English
新闻公告
More
化学进展 2021, Vol. 33 Issue (9): 1648-1664 DOI: 10.7536/PC200851 前一篇   后一篇

• 综述 •

基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用

葛明*(), 胡征, 贺全宝   

  1. 华北理工大学化学工程学院 唐山 063210
  • 收稿日期:2020-08-24 修回日期:2020-12-24 出版日期:2021-09-20 发布日期:2021-03-04
  • 通讯作者: 葛明
  • 基金资助:
    河北省自然科学基金项目(B2019209373)

Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment

Ming Ge(), Zheng Hu, Quanbao He   

  1. College of Chemical Engineering, North China University of Science and Technology,Tangshan 063210, China
  • Received:2020-08-24 Revised:2020-12-24 Online:2021-09-20 Published:2021-03-04
  • Contact: Ming Ge
  • Supported by:
    Natural Science Foundation of Hebei Province(B2019209373)

随着我国经济的快速发展和城市化进程的加快,自然水体中的有机污染问题愈加严重。基于自由基反应的高级氧化技术(AOPs)可以高效去除水环境中残留的难生物降解的有机污染物,在催化剂的作用下,高级氧化过程方能有效生成强氧化性的自由基来降解有机污染物。尖晶石型铁氧体(MFe2O4(M=Zn, Ni, Co, Cu, Mn))被广泛用作高级氧化过程中驱动自由基生成的催化剂,同时强磁性及高稳定性保证其容易在外加磁场的作用下实现回收和再利用。本文主要综述了基于尖晶石型铁氧体的非均相类芬顿技术、光催化技术及过硫酸盐高级氧化技术在有机废水处理方面的研究进展,着重介绍了不同铁氧体磁性纳米材料在上述3种高级氧化技术中催化降解水体中有机污染物的作用机制以及催化性能增强的途径;最后指出尖晶石型铁氧体在高级氧化技术应用中存在的一些问题,并对其后续研究方向进行展望。

With the rapid development of China's economy and the acceleration of urbanization, the problem about organic pollutions in natural water bodies has become more and more serious. The advanced oxidation processes (AOPs) based on free radical reaction can efficiently degrade the non-biodegradable organic pollutants remaining in water environment. Under the action of the catalyst, the advanced oxidation processes can effectively generate the strong oxidizing free radicals to degrade organic pollutants. Spinel ferrite (MFe2O4(M=Zn, Ni, Co, Cu, Mn)) is widely used as a catalyst to promote the generation of free radicals in the advanced oxidation processes, and at the same time, its strong magnetism and high stability ensure that it is easy to recycle by an external magnetic field and further reused. This article mainly reviews the research progress of spinel ferrite-based heterogeneous Fenton-like technology, photocatalytic technology and persulfate advanced oxidation technology in organic wastewater treatment, and focuses on the catalytic degradation mechanism of organic pollutants in water bodies by the different ferrite magnetic nanomaterials in the above three advanced oxidation technologies, and the ways to enhance catalytic performances of ferrite magnetic catalysts. Finally, we point out some problems about the application of spinel ferrite in advanced oxidation processes, and the future research directions of spinel ferrite-based advanced oxidation processes are also prospected.

Contents

1 Introduction

2 Spinel ferrite-based heterogeneous Fenton-like oxidation technologies

2.1 ZnFe2O4

2.2 NiFe2O4

2.3 CoFe2O4

2.4 MnFe2O4

2.5 CuFe2O4

3 Spinel ferrite-based photocatalytic technologies

3.1 ZnFe2O4

3.2 MFe2O4 (M=Ni, Co, Cu)

4 Persulfate oxidation technologies with spinel ferrite as the catalyst

4.1 The organic pollutants degradation in water by persulfate activated with CoFe2O4

4.2 The organic pollutants degradation in water by persulfate activated with CuFe2O4

4.3 The organic pollutants degradation in water by persulfate activated with MnFe2O4

5 Conclusion and prospect

()
图1 尖晶石型铁氧体的结构示意图
Fig.1 The schematic representation of spinel ferrite structure
表1 基于磁性铁氧体的非均相类芬顿氧化技术去除水中有机污染物
Table 1 Magnetic ferrite-based heterogeneous Fenton-like oxidation technologies used for removal of organic pollutants in water
Catalyst Synthetic
method
Conditions for
Fenton-like reaction
Catlayst
dosage
H2O2
dosage
Pollutants and
degradation efficiency
ref
ZnFe2O4 hydrothermal route 150 W Xe lamp 0.5 g/L 12.0 mM AOII 100% (2 h) 19
ZnFe2O4/
graphene
solvothermal method 500 W Xe lamp 1.0 g/L 30% H2O2 (1 mL) RhB 100% (2 h);
MO 96% (2 h)
20
porous C/ZnFe2O4 CO2-mediated
ethanol route
300 W Xe lamp 1.0 g/L 30% H2O2 (2 mL) RhB 100% (1 h);
phenol 91% (2 h)
21
NiFe2O4 co-precipitation method - 2.0 g/L 120.0 mM phenol 95% (5.5 h) 22
NiFe2O4/C calcination method 800 W Xe lamp 0.1 g/L 30% H2O2 (0.1 mL) TC 97.25% (1 h) 23
NiFe2O4/CNTs hydrothermal route 150 W Xe lamp 0.025 g/L 1 μL/mL SMX 90% (2 h) 24
CoFe2O4 co-precipitation route 125 W Hg lamp 1.0 g/L 30% H2O2 (3 mL) MB 90% (1.25 h) 27
CoFe2O4-rGO liquid assembly method ultrasonic irradiation 0.08 g/L 3 mM AO7 90.5% (2 h) 28
rGO/CoFe2O4 solvothermal method 5.0 mmol/l NH2OH 0.1 g/L 3 mM MB 100% (0.25 h) 29
CoFe2O4@PPy oxidization polymerization 300 W Xe lamp 0.2 g/L 30% H2O2 (200 μL) RhB 100% (2 h) 30
MnFe2O4 sol-gel method - 0.6 g/L 200 mM NOR 90.6% (3 h) 31
MnFe2O4/
biochar
co-precipitation method 300 W Xe lamp 0.5 g/L 200 mM TC 95% (2 h) 33
MnFe2O4@SnS2 hydrothermal method 300 W Xe lamp 0.2 g/L 30% H2O2 (3 mL) MB 92% (2 h) 34
CuFe2O4 nanocasting strategy - 0.3 g/L 40 mM Imidacloprid
100% (5 h)
35
Cu/CuFe2O4 solvothermal method - 0.1 g/L 15 mM MB 99% (4 min) 12
CuFe2O4@C solvothermal route 300 W Xe lamp 0.1 g/L 30% H2O2 (0.2 mL) MB 97% (1.5 h) 37
CuFe2O4/rGO hydrothermal method 500 W of microwave power 0.3 g/L 30% H2O2 (600 μL) RhB 95.5% (1 min) 38
CuFe2O4@PDA self-polymerization - 0.2 g/L 0.5 M MB 97% (0.5 h) 39
CuFe2O4@
g-C3N4
self-assembly method 500 W Xe lamp 0.1 g/L 0.01 M OII 98% (3.5 h) 40
图2 ZnFe2O4光-芬顿机制
Fig.2 The photo-Fenton mechanism in ZnFe2O4
表2 基于磁性铁氧体的光催化氧化技术降解水中有机污染物
Table 2 Degradation of organic pollutants in water using magnetic ferrite-based photocatalytic oxidation technologies
Photocatalyst Synthetic
method
Light source Catalyst
dosage
Pollutants and
degradation efficiency
ref
hollow cube ZnFe2O4 template method 300 W Xe lamp 0.5 g/L TCHC 85% (20 min) 41
ZnFe2O4(111) hydrothermal route 500 W Xe lamp 1.0 g/L RhB 90% (1 h) 43
ZnFe2O4-TiO2 a reflux route 8 W visible-light lamp 1.0 g/L BPA 98.7% (30 min) 44
ZnFe2O4-ZnO co-precipitation method 500 W halogen lamp 0.5 g/L MB 98% (6 h) 46
Ag/ZnO/ZnFe2O4 facile calcination route 250 W Xe lamp 0.5 g/L MB 93% (100 min) 47
BiOBr-ZnFe2O4 precipitation method 300 W Xe lamp 1.0 g/L RhB 90% (25 min) 48
biochar
@ZnFe2O4/BiOBr
solvothermal method 300 W Xe lamp 0.5 g/L CIP 65% (1 h) 49
p-BiOI/n-ZnFe2O4 solvothermal method 400 W halogen lamp 1.0 g/L AO7 96% (3 h) 51
Ag3PO4/ZnFe2O4 precipitation route 10 W LED light 1.0 g/L MB 100% (1 h) 13
C@ZnFe2O4/Ag3PO4 precipitation method 300 W Xe lamp 1.0 g/L 2,4-DCP 95% (2.5 h) 52
ZnFe2O4/AgBr/Ag precipitation and
photoreduction
300 W Xe lamp 0.4 g/L MO 92% (30 min) 54
g-C3N4-ZnFe2O4 solvothermal method 500 W Xe lamp 0.25 g/L MO 98% (3 h) 56
Ag/NiFe2O4 combustion method 300 W Xe lamp 0.25 g/L MB 70% (2 h) 57
Ag/CuFe2O4 impregnation strategy 500 W Xe lamp 0.1 g/L 4-CP 81% (2 h) 58
rGO-CoFe2O4 hydrothermal route Solar light 0.4 g/L 4-CP 100% (2 h) 60
Pd-NiFe2O4/rGO hydrothermal route 300 W Xe lamp 1.0 g/L RhB 99% (2 h) 61
BiOBr/NiFe2O4 hydrothermal route 500 W Xe lamp 1.0 g/L RhB 100% (30 min) 62
Ag3PO4@CoFe2O4 precipitation approach 500 W halogen lamp 0.4 g/L MB 100% (40 min) 64
Ag3PO4/CuFe2O4 deposition method 300 W Xe lamp 0.2 g/L RhB 100% (35 min) 65
Ag3PO4/GO/NiFe2O4 deposition route 300 W Xe lamp 0.2 g/L RhB 100% (30 min) 66
Ag3PO4/CoFe2O4/GO precipitation process 300 W Xe lamp 0.3 g/L MO 91% (15 min) 67
biochar@CoFe2O4/Ag3PO4 in-situ precipitation method 300 W Xe lamp 0.5 g/L BPA 91% (60 min) 68
AgBr/NiFe2O4 a precipitation method 10 W LED lamp 1.0 g/L RhB 100% (60 min) 14
AgBr/CoFe2O4 a precipitation method 10 W LED lamp 1.0 g/L MO 95% (60 min) 15
AgBr-Cu-CuFe2O4 a precipitation method 10 W LED lamp 1.0 g/L RhB 95.2% (60 min) 16]
图3 光生载流子转移示意图[44,46]
Fig.3 The schematic diagram of photo-generated carrier transfer[44,46]
图4 (a)Z型电荷转移机制[49];(b)Ⅱ型异质结电荷转移机理[50,51]
Fig.4 (a) Z-scheme charge transfer mechanism[49]; (b) Ⅱ-type heterojunction charge transfer mechanism[50,51]
表3 磁性铁氧体作为催化剂的过硫酸盐氧化技术去除水中的污染物
Table 3 Persulfate oxidation technologies with magnetic ferrite as catalyst used for the removal of pollutants from water
catalyst Synthetic
method
PMS or PDS
dosage
Catalyst
dosage
Pollutants and
degradation efficiency
ref
CoFe2O4 hydrothermal method 0.8 mM PMS 0.4 g/L ATZ 99% (30 min) 72
CoFe2O4 sol-gel method 0.5 mM PMS 0.25 g/L TPhP 99.5% (6 min) 73
CoFe2O4/Al2O3 sol-gel method 0.5 mM PMS 1.0 mM SCP 97.8% (15 min) 74
CoFe2O4/TiO2 impregnation-calcination method 4.0 g/L PMS 0.01 g/L RhB 100% (30 min)
Phenol 97.2% (60 min)
75
CoFe2O4-rGO solvothermal route 10 mg/150 mL 0.3 g/150 mL Phenol 100% (30 min) 76
CoFe2O4-GO hydrothermal method 0.5 mM PMS 0.3 g/L NOR 100% (20 min) 77
CoFe2O4-EG co-precipitation method 0.4 mM PMS 0.5 g/L SMX ~92% (20 min) 78
CoFe2O4-x hydrogen calcination method 3 mM PDS 0.1 g/L BPA 98% (60 min) 79
CuFe2O4 sol-gel combustion method 0.2 mM PMS 0.1 g/L TBBPA 99% (30 min) 80
CuFe2O4 a citrate combustion method 20 μM PMS 0.1 g/L IPM ~80% (10 min) 81
CuFe2O4 a citrate combustion method 0.5 g/L PMS 0.4 g/L BPA 100% (60 min) 82
CuFe2O4 co-precipitation-calcination method 0.5 mM PMS 0.2 g/L NOR 90% (120 min) 83
CuFe2O4 a coprecipitation method 0.2 mM PMS 0.1 g/L PCB28 89% (8 h) 84
CuFe2O4-OMS-2 a solvent-free process 0.65 mM PMS 0.2 g/L AO7 95.8% (20 min) 85
CuFe2O4-Fe2O3 a co-precipitation method 0.36 g/L PMS 0.2 g/L BPA 100% (10 min) 86
CuFe2O4/MWCNTs a sol-gel combustion method 0.6 mM PMS 0.2 g/L TMP 90% (24 min) 87
CuFe2O4-NG a hydrothermal route 1.0 g/L PMS 0.05 g/L OⅡ 100% (70 min) 88
CuFe2O4/ kaolinite a facile citrate combustion method 0.5 mM PMS 0.5 g/L BPA 100% (60 min) 89
CuFe2O4 a sol-gel combustion method 8 mM PDS 30 g/L PNP 89% (60 min) 90
CuFe2O4/MWCNTs a sol-gel combustion route 1.0 g/L PDS 0.1 g/L DEP 100% (30 min) 91
CuFe2O4-Cu a solvothermal method 1.5 g/L PDS 0.3 g/L TC 80% (120 min) 17
MnFe2O4 the nanocasting strategy 2 mM PMS 0.2 g/L OⅡ 100% (30 min) 92
MnFe2O4 - 0.1 mM PMS 0.2 g/L BPA 90% (30 min) 93
MnFe2O4 - 0.75 mM PMS 0.25 g/L TCS 100% (20 min) 94
MnFe2O4-rGO a precipitation method 0.5 g/L PMS 0.05 g/L OⅡ 90% (120 min) 95
MnFe2O4-MX a solvothermal method 0.5 g/L PMS 0.05 g/L OⅡ 100% (6 min) 96
MnFe2O4-MnO2 a hydrothermal method 0.4 g/L PMS 0.2 g/L RhB 100% (40 min) 97
MnFe2O4 thermal decomposition 0.5 g/L PDS 3 g/L Phenol 90% (360 min) 98
MnFe2O4/AC a solvothermal method 0.5 g/L PDS 0.2 g/L OG 100% (30 min) 99
CuO/MnFe2O4 an impregnation method 1.0 g/L PDS 1.0 g/L LVF 87% (120 min) 100
图5 过一硫酸盐(a)和过二硫酸盐(b)的结构式
Fig.5 The structure of peroxymonosulfate (a) and peroxydisulfate (b)
图6 CoFe2O4活化PMS产生 SO 4 · -[72]
Fig.6 Activation of PMS by CoFe2O4 to generate SO 4 · -[72]
图7 CuFe2O4活化PMS生成 SO 4 · - [18]
Fig.7 PMS activation by CuFe2O4 to generate SO 4 · - [18]
图8 AC/MnFe2O4活化PDS生成 SO 4 · -[99]
Fig.8 PDS activation by AC/MnFe2O4 to generate SO 4 · -[99]
表4 不同铁氧体在3类高级氧化技术中的应用、催化机制以及活性增强方法的比较
Table 4 Comparison of the application, catalytic mechanism and methods for activity enhancement of different ferrite in AOPs
Catalyst Application in AOPs Mechanism for organic
pollutants degradation
Methods for the
enhancement of activity
ZnFe2O4 (1)Fenton [19~21] ≡Fe3+ + e- → ≡Fe2+;
≡Fe2+ + H2O2→·OH + ≡Fe3+ + OH-
·OH + pollutants → degradation products
Carbon modification[20,21]
(2)Photocatalysis [13,41,43~44,46~52,54,56] ZnFe2O4 + hν → e- + h+O2 + e- O 2 · - O 2 · -/h+ + pollutants → degradation
products
Carbon modification [49,52]
Construction of heterojunction [13,44,46~52,54]
NiFe2O4 (1)Fenton [22~24] ≡Fe3+ + e- → ≡Fe2+;
≡Ni2+ + ≡Fe3+ → ≡Fe2+ + ≡Ni3+
≡Fe2+ + H2O2→·OH + ≡Fe3+ + OH-
·OH + pollutants → degradation products
Carbon modification[23,24]
(2)Photocatalysis [14,57,61,62,66] NiFe2O4 + hν → e- + h+O2 + e- O 2 · -
O 2 · -/h+ + pollutants → degradation
products
Metal deposition [57,61]
Construction of heterojunction [14,62,66]
CoFe2O4 (1)Fenton [27~30] ≡Co2+ + H2O2→·OH + ≡Co3+ + OH-
≡Fe2+ + H2O2→·OH + ≡Fe3+ + OH-
·OH + pollutants → degradation products
Carbon modification[28,29]
(2)Photocatalysis [15,60,64,67,68] CoFe2O4 + hν → e- + h+O2 + e- O 2 · -
O 2 · -/h+ + pollutants → degradation
products
Carbon modification[60]
Construction of heterojunction [15,64,67,68]
(3)Persulfate oxidation [72~79] ≡Co2+-OH-+ HSO 5 -→≡CoO++ SO 4 · -+H2O
≡Fe3+ + HSO 5 -→ ≡Fe2+ + SO 5 · - + H+
≡Fe2+ + HSO 5 -→ ≡Fe3+ + SO 4 · - + OH-
SO 4 · -+H2O → SO 4 2 -+ ·OH + H+
SO 4 · -/·OH + pollutants → degradation products
Metallic oxide modification [74,75]
Carbon modification [76~78]
CuFe2O4 (1)Fenton [12,35,37~40] ≡Cu+ + H2O2→·OH + ≡Cu2+ + OH-
≡Fe2+ + H2O2→·OH + ≡Fe3+ + OH-
·OH + pollutants → degradation products
Carbon modification [37,38,40]
Metal modification [12]
(2)Photocatalysis [16,58,65] CuFe2O4 + hν → e- + h+O2 + e- O 2 · -
O 2 · -/h+ + pollutants → degradation products
Construction of heterojunction [16,65]
Metal deposition [58]
(3)Persulfate oxidation [17,80~91] ≡Cu+ + HSO 5 -→ ≡Cu2+ + SO 4 · - + OH-
≡Fe2+ + HSO 5 -→ ≡Fe3+ + SO 4 · - + OH-
≡Fe2+ + HSO 5 - → ≡Fe3+ + SO 4 2 - + ·OH
≡Cu+ + HSO 5 - → ≡Cu2+ + SO 4 2 - + ·OH
S2 O 8 2 - + ≡Cu+→≡Cu2+ + SO 4 · -+ SO 4 2 -
S2 O 8 2 - + ≡ Fe 2 +→≡Fe3++ SO 4 · -+ SO 4 2 -
SO 4 · -/·OH + pollutants → degradation products
Metal modification [17]
Carbon modification [87,88,91]
Metallic oxide modification [86]
MnFe2O4 (1)Fenton [31,33,34] Mn 2 ++ H2O2→·OH + ≡ Mn 3 + + OH-≡Fe2+ + H2O2→·OH + ≡Fe3+ + OH-
·OH + pollutants → degradation products
Carbon modification [33]
(2)Persulfate oxidation [92~100] Mn 2 + + HSO 5 -→ ≡ Mn 3 ++ SO 4 · - + OH-
≡Fe2+ + HSO 5 -→ ≡Fe3+ + SO 4 · - + OH-
S2 O 8 2 - + ≡ Mn 2 +→ ≡Mn3++ SO 4 · -+ SO 4 2 -
SO 4 · -+H2O → SO 4 2 -+ ·OH + H+
SO 4 · -/·OH + pollutants → degradation products
Carbon modification [95,99]
Metallic oxide modification [97,100]
[1]
Yang S Y, Zhang A, Ren T F, Zhang Y T. Prog. Chem., 2017, 29(5): 539.
(杨世迎, 张翱, 任腾飞, 张宜涛. 化学进展, 2017, 29(5): 539.).

doi: 10.7536/PC170310    
[2]
Bethi B, Sonawane S H, Bhanvase B A, Gumfekar S P. Chem. Eng. Process. Process. Intensif., 2016, 109: 178.

doi: 10.1016/j.cep.2016.08.016     URL    
[3]
Lv L, Hu C, Prog. Chem., 2017, 29: 981.
(吕来, 胡春. 化学进展, 2017, 29: 981.).

doi: 10.7536/PC170552    
[4]
Scaria J, Gopinath A, Nidheesh P V. J. Clean. Prod., 2021, 278: 124014.

doi: 10.1016/j.jclepro.2020.124014     URL    
[5]
Lu S, Liu L B, Demissie H, An G Y, Wang D S. Environ. Int., 2021, 146: 106273.

doi: 10.1016/j.envint.2020.106273     URL    
[6]
Pang Y L, Lim S, Ong H C, Chong W T. Ceram. Int., 2016, 42(1): 9.

doi: 10.1016/j.ceramint.2015.08.144     URL    
[7]
Yang S Y, Ren T F, Zhang Y X, Zheng D, Xin J. Prog. Chem., 2017, 29(4): 388.
(杨世迎, 任腾飞, 张艺萱, 郑迪, 辛佳. 化学进展, 2017, 29(4): 388.).

doi: 10.7536/PC170133    
[8]
Routray K L, Saha S, Behera D. Mater. Chem. Phys., 2019, 224: 29.

doi: 10.1016/j.matchemphys.2018.11.073     URL    
[9]
Valente F, Astolfi L, Simoni E, Danti S, Franceschini V, Chicca M, Martini A. J. Drug Deliv. Sci. Technol., 2017, 39: 28.
[10]
Šutka A, Gross K A. Sens. Actuat. B: Chem., 2016, 222: 95.

doi: 10.1016/j.snb.2015.08.027     URL    
[11]
Kefeni K K, Mamba B B, Msagati T A M. Sep. Purif. Technol., 2017, 188: 399.

doi: 10.1016/j.seppur.2017.07.015     URL    
[12]
Li Z L, Lyu J C, Ge M. J. Mater. Sci., 2018, 53(21): 15081.

doi: 10.1007/s10853-018-2699-0     URL    
[13]
Ge M, Chen Y Y, Liu M L, Li M. J. Environ. Chem. Eng., 2015, 3(4): 2809.

doi: 10.1016/j.jece.2015.10.011     URL    
[14]
Ge M, Hu Z. Ceram. Int., 2016, 42(5): 6510.

doi: 10.1016/j.ceramint.2016.01.035     URL    
[15]
Li Z L, Ai J Z, Ge M. J. Environ. Chem. Eng., 2017, 5(2): 1394.

doi: 10.1016/j.jece.2017.02.024     URL    
[16]
Li Z L, Lyu J C, Sun K L, Ge M. Mater. Lett., 2018, 214: 257.

doi: 10.1016/j.matlet.2017.12.034     URL    
[17]
Li Z L, Guo C S, Lyu J C, Hu Z, Ge M. J. Hazard. Mater., 2019, 373: 85.

doi: 10.1016/j.jhazmat.2019.03.075     URL    
[18]
Wang T Y, Bai Y C, Si W, Mao W, Gao Y H, Liu S X. J. Photochem. Photobiol. A: Chem., 2021, 404: 112856.

doi: 10.1016/j.jphotochem.2020.112856     URL    
[19]
Su M H, He C, Sharma V K, Abou Asi M, Xia D H, Li X Z, Deng H Q, Xiong Y. J. Hazard. Mater., 2012, 211/212: 95.

doi: 10.1016/j.jhazmat.2011.10.006     URL    
[20]
Lu D B, Zhang Y, Lin S X, Wang L T, Wang C M. J. Alloys Compd., 2013, 579: 336.

doi: 10.1016/j.jallcom.2013.06.098     URL    
[21]
Wang F X, Chen Y L, Zhu R S, Sun J M. Dalton Trans., 2017, 46(34): 11306.

doi: 10.1039/C7DT01528C     URL    
[22]
Zhang H, Liu J G, Ou C J, Faheem, Shen J Y, Jiao Z H, Han W Q, Sun X Y, Li J S, Wang L J. J. Environ. Sci., 2017, 53: 1.

doi: 10.1016/j.jes.2016.05.010     URL    
[23]
Chen Z, Gao Y T, Mu D Z, Shi H F, Lou D W, Liu S Y. Dalton Trans., 2019, 48(9): 3038.

doi: 10.1039/c9dt00396g     pmid: 30758024
[24]
Nawaz M, Shahzad A, Tahir K, Kim J, Moztahida M, Jang J, Alam M B, Lee S H, Jung H Y, Lee D S. Chem. Eng. J., 2020, 382: 123053.

doi: 10.1016/j.cej.2019.123053     URL    
[25]
Guo X J, Wang D J. J. Environ. Chem. Eng., 2019, 7: 102814.

doi: 10.1016/j.jece.2018.102814     URL    
[26]
Feng X, Mao G Y, Bu F X, Cheng X L, Jiang D M, Jiang J S. J. Magn. Magn. Mater., 2013, 343: 126.

doi: 10.1016/j.jmmm.2013.05.001     URL    
[27]
Annie Vinosha P, Jerome Das S. Mater. Today: Proc., 2018, 5(2): 8662.
[28]
Hassani A, Çelikdağ G, Eghbali P, Sevim M, Karaca S, Metin Ö. Ultrason. Sonochemistry, 2018, 40: 841.

doi: 10.1016/j.ultsonch.2017.08.026     URL    
[29]
Wu Q, Zhang H, Zhou L C, Bao C, Zhu H, Zhang Y M. J. Taiwan Inst. Chem. Eng., 2016, 67: 484.

doi: 10.1016/j.jtice.2016.08.004     URL    
[30]
Deng Y M, Zhao X M, Luo J X, Wang Z, Tang J N. RSC Adv., 2020, 10(4): 1858.

doi: 10.1039/C9RA09191B     URL    
[31]
Wang G, Zhao D Y, Kou F Y, Ouyang Q, Chen J Y, Fang Z Q. Chem. Eng. J., 2018, 351: 747.

doi: 10.1016/j.cej.2018.06.033     URL    
[32]
Peng X Y, Qu J Y, Tian S, Ding Y W, Hai X, Jiang B, Wu M B, Qiu J S. RSC Adv., 2016, 6(106): 104549.

doi: 10.1039/C6RA24320G     URL    
[33]
Lai C, Huang F L, Zeng G M, Huang D L, Qin L, Cheng M, Zhang C, Li B S, Yi H, Liu S Y, Li L, Chen L. Chemosphere, 2019, 224: 910.

doi: 10.1016/j.chemosphere.2019.02.193     URL    
[34]
Zhao W H, Wei Z Q, Zhang X D, Ding M J, Huang S P. Mater. Res. Bull., 2020, 124: 110749.

doi: 10.1016/j.materresbull.2019.110749     URL    
[35]
Wang Y B, Zhao H Y, Li M F, Fan J Q, Zhao G H. Appl. Catal. B: Environ., 2014, 147: 534.

doi: 10.1016/j.apcatb.2013.09.017     URL    
[36]
Faheem M, Jiang X B, Wang L J, Shen J Y. RSC Adv., 2018, 8(11): 5740.

doi: 10.1039/C7RA13608K     URL    
[37]
Guo X J, Wang K B, Li D, Qin J B. Appl. Surf. Sci., 2017, 420: 792.

doi: 10.1016/j.apsusc.2017.05.178     URL    
[38]
Yao T J, Qi Y, Mei Y Q, Yang Y, Aleisa R, Tong X, Wu J. J. Hazard. Mater., 2019, 378: 120712.

doi: 10.1016/j.jhazmat.2019.05.105     URL    
[39]
Ma S D, Feng J, Qin W J, Ju Y Y, Chen X G. RSC Adv., 2015, 5(66): 53514.

doi: 10.1039/C5RA09114D     URL    
[40]
Yao Y J, Lu F, Zhu Y P, Wei F Y, Liu X T, Lian C, Wang S B. J. Hazard. Mater., 2015, 297: 224.

doi: 10.1016/j.jhazmat.2015.04.046     URL    
[41]
Cao Y, Lei X Y, Chen Q L, Kang C, Li W X, Liu B J. J. Photochem. Photobiol. A: Chem., 2018, 364: 794.

doi: 10.1016/j.jphotochem.2018.07.023     URL    
[42]
Wu S M, Xu Y, Li X L, Tong R F, Chen L, Han Y D, Wu J B, Zhang X. Inorg. Chem., 2018, 57(24): 15481.

doi: 10.1021/acs.inorgchem.8b02803     URL    
[43]
Sun Y Y, Wang W Z, Zhang L, Sun S M, Gao E P. Mater. Lett., 2013, 98: 124.

doi: 10.1016/j.matlet.2013.02.014     URL    
[44]
Nguyen T B, Huang C P, Doong R A. Sci. Total. Environ., 2019, 646: 745.

doi: 10.1016/j.scitotenv.2018.07.352    
[45]
Nada A A, Nasr M, Viter R, Miele P, Roualdes S, Bechelany M. J. Phys. Chem. C, 2017, 121(44): 24669.

doi: 10.1021/acs.jpcc.7b08567     URL    
[46]
Rameshbabu R, Kumar N, Karthigeyan A, Neppolian B. Mater. Chem. Phys., 2016, 181: 106.

doi: 10.1016/j.matchemphys.2016.06.040     URL    
[47]
Wu S K, Shen X P, Zhu G X, Zhou H, Ji Z Y, Chen K M, Yuan A H. Appl. Catal. B: Environ., 2016, 184: 328.

doi: 10.1016/j.apcatb.2015.11.035     URL    
[48]
Kong L, Jiang Z, Xiao T C, Lu L F, Jones M O, Edwards P P. Chem. Commun., 2011, 47(19): 5512.

doi: 10.1039/C1CC10446B     URL    
[49]
Chen M X, Dai Y Z, Guo J, Yang H T, Liu D N, Zhai Y L. Appl. Surf. Sci., 2019, 493: 1361.

doi: 10.1016/j.apsusc.2019.04.160     URL    
[50]
Zhou Y W, Fang S S, Zhou M, Wang G Q, Xue S, Li Z Y, Xu S, Yao C. J. Alloys Compd., 2017, 696: 353.

doi: 10.1016/j.jallcom.2016.11.323     URL    
[51]
Yosefi L, Haghighi M, Allahyari S. Sep. Purif. Technol., 2017, 178: 18.

doi: 10.1016/j.seppur.2017.01.005     URL    
[52]
Chen X J, Dai Y Z, Liu T H, Guo J, Wang X Y, Li F F. J. Mol. Catal. A: Chem., 2015, 409: 198.

doi: 10.1016/j.molcata.2015.08.021     URL    
[53]
Li X J, Tang D L, Tang F, Zhu Y Y, He C F, Liu M H, Lin C X, Liu Y F. Mater. Res. Bull., 2014, 56: 125.

doi: 10.1016/j.materresbull.2014.05.013     URL    
[54]
He J, Cheng Y H, Wang T Z, Feng D Q, Zheng L C, Shao D W, Wang W C, Wang W H, Lu F, Dong H, Zheng R K, Liu H. Appl. Surf. Sci., 2018, 440: 99.

doi: 10.1016/j.apsusc.2017.12.219     URL    
[55]
Ong W J, Tan L L, Ng Y H, Yong S T, Chai S P. Chem. Rev., 2016, 116(12): 7159.

doi: 10.1021/acs.chemrev.6b00075     URL    
[56]
Zhang S W, Li J X, Zeng M Y, Zhao G X, Xu J Z, Hu W P, Wang X K. ACS Appl. Mater. Interfaces, 2013, 5(23): 12735.

doi: 10.1021/am404123z     URL    
[57]
Zhang D F, Pu X P, Du K P, Yu Y M, Shim J J, Cai P Q, Kim S I, Seo H J. Sep. Purif. Technol., 2014, 137: 82.

doi: 10.1016/j.seppur.2014.09.025     URL    
[58]
Zhu Z R, Li X Y, Zhao Q D, Li Y H, Sun C Z, Cao Y Q. Mater. Res. Bull., 2013, 48(8): 2927.

doi: 10.1016/j.materresbull.2013.04.042     URL    
[59]
Liang J X, Wei Y, Zhang J G, Yao Y, He G Y, Tang B, Chen H Q. Ind. Eng. Chem. Res., 2018, 57(12): 4311.

doi: 10.1021/acs.iecr.8b00218     URL    
[60]
Devi L G, Srinivas M. J. Environ. Chem. Eng., 2017, 5(4): 3243.

doi: 10.1016/j.jece.2017.06.023     URL    
[61]
Li Y L, Zhang Z Q, Pei L Y, Li X G, Fan T, Ji J, Shen J F, Ye M X. Appl. Catal. B: Environ., 2016, 190: 1.
[62]
Li X W, Xu H F, Wang L, Zhang L, Cao X F, Guo Y C. J. Taiwan Inst. Chem. Eng., 2018, 85: 257.

doi: 10.1016/j.jtice.2018.01.043     URL    
[63]
Patil S S, Tamboli M S, Deonikar V G, Umarji G G, Ambekar J D, Kulkarni M V, Kolekar S S, Kale B B, Patil D R. Dalton Trans., 2015, 44(47): 20426.

doi: 10.1039/C5DT03173G     URL    
[64]
Gan L, Xu L J, Qian K. Mater. Des., 2016, 109: 354.

doi: 10.1016/j.matdes.2016.07.043     URL    
[65]
Zhou T H, Zhang G Z, Ma P J, Qiu X L, Zhang H W, Yang H, Liu G. Mater. Lett., 2018, 210: 271.

doi: 10.1016/j.matlet.2017.09.044     URL    
[66]
Zhou T H, Zhang G Z, Yang H, Zhang H W, Suo R N, Xie Y S, Liu G. RSC Adv., 2018, 8(49): 28179.

doi: 10.1039/C8RA02962H     URL    
[67]
Chao D Y, Liu Y B, Zhu Z L. Mater. Lett., 2018, 217: 239.

doi: 10.1016/j.matlet.2018.01.084     URL    
[68]
Zhai Y L, Dai Y Z, Guo J, Zhou L L, Chen M X, Yang H T, Peng L P. J. Colloid Interface Sci., 2020, 560: 111.

doi: 10.1016/j.jcis.2019.08.065     URL    
[69]
Long A H, Lei Y, Zhang H. Prog. Chem., 2014, 26(5): 898.
(龙安华, 雷洋, 张晖. 化学进展, 2014, 26(5): 898.).
[70]
Wacławek S, Lutze H V, Grübel K, Padil V V T, Černík M, Dionysiou D D. Chem. Eng. J., 2017, 330: 44.

doi: 10.1016/j.cej.2017.07.132     URL    
[71]
Duan X G, Sun H Q, Kang J, Wang Y X, Indrawirawan S, Wang S B. ACS Catal., 2015, 5(8): 4629.

doi: 10.1021/acscatal.5b00774     URL    
[72]
Li J, Xu M J, Yao G, Lai B. Chem. Eng. J., 2018, 348: 1012.

doi: 10.1016/j.cej.2018.05.032     URL    
[73]
Song Q Y, Feng Y P, Wang Z, Liu G G, Lv W. Sci. Total. Environ., 2019, 681: 331.

doi: 10.1016/j.scitotenv.2019.05.105     URL    
[74]
Wang Q F, Shao Y S, Gao N Y, Chu W H, Chen J X, Lu X, Zhu Y P, An N. Sep. Purif. Technol., 2017, 189: 176.

doi: 10.1016/j.seppur.2017.07.046     URL    
[75]
Du Y C, Ma W J, Liu P X, Zou B H, Ma J. J. Hazard. Mater., 2016, 308: 58.

doi: 10.1016/j.jhazmat.2016.01.035     URL    
[76]
Yao Y J, Yang Z H, Zhang D W, Peng W C, Sun H Q, Wang S B. Ind. Eng. Chem. Res., 2012, 51(17): 6044.

doi: 10.1021/ie300271p     URL    
[77]
Chen L W, Ding D H, Liu C, Cai H, Qu Y, Yang S J, Gao Y, Cai T M. Chem. Eng. J., 2018, 334: 273.

doi: 10.1016/j.cej.2017.10.040     URL    
[78]
Xu M J, Li J, Yan Y, Zhao X G, Yan J F, Zhang Y H, Lai B, Chen X, Song L P. Chem. Eng. J., 2019, 369: 403.

doi: 10.1016/j.cej.2019.03.075     URL    
[79]
Wu L Y, Zhang Q, Hong J M, Dong Z Y, Wang J. Chemosphere, 2019, 221: 412.

doi: 10.1016/j.chemosphere.2019.01.049     URL    
[80]
Ding Y B, Zhu L H, Wang N, Tang H Q. Appl. Catal. B: Environ., 2013, 129: 153.

doi: 10.1016/j.apcatb.2012.09.015     URL    
[81]
Zhang T, Zhu H B, Croué J P. Environ. Sci. Technol., 2013, 47(6): 2784.

doi: 10.1021/es304721g     pmid: 23439015
[82]
Xu Y, Ai J, Zhang H. J. Hazard. Mater., 2016, 309: 87.

doi: 10.1016/j.jhazmat.2016.01.023     URL    
[83]
Wang Y R, Tian D F, Chu W, Li M R, Lu X W. Sep. Purif. Technol., 2019, 212: 536.

doi: 10.1016/j.seppur.2018.11.051     URL    
[84]
Qin W X, Fang G D, Wang Y J, Zhou D M. Chem. Eng. J., 2018, 348: 526.

doi: 10.1016/j.cej.2018.04.215     URL    
[85]
Ye P, Wu D M, Wang M Y, Wei Y, Xu A H, Li X X. Appl. Surf. Sci., 2018, 428: 131.

doi: 10.1016/j.apsusc.2017.09.107     URL    
[86]
Oh W D, Dong Z L, Hu Z T, Lim T T. J. Mater. Chem. A, 2015, 3(44): 22208.

doi: 10.1039/C5TA06563A     URL    
[87]
Kong J, Li R B, Wang F L, Chen P, Liu H J, Liu G G, Lv W. RSC Adv., 2018, 8(44): 24787.

doi: 10.1039/C8RA04103B     URL    
[88]
Li Z Q, Ma S L, Xu S J, Fu H C, Li Y, Zhao P, Meng Q X. Colloids Surf. A: Physicochem. Eng. Aspects, 2019, 577: 202.

doi: 10.1016/j.colsurfa.2019.05.067     URL    
[89]
Dong X B, Ren B X, Sun Z M, Li C Q, Zhang X W, Kong M H, Zheng S L, Dionysiou D D. Appl. Catal. B: Environ., 2019, 253: 206.

doi: 10.1016/j.apcatb.2019.04.052     URL    
[90]
Li J, Ren Y, Ji F Z, Lai B. Chem. Eng. J., 2017, 324: 63.

doi: 10.1016/j.cej.2017.04.104     URL    
[91]
Zhang X L, Feng M B, Qu R J, Liu H, Wang L S, Wang Z Y. Chem. Eng. J., 2016, 301: 1.

doi: 10.1016/j.cej.2016.04.096     URL    
[92]
Deng J, Feng S F, Ma X Y, Tan C Q, Wang H Y, Zhou S Q, Zhang T Q, Li J. Sep. Purif. Technol., 2016, 167: 181.

doi: 10.1016/j.seppur.2016.04.035     URL    
[93]
Deng J, Xu M Y, Qiu C G, Chen Y, Ma X Y, Gao N Y, Li X Y. Appl. Surf. Sci., 2018, 459: 138.

doi: 10.1016/j.apsusc.2018.07.198     URL    
[94]
So H L, Lin K Y, Chu W, Gong H. Ind. Eng. Chem. Res., 2020, 59(10): 4257.

doi: 10.1021/acs.iecr.9b05481     URL    
[95]
Yao Y J, Cai Y M, Lu F, Wei F Y, Wang X Y, Wang S B. J. Hazard. Mater., 2014, 270: 61.

doi: 10.1016/j.jhazmat.2014.01.027     URL    
[96]
Fu H C, Ma S L, Zhao P, Xu S J, Zhan S H. Chem. Eng. J., 2019, 360: 157.

doi: 10.1016/j.cej.2018.11.207     URL    
[97]
Chen G, Zhang X Y, Gao Y J, Zhu G X, Cheng Q F, Cheng X W. Sep. Purif. Technol., 2019, 213: 456.

doi: 10.1016/j.seppur.2018.12.049     URL    
[98]
Stoia M, Muntean C, Militaru B. J. Environ. Sci., 2017, 53: 269.

doi: 10.1016/j.jes.2015.10.035     URL    
[99]
Li Y, Yang Z Q, Zhang H G, Tong X W, Feng J N. Colloids Surf. A: Physicochem. Eng. Aspects, 2017, 529: 856.

doi: 10.1016/j.colsurfa.2017.06.043     URL    
[100]
Ma Q L, Zhang H X, Zhang X Y, Li B, Guo R N, Cheng Q F, Cheng X W. Chem. Eng. J., 2019, 360: 848.

doi: 10.1016/j.cej.2018.12.036     URL    
[101]
Jiang R, Zhu H Y, Li J B, Fu F Q, Yao J, Jiang S T, Zeng G M. Appl. Surf. Sci., 2016, 364: 604.

doi: 10.1016/j.apsusc.2015.12.200     URL    
[102]
Huang S Q, Xu Y G, Liu Q Q, Zhou T, Zhao Y, Jing L Q, Xu H, Li H M. Appl. Catal. B: Environ., 2017, 218: 174.

doi: 10.1016/j.apcatb.2017.06.030     URL    
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[4] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[5] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[6] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[7] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[8] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[9] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[10] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[11] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[12] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[13] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[14] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.
[15] 刘佳, 史俊, 付坤, 丁超, 龚思成, 邓慧萍. 多相催化过硫酸盐工艺处理水环境中有机污染物的非自由基过程[J]. 化学进展, 2021, 33(8): 1311-1322.