.39     URL    
[70]
Canfield D E, Glazer A N, Falkowski P G. Science, 2010, 330(6001): 192.

doi: 10.1126/science.1186120     pmid: 20929768
[71]
Li D, Zan L X, Chen S M, Shi Z J, Chen P, Xi Z F, Deng D H. Natl Sci Rev, 2022, 9(12): nwac042.

doi: 10.1093/nsr/nwac042     URL    
[72]
Erisman J W, Sutton M A, Galloway J, Klimont Z, Winiwarter W. Nat. Geosci., 2008, 1(10): 636.

doi: 10.1038/ngeo325    
[73]
Rafiqul I, Weber C, Lehmann B, Voss A. Energy, 2005, 30(13): 2487.

doi: 10.1016/j.energy.2004.12.004     URL    
[74]
Patil B S, Wang Q, Hessel V, Lang J. Catal. Today, 2015, 256: 49.

doi: 10.1016/j.cattod.2015.05.005     URL    
[75]
Fridman A. Plasma Chemistry, London: Cambridge University Press, 2008.
[76]
Mehta P, Barboun P, Herrera F A, Kim J, Rumbach P, Go D B, Hicks J C, Schneider W F. Nat. Catal., 2018, 1(4): 269.

doi: 10.1038/s41929-018-0045-1    
[77]
Pei X K, Gidon D, Graves D B. J. Phys. D: Appl. Phys., 2020, 53(4): 044002.

doi: 10.1088/1361-6463/ab5095    
[78]
Wang W Z, Patil B, Heijkers S, Hessel V, Bogaerts A. ChemSusChem, 2017, 10(10): 21450.
[79]
Jardali F, Van Alphen S, Creel J, Ahmadi Eshtehardi H, Axelsson M, Ingels R, Snyders R, Bogaerts A. Green Chem., 2021, 23(4): 1748.

doi: 10.1039/D0GC03521A     URL    
[80]
Patil B S, Cherkasov N, Lang J, Ibhadon A O, Hessel V, Wang Q. Appl. Catal. B Environ., 2016, 194: 123.

doi: 10.1016/j.apcatb.2016.04.055     URL    
[81]
Abdelaziz A A, Kim H H. J. Phys. D: Appl. Phys., 2020, 53(11): 114001.

doi: 10.1088/1361-6463/ab5c78     URL    
[82]
Tang X L, Wang J G, Yi H H, Zhao S Z, Gao F Y, Chu C. Plasma Chem. Plasma Process, 2018, 38(3): 485.

doi: 10.1007/s11090-018-9876-4    
[83]
Jõgi I, Levoll E, Raud J. Chem. Eng. J., 2016, 301: 149.

doi: 10.1016/j.cej.2016.04.057     URL    
[84]
Toth J R, Abuyazid N H, Lacks D J, Renner J N, Sankaran R M. ACS Sustainable Chem. Eng., 2020, 8(39): 14845.

doi: 10.1021/acssuschemeng.0c04432     URL    
[85]
Zhao G B, Hu X D, Argyle M D, Radosz M. Ind. Eng. Chem. Res., 2004, 43(17): 5077.

doi: 10.1021/ie049795z     URL    
[86]
Rapakoulias D, Cavadias S, Amouroux J. Rev. Phys. Appl. (Paris), 1980, 15(7): 1261.

doi: 10.1051/rphysap:019800015070126100     URL    
[87]
Mehta P, Barboun P M, Engelmann Y, Go D B, Bogaerts A, Schneider W F, Hicks J C. ACS Catal., 2020, 10(12): 6726.

doi: 10.1021/acscatal.0c00684     URL    
[88]
Rosca V, Duca M, de Groot M T, Koper M T M. Chem. Rev., 2009, 109(6): 2209.

doi: 10.1021/cr8003696     URL    
[89]
Wagman D D, Evans W H, Parker V B, Schumm R H, Halow I, Bailey S M, Churney K L, Nuttall R L. The NBS tables of Chemical Thermodynamic Properties, 1982.
[90]
David A A, Robert E H, Willem H K, Sergei V L, Gábor M, Pedatsur N, Branko R, David M S, Steen S, Peter W. Pure Appl. Chem., 2015, 87: 1139.

doi: 10.1515/pac-2014-0502     URL    
[91]
Chen J G, Crooks R M, Seefeldt L C, Bren K L, Bullock R M, Darensbourg M Y, Holland P L, Hoffman B, Janik M J, Jones A K, Kanatzidis M G, King P, Lancaster K M, Lymar S V, Pfromm P, Schneider W F, Schrock R R. Science, 2018, 360(6391): eaar6611.

doi: 10.1126/science.aar6611     URL    
[92]
Schlögl R. Angew. Chem. Int. Edit., 2003, 42: 2004.

doi: 10.1002/anie.200301553     URL    
[93]
Ertl G. Catal. Rev., 1980, 21(2): 201.

doi: 10.1080/03602458008067533     URL    
[94]
Logadottir A, Rod T H, Nørskov J K, Hammer B, Dahl S, Jacobsen C J H. J. Catal., 2001, 197(2): 229.

doi: 10.1006/jcat.2000.3087     URL    
[95]
Wang Y, Yu Y, Jia R, Zhang C, Zhang B. Natl. Sci. Rev., 2019, 6: 730.

doi: 10.1093/nsr/nwz019     URL    
[96]
Kuang M, Wang Y, Fang W, Tan H T, Chen M X, Yao J D, Liu C T, Xu J W, Zhou K, Yan Q Y. Adv. Mater., 2020, 32(26): 2002189.

doi: 10.1002/adma.v32.26     URL    
[97]
Zhang L L, Cong M Y, Ding X, Jin Y, Xu F F, Wang Y, Chen L, Zhang L X. Angew. Chem. Int. Ed., 2020, 59(27): 10888.

doi: 10.1002/anie.v59.27     URL    
[98]
Dai C C, Sun Y M, Chen G, Fisher A C, Xu Z J. Angew. Chem. Int. Ed., 2020, 59(24): 9418.

doi: 10.1002/anie.v59.24     URL    
[99]
Fang W, Du C F, Kuang M, Chen M X, Huang W J, Ren H, Xu J W, Feldhoff A, Yan Q Y. Chem. Commun., 2020, 56(43): 5779.

doi: 10.1039/D0CC01759K     URL    
[100]
Makino K, Mossoba M M, Riesz P. J. Am. Chem. Soc., 1982, 104(12): 3537.

doi: 10.1021/ja00376a064     URL    
[101]
Kamath V, Prosperetti A, Egolfopoulos F N. J. Acoust. Soc. Am., 1993, 94(1): 248.

doi: 10.1121/1.407083     URL    
[102]
Suslick K S, Doktycz S J, Flint E B. Ultrasonics, 1990, 28(5): 280.

pmid: 2203195
[103]
Luche J L. Ultrasonics, 1992, 30(3): 156.

doi: 10.1016/0041-624X(92)90066-U     URL    
[104]
Crum L A. J. Acoust. Soc. Am., 1994, 95(1): 559.

doi: 10.1121/1.408351     URL    
[105]
Lepoint T, Mullie F. Ultrason. Sonochemistry, 1994, 1(1): 13.
[106]
Schultes H, Gohr H. Angew. Chem., 1936, 49(27): 420.

doi: 10.1002/(ISSN)1521-3757     URL    
[107]
Virtanen A I, Ellfolk N. J. Am. Chem. Soc., 1950, 72(2): 1046.
[108]
Virtanen A I, Ellfolk N, SillÉn L G, Rottenberg M. Acta Chem. Scand., 1950, 4: 93.

doi: 10.3891/acta.chem.scand.04-0093     URL    
[109]
Mead E L, Sutherland R G, Verrall R E. Can. J. Chem., 1976, 54(7): 1114.

doi: 10.1139/v76-159     URL    
[110]
Petrier C, Lamy M F, Francony A, Benahcene A, David B, Renaudin V, Gondrexon N. J. Phys. Chem., 1994, 98(41): 10514.

doi: 10.1021/j100092a021     URL    
[111]
Tiehm A. Ultrasound in Environmental Engineering, Technical University of Hamburg-Harburg Reports on Sanitary Engineering, 1999, 25: 167.
[112]
Petrier C, Jiang Y, Francony A, Lemay M F. Ultrasound in Environmental Engineering, Technical University of Hamburg-Harburg Reports on Sanitary Engineering, 1999, 25: 23.
[113]
Supeno, Kruus P. Ultrason. Sonochemistry, 2000, 7(3): 109.

doi: 10.1016/S1350-4177(99)00043-7     URL    
[114]
You H L, Wu Z, Zhang L H, Ying Y R, Liu Y, Fei L F, Chen X X, Jia Y M, Wang Y J, Wang F F, Ju S, Qiao J L, Lam C H, Huang H T. Angew. Chem. Int. Ed., 2019, 58(34): 11779.

doi: 10.1002/anie.v58.34     URL    
[115]
Huang H W, Tu S C, Zeng C, Zhang T R, Reshak A H, Zhang Y H. Angew. Chem. Int. Ed., 2017, 56(39): 11860.

doi: 10.1002/anie.201706549     URL    
[116]
Yuan S J, Chen J J, Lin Z Q, Li W W, Sheng G P, Yu H Q. Nat. Commun., 2013, 4: 2249.

doi: 10.1038/ncomms3249    
[117]
Chen S T, Liu D, Peng T Y. Sol. RRL, 2021, 5(2): 2000487.

doi: 10.1002/solr.v5.2     URL    
[118]
Yu Y, Wang C H, Yu Y F, Huang Y M, Liu C B, Lu S Y, Zhang B. J. Mater. Chem. A, 2020, 8(37): 19623.

doi: 10.1039/D0TA06747D     URL    
[119]
Liu Y W, Cheng M, He Z H, Gu B C, Xiao C, Zhou T F, Guo Z P, Liu J D, He H Y, Ye B J, Pan B C, Xie Y. Angew. Chem. Int. Ed., 2019, 58(3): 731.

doi: 10.1002/anie.v58.3     URL    
[120]
Li D, Zhao Y, Miao Y, Zhou C, Zhang L P, Tang J, Zhang T. Adv.Mater., 2022, 12: 2207.
[121]
Mateo D, Cerrillo J L, Durini S, Gascon J. Chem. Soc. Rev., 2021, 50(3): 2173.

doi: 10.1039/D0CS00357C     URL    
[1] 肖丰收, 吴勤明, 王成涛. 分子筛催化反应中的凝聚态化学[J]. 化学进展, 2023, 35(6): 886-903.
[2] 郑跃楠, 杨佳奇, 乔振安. 凝聚态化学视角下的多孔材料缺陷工程[J]. 化学进展, 2023, 35(6): 954-967.
[3] 王男, 魏迎旭, 刘中民. 甲醇制烯烃反应中的凝聚态化学[J]. 化学进展, 2023, 35(6): 839-860.
[4] 王海, 王成涛, 周航, 王亮, 肖丰收. 小分子催化转化中的凝聚态化学[J]. 化学进展, 2023, 35(6): 861-885.
[5] 徐如人, 闫文付. 气体分子反应中的凝聚态化学[J]. 化学进展, 2023, 35(6): 808-820.
[6] 秦学涛, 周子乔, 马丁. 金属/金属氧化物催化剂的SMSI效应[J]. 化学进展, 2023, 35(6): 928-939.
[7] 李庆贺, 乔波涛, 张涛. 单原子催化中的凝聚态化学[J]. 化学进展, 2023, 35(6): 821-838.
[8] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[9] 闫文付, 徐如人. 凝聚液态水溶液中的化学反应[J]. 化学进展, 2022, 34(7): 1454-1491.
[10] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[11] 李豹, 吴立新. 液态凝聚态调控的分散质组装及功能[J]. 化学进展, 2022, 34(7): 1600-1609.
[12] 蒋茹, 刘晨旭, 杨平, 游书力. 手性催化与合成中的一些凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1537-1547.
[13] 高露莎, 李婧汶, 宗慧, 刘千玉, 胡凡生, 陈接胜. 水热体系中的凝聚态及化学反应[J]. 化学进展, 2022, 34(7): 1492-1508.
[14] 陶学兵, 于吉攀, 梅雷, 聂长明, 柴之芳, 石伟群. 铀催化的氮气活化[J]. 化学进展, 2021, 33(6): 907-913.
[15] 徐如人, 于吉红, 闫文付. 凝聚态化学的研究对象与主要科学问题[J]. 化学进展, 2020, 32(8): 1017-1048.
阅读次数
全文


摘要

固氮反应中的凝聚态化学