English
新闻公告
More
化学进展 2022, Vol. 34 Issue (11): 2503-2516 DOI: 10.7536/PC220415 前一篇   后一篇

• 综述 •

从废水到新能源:光催化燃料电池的优化与应用

占兴1, 熊巍1,3,*(), 梁国熙2,3,*()   

  1. 1 大连理工大学环境学院 大连 116024
    2 香港城市大学能源及环境学院 香港
    3 香港城市大学深圳研究院 深圳 518057
  • 收稿日期:2022-04-14 修回日期:2022-08-07 出版日期:2022-11-24 发布日期:2022-09-19
  • 通讯作者: 熊巍, 梁国熙
  • 作者简介:

    梁国熙 香港城市大学AERC研究所所长,香港特别行政区能源咨询委员会委员、香港工程师学会能源分部顾问委员、香港品质保证局下属能源管理系统委员会主席、能源学会(香港分会)前主席、Applied EnergyHKIE Transactions期刊编委,研究领域主要涉及太阳能光催化燃料电池、先进的热力循环系统和碳管理等,已发表160多篇学术期刊论文,18项学术专著(或章节),获得7项专利,超过80个特邀报告演讲,2018年Clarivate高被引学者。

  • 基金资助:
    国家自然科学基金项目(21875200); 国家自然科学基金项目(22006007)

From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications

Xing Zhan1, Wei Xiong1,3(), Michael K.H Leung2,3()   

  1. 1 School of Environmental Science and Technology, Dalian University of Technology,Dalian 116024, China
    2 School of Energy and Environment, City University of Hong Kong, Hong Kong, China
    3 City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
  • Received:2022-04-14 Revised:2022-08-07 Online:2022-11-24 Published:2022-09-19
  • Contact: Wei Xiong, Michael K.H Leung
  • Supported by:
    National Natural Science Foundation of China(21875200); National Natural Science Foundation of China(22006007)

随着经济的飞速发展,社会对能源的需求日益扩大,对工业废水的无害化处理也提出了更高的要求。光催化燃料电池 (photocatalytic fuel cell, PFC) 在燃料电池中引入半导体光催化材料作为电极,实现了有机污染物高效降解和同步对外产电的双重功能,在废水无害化与资源化利用方面具有潜在的应用价值。半导体光催化电极是PFC系统高效运行的核心组件,增强其可见光响应和光生载流子分离是提高PFC性能的关键策略。反应器结构设计和运行参数优化也有利于改善PFC性能。本文从PFC基本原理和应用入手,综述了PFC在环境污染物资源化处理中的研究进展,并详细阐述了提高PFC的污染控制性能和产电效率的优化手段,为进一步设计高效稳定的PFC系统并实现其在水污染控制和清洁能源生产中的应用提供理论指导。

The social demand for energy is highly increasing because of the rapid development of economy. On the other hand, environmentally safe treatment of industrial wastewater is required to raise to a higher standard. Photocatalytic fuel cell (PFC), which adopts the photocatalytic electrode in the fuel cell configuration, can achieve the dual functions of efficient degradation of organic pollutant and simultaneous electricity generation. Therefore, PFC promises to have potential applications in harmless disposal and resource utilization of wastewater. The photocatalytic electrode is the core component of PFC system. The enhancement for the light activation of the photocatalytic electrode and the improvement of the separation rate of photogenerated carriers become the key strategies to improve the performance. In addition, the reactor design and optimization of operational parameters are also beneficial to improve the PFC performance. In this review, the basic principle of PFC has been introduced, and the progress of PFC in the treatment of environmental pollutants has also been reviewed. The optimization of PFC system for enhancing the pollution control performance and electricity generation efficiency has also been discussed in detail. This review provides theoretical guidance for further research of efficient and stable PFC systems for the wastewater treatment and energy recovery.

Contents

1 Introduction

2 The structure and working principle of PFC

3 The classification of the PFC

3.1 Single photoelectrode PFC system

3.2 Dual-photoelectrode fuel cells

4 Performance optimization of PFC system

4.1 Optimization of semiconductor electrode

4.2 Optimization of electrocatalytic cathode

4.3 Optimization of reactor structure

4.4 Optimization of the operational parameters

5 The application of PFC

5.1 Degradation of organic pollutants

5.2 Hydrogen production

5.3 Heavy metal reduction

6 Conclusion and outlook

()
图1 光催化燃料电池的基本结构及其原理
Fig. 1 Basic structure and principle of PFC
图2 单光电极PFC (a) 和双光电极PFC (b) 基本结构及其原理
Fig. 2 The basic structure and principle of single photoelectrode PFC system (a) and dual-photoelectrode PFC system (b)
图3 常见材料-电解液界面工程PFC体系的机理示意图:(a) 光催化耦合芬顿PFC;(b) 光催化耦合过硫酸盐PFC
Fig. 3 Mechanism diagram of common material-electrolyte interface engineering PFC system: (a) Fenton-PFC system; (b) PS-PFC system
图4 (a) “H”型;(b)“转盘”式;(c,d) 微流体PFC装置图
Fig. 4 (a) Typical H-shape PFC reactor; (b) aqueous-film rotating disk PFC reactor; (c,d) Optofluidic based micro-PFC reactor
图5 (a) “平板”型; (b) “多通道”型;(c) “树枝”型; (d) “蛇形”微流体通道反应器
Fig. 5 (a)Planar microreactor; (b) multiple channel reactor; (c) tree shape channels microreactor; (d) snake shape channels microreactor
[1]
Pirsaheb M, Hossini H, Asadi F, Janjani H. Toxin Rev., 2017, 36(3): 210.
[2]
Kumar V, Sahu P, Singh P K, Markandeya. Int. J. Environ. Res., 2020, 14(6): 653.

doi: 10.1007/s41742-020-00290-1     URL    
[3]
Imaeda D, Kunisue T, Ochi Y, Iwata H, Tsydenova O, Takahashi S, Amano M, Petrov E A, Batoev V B, Tanabe S. Environ. Pollut., 2009, 157(3): 737.

doi: 10.1016/j.envpol.2008.11.027     URL    
[4]
Abbas I, Badran G, Verdin A, Ledoux F, Roumie M, Courcot D, Garcon G. Environ. Chem. Lett., 2018, 16(2): 439.

doi: 10.1007/s10311-017-0697-0     URL    
[5]
Cheng M, Zeng G M, Huang D L, Lai C, Xu P, Zhang C, Liu Y. Chem. Eng. J., 2016, 284: 582.

doi: 10.1016/j.cej.2015.09.001     URL    
[6]
Yang Y, Li X, Zhou C Y, Xiong W P, Zeng G M, Huang D L, Zhang C, Wang W J, Song B A, Tang X, Li X P, Guo H. Water Res., 2020, 184:116200.

doi: 10.1016/j.watres.2020.116200     URL    
[7]
Yan X J, Bao R L, Yu S L, Li Q F, Jing Q F. Russ. J. Phys. Chem. A, 2012, 86(9): 1479.

doi: 10.1134/S0036024412070333     URL    
[8]
Xue S Y, Wu C Z, Pu S Y, Hou Y Q, Tong T, Yang G, Qin Z J, Wang Z M, Bao J M. Environ. Pollut., 2019, 250: 338.

doi: 10.1016/j.envpol.2019.04.010     URL    
[9]
Zhen G Y, Lu X Q, Zhao Y C, Chai X L, Niu D J. Bioresour. Technol., 2012, 116: 259.

doi: 10.1016/j.biortech.2012.01.170     URL    
[10]
Wu Y W, Zhong L L, Yuan J L, Xiang W H, Xin X, Liu H M, Luo H Y, Li L Y, Chen M, Zhong D J, Zhang X H, Zhong N a B, Chang H X. Environ. Chem. Lett., 2021, 19(2): 1335.

doi: 10.1007/s10311-020-01141-3     URL    
[11]
Wang Z, Xie X F, Wang X, Mahmood A, Qiu H X, Sun J. J. Photochem. Photobiol. A, 2019, 384.
[12]
Zhou J H, Li D D, Zhao W N, Jing B H, Ao Z M, An T C. ACS Appl. Mater. Interfaces., 2021, 13(20): 23843.

doi: 10.1021/acsami.1c05617     URL    
[13]
Xie L N, Du T, Wang J, Ma Y Y, Ni Y S, Liu Z L, Zhang L, Yang C Y, Wang J L. Chem. Eng. J., 2021, 426:130617.

doi: 10.1016/j.cej.2021.130617     URL    
[14]
Kaneko M, Nemoto J, Ueno H, Gokan N, Ohnuki K, Horikawa M, Saito R, Shibata T. Electrochem. Commun., 2006, 8(2): 336.

doi: 10.1016/j.elecom.2005.12.004     URL    
[15]
Liu Y B, Li J H, Zhou B X, Li X J, Chen H C, Chen Q P, Wang Z S, Li L, Wang J L, Cai W M. Water Res., 2011, 45(13): 3991.

doi: 10.1016/j.watres.2011.05.004     URL    
[16]
Chen Q P, Li J H, Li X J, Huang K, Zhou B X, Cai W M, Shangguan W F. Environ. Sci. Technol., 2012, 46(20): 11451.

doi: 10.1021/es302651q     URL    
[17]
Osman M H, Shah A A, Walsh F C. Biosens. Bioelectron., 2010, 26(3): 953.

doi: 10.1016/j.bios.2010.08.057     pmid: 20864328
[18]
Xu L, Zhao Y Q, Doherty L, Hu Y S, Hao X D. Crit. Rev. Environ. Sci. Technol., 2016, 46(1): 60.

doi: 10.1080/10643389.2015.1061884     URL    
[19]
Liu Y B, Li J H, Zhou B X, Chen H C, Wang Z S, Cai W M. Chem. Commun., 2011, 47(37): 10314.

doi: 10.1039/c1cc13388h     URL    
[20]
Wang B, Zhang H, Lu X Y, Xuan J, Leung M K H. Chem. Eng. J., 2014, 253: 174.

doi: 10.1016/j.cej.2014.05.041     URL    
[21]
Yu Y X, Xie F J, Chen R, Zhu X, Liao Q, Ye D D, Li J W, Song S H. J. Power Sources, 2021, 487:229438.

doi: 10.1016/j.jpowsour.2020.229438     URL    
[22]
Zhang D, Wang Y M, Wang Y, Zhang Y, Song X M. J. Alloys. Compd., 2020, 815:152377.

doi: 10.1016/j.jallcom.2019.152377     URL    
[23]
Xia L G, Bai J, Li J H, Zeng Q Y, Li X J, Zhou B X. Appl. Catal., B, 2016, 183: 224.

doi: 10.1016/j.apcatb.2015.10.050     URL    
[24]
Xie S, Ouyang K. J. Colloid Interface Sci., 2017, 500: 220.

doi: 10.1016/j.jcis.2017.04.002     URL    
[25]
He Y, Yuan R H, Leung M K H. Mater. Lett., 2019, 236: 394.

doi: 10.1016/j.matlet.2018.10.096     URL    
[26]
Wu Z Y, Zhao G H, Zhang Y J, Liu J, Zhang Y N, Shi H J. J. Mater. Chem. A, 2015, 3(7): 3416.

doi: 10.1039/C4TA06604A     URL    
[27]
Qian B Z, Xu Q, Wu Y, Zhang Y, Li H, Wang Y, Wang B X, Li S, Song X M. J. Power Sources, 2020, 478:228756.

doi: 10.1016/j.jpowsour.2020.228756     URL    
[28]
Mondal P, Ghorui U K, Satra J, Mardanya S, Srivastava D N, Bhadu G R, Adhikary B. ACS Appl. Nano Mater., 2020, 3(4): 3876.

doi: 10.1021/acsanm.0c00604     URL    
[29]
Singh R, Dutta S. Fuel, 2018, 220: 607.

doi: 10.1016/j.fuel.2018.02.068     URL    
[30]
Yu M T, Shang C Q, Ma G, Meng Q G, Chen Z H, Jin M L, Shui L L, Zhang Y G, Zhang Z, Yuan M Z, Wang X, Zhou G F. Appl. Surf. Sci., 2019, 481: 255.

doi: 10.1016/j.apsusc.2019.03.056     URL    
[31]
Pan D L, Xiao S N, Chen X F, Li R P, Cao Y N, Zhang D Q, Pu S S, Li Z C, Li G S, Li H X. Environ. Sci. Technol., 2019, 53(7): 3697.

doi: 10.1021/acs.est.8b05685     URL    
[32]
Lee S L, Ho L N, Ong S A, Wong Y S, Voon C H, Khalik W F, Yusoff N A, Nordin N. Chemosphere, 2017, 166: 118.

doi: 10.1016/j.chemosphere.2016.09.082     URL    
[33]
Lam S M, Sin J C, Lin H, Li H X, Zeng H H. Chemosphere, 2020, 245:125565.

doi: 10.1016/j.chemosphere.2019.125565     URL    
[34]
Liang X H, Liu J C, Zeng D P, Li C, Chen S Y, Li H. Electrochim. Acta., 2016, 198: 40.

doi: 10.1016/j.electacta.2016.03.023     URL    
[35]
Chen X, Chen R, Zhu X, Liao Q, Zhang Y X, Ye D D, Zhang B, Yu Y X, Li J W. J. Catal., 2019, 372: 182.

doi: 10.1016/j.jcat.2019.02.031    
[36]
Wang H N, Chen X, Chen R, Zhu X, Liao Q, Ye D D, Zhang B, Yu Y X, Zhang W, Li J W. J. Power Sources, 2019, 435:226766.

doi: 10.1016/j.jpowsour.2019.226766     URL    
[37]
Zhao X, Li X, Wang Y, Lin J, Liu J, Shao H X. Environ. Sci. Water Res. Technol., 2020, 6(7): 1869.

doi: 10.1039/D0EW00130A     URL    
[38]
Andrade T S, Sa B a C, Sena I C, Neto A R S, Nogueira F G E, Lianos P, Pereira M C. J. Electroanal. Chem., 2021, 881:114948.

doi: 10.1016/j.jelechem.2020.114948     URL    
[39]
Liang D W, Han G D, Zhang Y J, Rao S Y, Lu S F, Wang H N, Xiang Y. Appl. Energy., 2016, 168: 544.

doi: 10.1016/j.apenergy.2016.01.118     URL    
[40]
Tang L N, Liu L F, Chen Q Y, Yang F L, Quan X. Electrochim. Acta., 2020, 362:137037.

doi: 10.1016/j.electacta.2020.137037     URL    
[41]
Yang W, Wang Y. Appl. Catal., B, 2021, 282:119574.

doi: 10.1016/j.apcatb.2020.119574     URL    
[42]
Hou Y P, Gan Y Y, Yu Z B, Chen X X, Qian L, Zhang B G, Huang L R, Huang J. J. Power Sources, 2017, 371: 26.

doi: 10.1016/j.jpowsour.2017.10.033     URL    
[43]
Chen Q P, Bai J, Li J H, Huang K, Li X J, Zhou B X, Cai W M. Chem. Eng. J., 2014, 252: 89.

doi: 10.1016/j.cej.2014.04.046     URL    
[44]
Zeng Q Y, Lyu L, Gao Y W, Chang S, Hu C. Appl. Catal., B, 2018, 238: 309.

doi: 10.1016/j.apcatb.2018.07.005     URL    
[45]
Lu Y, Chu Y C, Zheng W Z, Huo M X, Huo H L, Qu J, Yu H B, Zhao Y H. Electrochim. Acta., 2019, 320:134617.

doi: 10.1016/j.electacta.2019.134617     URL    
[46]
Jin C, Qin Y, Yang J H. Progress in Chemistry, 2014, 26(Z1): 225.
(金超, 秦瑶, 杨金虎. 化学进展, 2014, 26(Z1): 225.).
[47]
Zhu Y F, Zhou L, Jiang Q S. Ceram. Int., 2020, 46(1): 1158.

doi: 10.1016/j.ceramint.2019.09.084     URL    
[48]
Yu Y, Wu H H, Zhu B L, Wang S R, Huang W P, Wu S H, Zhang S M. Catal. Lett., 2008, 121(1-2): 165.

doi: 10.1007/s10562-007-9316-1     URL    
[49]
Welderfael T, Pattabi M, Pattabi R M, Thilipan G a K. J. Water Process. Eng., 2016, 14: 117.

doi: 10.1016/j.jwpe.2016.11.001     URL    
[50]
Xia J X, Yin S, Li H M, Xu H, Xu L, Xu Y G. Dalton Trans., 2011, 40(19): 5249.

doi: 10.1039/c0dt01511c     URL    
[51]
Wang Q Y, Liu Z Y, Feng H, Jin R C, Zhang S H, Gao S M. Ceram. Int., 2019, 45(3): 3995.

doi: 10.1016/j.ceramint.2018.11.075     URL    
[52]
Qi L H, Yin Z X, Zhang S, Ouyang Q Y, Li C Y, Chen Y J. J. Mater. Res., 2014, 29(6): 745.

doi: 10.1557/jmr.2014.50     URL    
[53]
Wang Y C, Wang Y R, Zhao J J, Chen M, Huang X B, Xu Y M. Appl. Catal., B, 2021, 284:119691.

doi: 10.1016/j.apcatb.2020.119691     URL    
[54]
Zerjav G, Roskaric M, Zavasnik J, Kovac J, Pintar A. Appl. Surf. Sci., 2022, 579:152196.

doi: 10.1016/j.apsusc.2021.152196     URL    
[55]
Kadam A N, Bhopate D P, Kondalkar V V, Majhi S M, Bathula C D, Tran A V, Lee S W. J. Ind. Eng. Chem., 2018, 61: 78.
[56]
Xu C Y, Zhang X H, Zhu M N, Zhang L, Sui P F, Feng R F, Zhang Y W, Luo J L. Appl. Catal., B, 2021, 298:120533.

doi: 10.1016/j.apcatb.2021.120533     URL    
[57]
Park H, Son N, Park B H, Joo S W, Kang M. Appl. Surf. Sci., 2021, 541:148347.

doi: 10.1016/j.apsusc.2020.148347     URL    
[58]
Ovando-Medina V M, Dector A, Antonio-Carmona I D, Romero-Galarza A, Martinez-Gutierrez H, Olivares-Ramirez J M. Int. J. Hydrogen Energy, 2019, 44(59): 31423.

doi: 10.1016/j.ijhydene.2019.10.003     URL    
[59]
He X H, Kai T H, Ding P. Environ. Chem. Lett., 2021, 19(6): 4563.

doi: 10.1007/s10311-021-01295-8     URL    
[60]
Yuan Y, Guo R T, Hong L F, Ji X Y, Lin Z D, Li Z S, Pan W G. Mater. Today Energy, 2021, 21:100829.
[61]
Ouyang K, Xie S, Wang P, Zhu J, Zhan P. Int. J. Hydrogen Energy, 2019, 44(14): 7288.

doi: 10.1016/j.ijhydene.2019.01.241     URL    
[62]
Huang M J, Zhou C H, Wen R T, Tian J Y, Huang W D, Wei H Y, Lu J S. J. Electrochem. Soc., 2022, 169(2):026502.

doi: 10.1149/1945-7111/ac4b21     URL    
[63]
Zha L N, Bai J, Zhou C H, Zhang Y, Li J H, Wang P B, Zhang B, Zhou B X. Chemosphere, 2022, 289:133119.

doi: 10.1016/j.chemosphere.2021.133119     URL    
[64]
Khalil M, Naumi F, Pratomo U, Ivandini T A, Kadja G T M, Mulyana J Y. Appl. Surf. Sci., 2021, 542:148746.

doi: 10.1016/j.apsusc.2020.148746     URL    
[65]
Lam S M, Sin J C, Zeng H H, Lin H, Li H X, Qin Z Z, Lim J W, Mohamed A R. Sep. Purif. Technol., 2021, 265:118495.

doi: 10.1016/j.seppur.2021.118495     URL    
[66]
Mikrut P, Mitoraj D, Beranek R, Macyk W. Appl. Surf. Sci., 2021, 566:150662.

doi: 10.1016/j.apsusc.2021.150662     URL    
[67]
Li K, Xu Y L, He Y, Yang C, Wang Y L, Jia J P. Environ. Sci. Technol., 2013, 47(7): 3490.

doi: 10.1021/es303968n     URL    
[68]
Bai S, Zhang N, Gao C, Xiong Y J. Nano Energy, 2018, 53: 296.

doi: 10.1016/j.nanoen.2018.08.058     URL    
[69]
Xia T, Zhang Y L, Murowchick J, Chen X B. Catal. Today., 2014, 225: 2.

doi: 10.1016/j.cattod.2013.08.026     URL    
[70]
Zhu Y Y, Ling Q, Liu Y F, Wang H, Zhu Y F. Appl. Catal., B, 2016, 187: 204.

doi: 10.1016/j.apcatb.2016.01.012     URL    
[71]
Zhao K, Zeng Q Y, Bai J, Li J H, Xia L G, Chen S, Zhou B X. Water Res., 2017, 108: 293.

doi: S0043-1354(16)30847-8     pmid: 27839830
[72]
Li N, Tang S F, Rao Y D, Qi J B, Wang P K, Jiang Y, Huang H M, Gu J M, Yuan D L. Electrochim. Acta., 2018, 270: 330.

doi: 10.1016/j.electacta.2018.03.083     URL    
[73]
Xu P, Xu H, Zheng D Y. J. Power Sources, 2019, 421: 156.

doi: 10.1016/j.jpowsour.2019.03.033     URL    
[74]
Li L S, Chen S, Zhang Y, Li J H, Bai J, Zhou T S, Wang J C, Zhou C H, Xia L G, Xu Q J, Rahim M, Zhou B X. Appl. Catal., B, 2020, 268: 10.
[75]
Li J W, Li R Z, Zou L M, Liu X Y. Catalysts, 2019, 9(10): 20.

doi: 10.3390/catal9010020     URL    
[76]
Zhao D J, Yin G P, Wei J. Prog. Chem., 2009, 21(12): 2753.
(赵东江, 尹鸽平, 魏杰. 化学进展, 2009, 21(12): 2753.).
[77]
Hu Y Z, Zhang J J, Shen T, Li Z R, Chen K, Lu Y, Zhang J, Wang D L. ACS Appl. Mater. Interfaces., 2021, 13(25): 29551.

doi: 10.1021/acsami.1c05353     URL    
[78]
Wang N, Ma S B, Zuo P J, Duan J Z, Hou B R. Adv. Sci., 2021, 8(15):2100076.

doi: 10.1002/advs.202100076     URL    
[79]
Khalik W F, Ho L N, Ong S A, Voon C H, Wong Y S, Yusuf S Y, Yusoff N, Lee S L. Chemosphere, 2018, 202: 467.

doi: 10.1016/j.chemosphere.2018.03.113     URL    
[80]
Ge Y Z, Ye W Y, Shah Z H, Lin X J, Lu R W, Zhang S F. ACS Appl. Mater. Interfaces., 2017, 9(4): 3749.

doi: 10.1021/acsami.6b15020     URL    
[81]
Li Z, Ge R X, Su J W, Chen L. Adv. Mater. Interfaces., 2020, 7(14):2000396.

doi: 10.1002/admi.202000396     URL    
[82]
Tang T T, Li K, Shen Z M, Sun T H, Wang Y L, Jia J P. J. Power Sources, 2016, 301: 54.

doi: 10.1016/j.jpowsour.2015.09.126     URL    
[83]
Zhang J, Li L W, Zheng J L, Yang P L, Wu X H, Cheng C X, Li J, Tian Y J, Wang F. Chem. Eng. J., 2019, 361: 1198.

doi: 10.1016/j.cej.2018.12.178    
[84]
Li L S, Bai J, Chen S, Zhang Y, Li J H, Zhou T S, Wang J C, Guan X H, Zhou B X. Chem. Eng. J., 2020, 399:125839.

doi: 10.1016/j.cej.2020.125839     URL    
[85]
Seger B, Kamat P V. J. Phys. Chem. C, 2009, 113(43): 18946.

doi: 10.1021/jp907367k     URL    
[86]
Antoniadou M, Lianos P. Photochem. Photobiol. Sci., 2011, 10(3): 431.

doi: 10.1039/c0pp00148a     URL    
[87]
Tang T, Li K, Ying D, Sun T, Wang Y, Jia J. Int. J. Hydrogen Energy, 2014, 39(19): 10258.

doi: 10.1016/j.ijhydene.2014.04.134     URL    
[88]
Li K, Zhang H B, Tang T T, Xu Y L, Ying D W, Wang Y L, Jia J P. Water Res., 2014, 62: 1.

doi: 10.1016/j.watres.2014.05.044     URL    
[89]
Li K, Zhang H B, Tang Y P, Ying D W, Xu Y L, Wang Y L, Jia J P. Appl. Catal., B, 2015, 164: 82.

doi: 10.1016/j.apcatb.2014.09.017     URL    
[90]
Zhang J, Yang P L, Zheng J L, Li J, Lv S, Jin T X, Zou Y N, Xu P Y, Cheng C X, Zhang Y Q. Chem. Eng. J., 2020, 392: 9.
[91]
Li K, Zhang H B, Ma Y P, Sun T H, Jia J P. Electrochim. Acta, 2019, 303: 329.

doi: 10.1016/j.electacta.2019.02.102     URL    
[92]
Li L, Wang G Y, Chen R, Zhu X, Wang H, Liao Q, Yu Y X. Lab Chip, 2014, 14(17): 3368.

doi: 10.1039/C4LC00595C     URL    
[93]
Liu J, Xia M, Chen R, Zhu X, Liao Q, Ye D D, Zhang B, Zhang W, Yu Y X. Sep. Purif. Technol., 2019, 229:115821.

doi: 10.1016/j.seppur.2019.115821     URL    
[94]
Wang N, Zhang X M, Wang Y, Yu W X, Chan H L W. Lab Chip, 2014, 14(6): 1074.

doi: 10.1039/C3LC51233A     URL    
[95]
Jayamohan H, Smith Y R, Hansen L C, Mohanty S K, Gale B K, Misra M. Appl. Catal., B, 2015, 174: 167.
[96]
Lei L, Wang N, Zhang X M, Tai Q D, Tsai D P, Chan H L W. Biomicrofluidics, 2010, 4(4):043004.

doi: 10.1063/1.3491471     URL    
[97]
Azzouz I, Habba Y G, Capochichi-Gnambodoe M, Marty F, Vial J, Leprince-Wang Y, Bourouina T. Microsyst. Nanoeng., 2018, 4:17093.

doi: 10.1038/micronano.2017.93     URL    
[98]
Li J F, An Z Y, Sun J Y, Tan C Y, Gao D, Tan Y, Jiang Y Y. ACS Appl. Mater. Interfaces., 2020, 12(31): 35475.

doi: 10.1021/acsami.0c10162     URL    
[99]
Rambabu P, Patel S, Gogoi D, Uppaluri R V S, Peela N R. Int. J. Hydrogen Energy, 2022, 47(4): 2152.

doi: 10.1016/j.ijhydene.2021.10.171     URL    
[100]
Yusuf A, Garlisi C, Palmisano G. Catal. Today., 2018, 315: 79.

doi: 10.1016/j.cattod.2018.05.041     URL    
[101]
Padoin N, Soares C. Chem. Eng. J., 2017, 310: 381.

doi: 10.1016/j.cej.2016.06.013     URL    
[102]
Zhang H, Xuan J, Xu H, Leung M K H, Leung D Y C, Zhang L, Wang H Z, Wang L. Appl. Energy., 2013, 112: 1131.

doi: 10.1016/j.apenergy.2013.01.077     URL    
[103]
Zaidani M, Hasan A, Al-Musharfy M, Sassi M. J. Pet. Sci. Eng., 2020, 184:106576.

doi: 10.1016/j.petrol.2019.106576     URL    
[104]
Chiuta S, Everson R C, Neomagus H, Le Grange L A, Bessarabov D G. Int. J. Hydrogen Energy, 2014, 39(22): 11390.

doi: 10.1016/j.ijhydene.2014.05.146     URL    
[105]
Makarem M A, Farsi M, Rahimpour M R. Int. J. Hydrogen Energy, 2021, 46(37): 19749.

doi: 10.1016/j.ijhydene.2020.07.221     URL    
[106]
Sateesh J, Guha K, Dutta A, Sengupta P, Rao K S. Microsyst. Technol., 2019, 25(7): 2553.

doi: 10.1007/s00542-018-4261-z    
[107]
Pistoresi C, Fan Y L, Luo L G. Chem. Eng. Process., 2015, 95: 63.

doi: 10.1016/j.cep.2015.05.014     URL    
[108]
Li L, Fan W G, Xuan J, Leung M K H, Zheng K Q, She Y Y. Appl. Energy., 2017, 206: 413.

doi: 10.1016/j.apenergy.2017.08.175     URL    
[109]
Guima K E, Gomes L E, Fernandes J A, Wender H, Martins C A. ACS Appl. Mater. Interfaces., 2020, 12(49): 54563.

doi: 10.1021/acsami.0c14464     URL    
[110]
Lee S L, Ho L N, Ong S A, Wong Y S, Voon C H, Khalik W F, Yusoff N A, Nordin N. Chemosphere, 2018, 194: 675.

doi: 10.1016/j.chemosphere.2017.11.166     URL    
[111]
Chen X, Yao J, Xia B, Gan J, Gao N, Zhang Z. J. Hazard. Mater., 2020, 383:121220.

doi: 10.1016/j.jhazmat.2019.121220     URL    
[112]
Li J, Li J, Chen Q, Bai J, Zhou B. J. Hazard. Mater., 2013, 262: 304.

doi: 10.1016/j.jhazmat.2013.08.066     URL    
[113]
Zha L N, Bai J, Zhou C H, Zhang Y, Li J H, Wang P B, Zhang B, Zhou B X. Chemosphere, 2022, 289: 133119.

doi: 10.1016/j.chemosphere.2021.133119     URL    
[114]
Xia M, Chen R, Zhu X, Liao Q, An L, Wang Z B, He X F, Jiao L. Sci. Bull., 2016, 61(21): 1699.

doi: 10.1007/s11434-016-1178-8     URL    
[115]
Lee S L, Ho L N, Ong S A, Wong Y S, Voon C H, Khalik W F, Yusoff N A, Nordin N. Chemosphere, 2018, 209: 935.

doi: 10.1016/j.chemosphere.2018.06.157     URL    
[116]
Jang J, Kang Y, Han J H, Jang K, Kim C M, Kim I S. Desalination, 2020, 491:114540.

doi: 10.1016/j.desal.2020.114540     URL    
[117]
Feng H, Chen M, Chen R, Zhu X, Liao Q, Ye D, Zhang B, An L, Yu Y, Zhang W. Ind. Eng. Chem. Res., 2020, 59(1): 137.

doi: 10.1021/acs.iecr.9b06146     URL    
[118]
Chen F Y, Li J H, Xia L G, Wang J C, Chen S, Zhang Y, Bai J, Li L S, Zhou T S, Rahim M, Xu Q J, Zhou B X. Appl. Catal., B, 2020, 277:119227.

doi: 10.1016/j.apcatb.2020.119227     URL    
[119]
Guo D L, Liu Y B, Ji H D, Wang C C, Chen B, Shen C S, Li F, Wang Y X, Lu P, Liu W. Environ. Sci. Technol., 2021, 55(6): 4045.

doi: 10.1021/acs.est.1c00349     URL    
[120]
Zhang Y, Li J H, Bai J, Li L S, Xia L G, Chen S, Zhou B X. Water Res., 2017, 125: 259.

doi: S0043-1354(17)30717-0     pmid: 28865375
[121]
Xia B, Yao J J, Han C X, Zhang Z, Chen X Y, Fang Y J. Chem. Pap., 2018, 72(2): 359.

doi: 10.1007/s11696-017-0285-6     URL    
[122]
Kee M-W, Lam S-M, Sin J-C, Zeng H, Mohamed A R. J. Photochem. Photobiol. A, 2020, 391:112353.

doi: 10.1016/j.jphotochem.2019.112353     URL    
[123]
Lui G, Jiang G P, Fowler M, Yu A P, Chen Z W. J. Power Sources, 2019, 425: 69.

doi: 10.1016/j.jpowsour.2019.03.091     URL    
[124]
Zhang J, Zheng J L, Yang W. Chem. Eng. J., 2021, 403:126368.

doi: 10.1016/j.cej.2020.126368     URL    
[125]
Vinu R, Madras G. Environ. Sci. Technol., 2008, 42(3): 913.

pmid: 18323122
[126]
He H B, Luo Z Z, Tang Z Y, Yu C L. Appl. Surf. Sci., 2019, 490: 460.

doi: 10.1016/j.apsusc.2019.05.260     URL    
[127]
Wang G H, Fan W Z, Li Q, Deng N S. Chemosphere, 2019, 216: 707.

doi: 10.1016/j.chemosphere.2018.10.199     URL    
[128]
Wang D W, Li Y, Puma G L, Lianos P, Wang C, Wang P F. J. Hazard. Mater., 2017, 323: 681.

doi: 10.1016/j.jhazmat.2016.10.037     URL    
[1] 卢娜,周顺桂,倪晋仁. 微生物燃料电池的产电机制*[J]. 化学进展, 2008, 20(0708): 1233-1240.