English
新闻公告
More
化学进展 2022, Vol. 34 Issue (7): 1548-1553 DOI: 10.7536/PC220231 前一篇   后一篇

• 综述 •

聚糖化学合成的挑战和可能的凝聚态化学问题

徐鹏*(), 俞飚*()   

  1. 中国科学院上海有机化学研究所 生命有机化学国家重点实验室 上海 200032
  • 收稿日期:2022-02-24 修回日期:2022-03-25 出版日期:2022-07-24 发布日期:2022-06-20
  • 通讯作者: 徐鹏, 俞飚
  • 基金资助:
    国家自然科学基金项目(22177125); 上海市科学技术委员会项目(22ZR1475600)

Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry

Peng Xu(), Biao Yu()   

  1. State Key Laboratory of Bioorganic and Natural Product Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science,Shanghai 200032, China
  • Received:2022-02-24 Revised:2022-03-25 Online:2022-07-24 Published:2022-06-20
  • Contact: Peng Xu, Biao Yu
  • Supported by:
    the National Natural Science Foundation of China(22177125); Science and Technology Commission of Shanghai Municipality(22ZR1475600)

聚糖是自然界含量最丰富的有机高分子,是各类生命体中重要的结构支撑和能量储存物质;而且,细胞表面的聚糖在细胞识别、分化、发育、癌变和免疫等生命过程中发挥重要作用。相比于核酸和蛋白质,对于聚糖类功能的研究远远落后,这与难以获取结构明确的聚糖及缺乏在体内精确操控聚糖的手段相关。聚糖的合成化学在最近几十年里得到了飞速发展,为聚糖,特别是寡聚糖的结构和功能研究提供了强有力的工具。然而,相比于核酸和蛋白质的合成,聚糖的合成仍然效率低下,特别是对于其中一些具有特殊结构糖链的合成仍然是挑战性的课题。在聚糖的合成实验中,经常会出现意外的结果,多种因素可能影响特定糖苷键的合成效率和立体选择性。聚糖分子可以通过分子间非共价作用力形成聚集体,从而影响合成。特别是在脱除保护基的过程中,聚糖分子溶解性的巨大变化对反应历程产生决定性影响。这些由于聚集体形成而对反应性的影响尚没有深入研究;在具体合成中,仍然需要通过实验的不断试错来完成聚糖的合成。另外,生命体中的聚糖和糖缀合物也通过形成超分子结构来发挥功能。因此,研究聚糖和聚糖合成中的凝聚态化学具有重要意义。

Glycans are the most abundant organic polymers in nature, and vital biomaterials for structural support and energy storage in living organisms. Meanwhile, glycans play an important role in cell recognition, differentiation, development, carcinogenesis and immunity. Compared with nucleic acid and protein, the specific role of glycans in many biological processes is still unknown, which is related to the difficulty of accessing well-defined glycans and the lack of precise tools for manipulating glycans in vivo. Synthetic methods in carbohydrate chemistry have been developed rapidly in recent decades, providing a powerful weapon for the study of synthetic glycans, especially oligosaccharides. Nevertheless, compared with the synthesis of nucleic acids and proteins, the synthesis of structurally well-defined glycans remains an unsolved chemical challenge with many unexpected problems. There are various factors that may affect the efficiency and stereoselectivity of glycosylation profile. Furthermore, glycans could be assembled into ordered aggregates through intermolecular non-covalent forces, then affecting the synthesis. For instance, in the process of removal protecting groups, the great change of solubility of glycan has a decisive effect on the reaction. The effect of aggregation formation on reactivity has not been thoroughly studied. Therefore, it is still necessary to complete the synthesis of well-defined glycan through trial-and-error experiments. In addition, glycans and glycoconjugates play an important role in living organisms by forming supramolecular structures. In conclusion, it is of great significance to study the condensed matter chemistry in glycans and their synthesis.

Contents

1 Structure, function and synthesis of glycans in living systems

2 Challenges and advances in the chemical synthesis of glycans

3 Some uncertainties in the chemical synthesis of glycans

3.1 The solvent effect

3.2 The concentration effect

3.3 The temperature effect

3.4 Problems in heterogeneous reactions

3.5 Solubility problem

4 Possible condensed matter chemistry problems

5 Prospect

()
图1 蛋白质的糖基化及其糖链介导的生命过程[2]
Fig. 1 Protein glycosylation and the glycan-involved interactions[2]
图2 缩聚反应制备聚糖[14]
Fig. 2 Glycan synthesis by condensation polymerization[14]. Ac = acetyl[14]
图3 α-葡聚十糖的浓度依赖性立体选择性合成[17]
Fig. 3 Stereoselective synthesis of α- decaglucan based on a concentration effect[17]. Bn = benzyl, Bz = benzoyl, Tol = p-methylphenyl
图4 模板导向的环合糖苷化反应中温度对立体化学的影响[21]
Fig. 4 Template directed cyclo-glycosylation with the stereoselectivity being effected by the reaction temperature[21]. Me = methyl, TBDPS = tert-butyldiphenylsilyl
图5 不同干燥剂存在下的1,2-顺式糖苷化反应[23]
Fig. 5 1,2-cis Selective glycosylation in the presence of different dehydrating agents[23]
图6 拟杆菌脂多糖O-抗原聚糖合成中的保护基脱除[25f]
Fig. 6 Deprotection of glycans relevant to the O-antigen of Bacteroides vulgatus[25f]. Ph = phenyl, TBS = tert-butyldimethyl, MP = p-methoxyphenyl
[1]
(a) Bertozzi C R, Kiessling L L. Science, 2001, 291: 2357.

pmid: 11269316
(b) Introdution to Glycobiology.3rd ed. Taylor M E, Drickamer K. Oxford, 2011.

pmid: 11269316
[2]
(a) Dwek R A. Chem. Rev., 1996, 96: 683.

doi: 10.1021/cr940283b     URL     pmid: 11749347
(b) Bashkin J K. Chem. Rev., 2000, 100: 4265.

pmid: 11749347
[3]
Barsanti L, Passarelli V, Evangelista V, Frassanito A M, Gualtieri P. Nat. Prod. Rep., 2011, 28: 457.

doi: 10.1039/c0np00018c     pmid: 21240441
[4]
Byun S, Lee C G, Kang H J, Kim G C, Jun C D, Jan G, Suh C H, Jung J Y, Sprent J, Rudra D, De Castro C, Molinaro A, Surh C D, Im S H. Sci. Immunol., 2018, 3: eaat6975.
[5]
Biörklund M, van Rees A, Mensink R P, Önning G. Eur. J. Clin. Nutr., 2005, 59: 1272.

doi: 10.1038/sj.ejcn.1602240     pmid: 16015250
[6]
Guberman M, Seeberger P H. J. Am. Chem. Soc., 2019, 141: 5581.

doi: 10.1021/jacs.9b00638     pmid: 30888803
[7]
Xiao R, Grinstaff M W. Prog. Polym. Sci., 2017, 74: 78.
[8]
(a) Mydock L L, Demchenko A V. Org. Biomol. Chem., 2010, 8: 497.

doi: 10.1039/B916088D     URL    
(b) Crich D. Acc. Chem. Res., 2010, 43: 1144.

doi: 10.1021/ar100035r     URL    
(c) Frihed T G, Bols M, Pedersen C M. Chem. Rev., 2015, 115: 4963
(d) Yu B. Acc. Chem. Res., 2018, 51: 507.

doi: 10.1021/acs.accounts.7b00573     URL    
[9]
Krasnova L, Wong C-H. J. Am. Chem. Soc., 2019, 141: 3735.

doi: 10.1021/jacs.8b11005     pmid: 30716271
[10]
Panza M, Pistorio S G, Stine K J, Demchenko A V. Chem. Rev., 2018, 118: 8105.

doi: 10.1021/acs.chemrev.8b00051     URL    
[11]
Zhu X, Schmidt R R. Angew. Chem. Int. Ed., 2009, 48: 1900.

doi: 10.1002/anie.200802036     URL    
[12]
Ratcliffe A J, Fraser-Reid B. J. Chem. Soc., 1990, 747.
[13]
Voit B. Angew. Chem. Int. Ed., 2000, 37: 3407.

doi: 10.1002/(SICI)1521-3773(19981231)37:24【-逻*辑*与-】lt;3407::AID-ANIE3407【-逻*辑*与-】gt;3.0.CO;2-Z     URL    
[14]
Li L, Xu Y, Milligan I, Fu L, Franckowiak E A, Du W. Angew. Chem. Int. Ed., 2013, 52: 13699.

doi: 10.1002/anie.201306391     URL    
[15]
Demchenko A, Stauch T, Boons G J. Synlett, 1997, 818.
[16]
(a) Chao C S, Li C W, Chen M C, Chang S S, Mong K K T. Chem. Eur. J., 2009, 15: 10972
(b) Yang F, Zhu Y, Yu B. Chem. Commun., 2012, 48: 7097
(c) Kimura T, Eto T, Takahashi D, Toshima K. Org. Lett., 2016, 18: 3190.

doi: 10.1021/acs.orglett.6b01404     URL    
[17]
Zhao Q, Zhang H, Zhang Y, Zhou S, Gao J. Org. Biomol. Chem., 2020, 18, 6549.
[18]
(a) Kononov L O, Malysheva N N, Kononova E G, Orlova A V. Eur. J. Org. Chem., 2008, 3251;
(b) Kononov L O, Malysheva N N, Orlov A V. Eur. J. Org. Chem., 2009, 611.
[19]
Orlova A V, Ahiadorme D A, Laptinskaya T V, Kononov L O. Rus. Chem. Bull., 2021, 70: 2214.

doi: 10.1007/s11172-021-3335-8     URL    
[20]
Durand A. Eur. Polym. J., 2007, 43: 1744.

doi: 10.1016/j.eurpolymj.2007.02.031     URL    
[21]
Valverde S, GÓmez A M, LÓpez J C, HerradÓn B. Tetrahedron Lett., 1996, 37: 1105.
[22]
Sharkey P F, Eby R, Schuerch C. Carbohydr. Res., 1981, 96: 223.

doi: 10.1016/S0008-6215(00)81872-8     URL    
[23]
Jona H, Takeuchi K, Mukaiyama T. Chem. Lett., 2000, 1278.
[24]
Satoh T, Imai T, Ishihara H, Maeda T, Kitajyo Y, Narumi A, Kaga H, Kaneko N, Kakuchi T. Macromolecules, 2003, 36: 6364.

doi: 10.1021/ma034643l     URL    
[25]
(a) Hansen S U U, Miller G J, Jayson G C, Gardiner J M, Org. Lett., 2013, 15: 88;

doi: 10.1021/ol303112y     pmid: 30090231
(b) Hansen S U, Miller G J, Cliff M J, Jayson G C, Gardiner J M. Chem. Sci., 2015, 6: 6158;

doi: 10.1039/c5sc02091c     pmid: 30090231
(c) Naresh K, Schmacher F, Hahm H S, Seeberger P H. Chem. Commun., 2017, 53: 9085;

doi: 10.1039/C7CC04380E     URL     pmid: 30090231
(d) Wu Y, Xiong D C, Chen S C, Wang Y S, Ye X S. Nat. Commun., 2017, 8: 14851;

doi: 10.1038/ncomms14851     URL     pmid: 30090231
(e) Joseph A A, Pardo-Vargas A, Seeberger P H. J. Am. Chem. Soc., 2020, 142: 8561;

doi: 10.1021/jacs.0c00751     URL     pmid: 30090231
(f) Zhu Q, Shen Z, Chiodo F, Nicolardi S, Molinaro A, Silipo A, Yu B. Nat. Commun., 2020, 11: 4142.

doi: 10.1038/s41467-020-17992-x     URL     pmid: 30090231
[26]
Yu Y, Tyrikos-Ergas T, Zhu Y, Fittolani G, Bordoni V, Singhal A, Fair R J, Grafmüller A, Seeberger P H, Delbianco M. Angew. Chem. Int. Ed., 2019, 58: 13127.

doi: 10.1002/anie.201906577     URL    
[27]
Yu Y, Gim S, Kim D, Arnon Z A, Gazit E, Seeberger P H, Delbianco M. J. Am. Chem. Soc., 2019, 141: 4833.

doi: 10.1021/jacs.8b11882     URL    
[28]
(a) Xu R. Nat. Sci. Rev., 2018, 5: 1;
(b) Xu R, Wang K, Chen G, Yan W. Nat. Sci. Rev., 2019, 6: 191.

doi: 10.1093/nsr/nwy128     URL    
[1] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[2] 韩鹏博, 徐赫, 安众福, 蔡哲毅, 蔡政旭, 巢晖, 陈彪, 陈明, 陈禹, 池振国, 代淑婷, 丁丹, 董宇平, 高志远, 管伟江, 何自开, 胡晶晶, 胡蓉, 胡毅雄, 黄秋忆, 康苗苗, 李丹霞, 李济森, 李树珍, 李文朗, 李振, 林新霖, 刘骅莹, 刘佩颖, 娄筱叮, 吕超, 马东阁, 欧翰林, 欧阳娟, 彭谦, 钱骏, 秦安军, 屈佳敏, 石建兵, 帅志刚, 孙立和, 田锐, 田文晶, 佟斌, 汪辉亮, 王东, 王鹤, 王涛, 王晓, 王誉澄, 吴水珠, 夏帆, 谢育俊, 熊凯, 徐斌, 闫东鹏, 杨海波, 杨清正, 杨志涌, 袁丽珍, 袁望章, 臧双全, 曾钫, 曾嘉杰, 曾卓, 张国庆, 张晓燕, 张学鹏, 张艺, 张宇凡, 张志军, 赵娟, 赵征, 赵子豪, 赵祖金, 唐本忠. 聚集诱导发光[J]. 化学进展, 2022, 34(1): 1-130.
[3] 朱泉霏, 郝俊迪, 严靖雯, 王雨, 冯钰锜. FAHFAs:生物功能、分析及合成[J]. 化学进展, 2021, 33(7): 1115-1125.
[4] 施剑林, 华子乐. 无机纳米与多孔材料合成中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1060-1075.
[5] 茅瓅波, 高怀岭, 孟玉峰, 杨玉露, 孟祥森, 俞书宏. 凝聚态化学视角下的生物矿化[J]. 化学进展, 2020, 32(8): 1086-1099.
[6] 桑艳华, 潘海华, 唐睿康. 生物矿化中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1100-1114.
[7] 雷立旭, 周益明. 无溶剂或少溶剂的固态化学反应[J]. 化学进展, 2020, 32(8): 1158-1171.
[8] 谢超, 周波, 周灵, 吴雨洁, 王双印. 缺陷与催化[J]. 化学进展, 2020, 32(8): 1172-1183.
[9] 刘晓旸. 高压条件下的凝聚态化学[J]. 化学进展, 2020, 32(8): 1184-1202.
[10] 荆西平. 从固体化学到凝聚态化学[J]. 化学进展, 2020, 32(8): 1049-1059.
[11] 潘志君, 庄巍, 王鸿飞. 凝聚态化学研究中的动力学振动光谱理论与技术[J]. 化学进展, 2020, 32(8): 1203-1218.
[12] 薛一凡, 孟文卉, 汪润泽, 任俊杰, 衡伟利, 张建军. 过饱和度理论及过饱和药物递送系统[J]. 化学进展, 2020, 32(6): 698-712.
[13] 闻静, 李禹红, 王莉, 陈秀楠, 曹旗, 何乃普. 基于壳聚糖二氧化碳智能材料[J]. 化学进展, 2020, 32(4): 417-422.
[14] 郭芬岈, 李宏伟, 周孟哲, 徐正其, 郑岳青, 黎挺挺. 基于非贵金属催化剂常温常压电化学合成氨[J]. 化学进展, 2020, 32(1): 33-45.
[15] 胡代花, 陈旺, 王永吉. 活性维生素D3类似物的合成及构效关系研究[J]. 化学进展, 2016, 28(6): 839-859.