English
新闻公告
More
化学进展 2022, Vol. 34 Issue (8): 1809-1814 DOI: 10.7536/PC210922 前一篇   后一篇

• 综述 •

无铅卤系钙钛矿纳米晶:新一代光催化材料

范倩倩1,2,3,*(), 温璐2,3, 马建中1,2,3,*()   

  1. 1 陕西科技大学轻化工助剂化学与技术教育部重点实验室 西安 710021
    2 陕西科技大学轻工科学与工程学院 西安 710021
    3 陕西科技大学西安市绿色化学品与功能材料重点实验室 西安 710021
  • 收稿日期:2021-09-18 修回日期:2021-11-19 出版日期:2022-08-20 发布日期:2022-04-01
  • 通讯作者: 范倩倩, 马建中
  • 基金资助:
    国家自然科学基金(52103088); 轻化工助剂化学与技术教育部重点实验室开放课题(KFKT2020-08); 中国博士后科学基金面上项目(2020M683667XB)

Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials

Qianqian Fan1,2,3(), Lu Wen2,3, Jianzhong Ma1,2,3()   

  1. 1 Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology,Xi’an 710021, China
    2 College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
    3 Xi’an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science and Technology, Xi’an 710021, China
  • Received:2021-09-18 Revised:2021-11-19 Online:2022-08-20 Published:2022-04-01
  • Contact: Qianqian Fan, Jianzhong Ma
  • Supported by:
    National Natural Science Foundation of China (No. 52103088). Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry open fund(KFKT2020-08); China Postdoctoral Science Foundation project(2020M683667XB)

由于TiO2光催化材料具有反应速度快、稳定性好、不产生二次污染等优点,常被应用于污染物降解、CO2还原、制氢等领域,然而TiO2可见光利用率低,限制了其进一步广泛应用。近年来,无铅卤系钙钛矿纳米晶由于其带隙可调、可见光吸收能力强等优势在光催化领域显示出巨大的潜力。相关研究表明:无铅卤系钙钛矿纳米晶可成功应用于CO2还原、有机污染物降解等领域,效果显著。基于此,本文首先阐述了无铅卤系钙钛矿纳米晶的制备方法,并系统地总结了其在CO2还原、制氢、污染物降解、NO去除等领域的应用研究进展,最后就现阶段无铅卤系钙钛矿纳米晶光催化材料研究中存在的问题及今后的研究方向进行了分析和展望。

TiO2 based photocatalytic technology is of wide application in the fields of pollutant degradation, CO2 reduction, hydrogen production, etc. owing to its set of intriguing properties, including fast reaction speed, high visible light utilization efficiency, and no secondary pollution. However, the low utilization rate of visible light for TiO2 materials limits it further use. In recent years, lead-free halide perovskite nanocrystals are of great interest in the field of photocatalysis due to their notable advantages such as tunable band gap and high visible light absorption. Relevant studies show that lead-free halide perovskite nanocrystals can be successfully applied in the fields of CO2 reduction and organic pollutant degradation, with significant effects. This review describes the preparation methods of lead-free halide perovskite nanocrystals, and summarizes its applications in the fields of CO2 reduction, hydrogen production, pollutant degradation and NO removal systematically. Finally, the current issues of lead-free halide perovskite nanocrystals as photocatalytic materials and the outlook for the future directions are discussed and prospected.

Contents

1 Introduction

2 Preparation methods of lead-free halide perovskite nanocrystal

2.1 Ligand-assisted reprecipitation

2.2 Heat injection

2.3 Other methods

3 Application of lead-free halide perovskite nanocrystals in the field of photocatalysis

3.1 CO2 reduction

3.2 Hydrogen production

3.3 Degradation of organic pollutants

3.4 NO removal

4 Conclusion and outlook

()
图1 利用LARP法制备MA3Bi2Br9纳米晶的过程示意图
Fig. 1 Schematic diagram of the preparation process of MA3Bi2Br9 nanocrystals by LARP method
图2 热注入法制备CsSnX3 (X=I/Br/Cl) 纳米晶的过程示意图
Fig. 2 Schematic diagram of the process of preparing CsSnX3 (X=I/Br/Cl) nanocrystals by hot injection method
图3 水热法制备Cs2NaVCl3纳米晶的过程示意图
Fig. 3 Schematic diagram of the process of preparing Cs2NaVCl3 nanocrystals by hydrothermal method
表1 无铅卤系钙钛矿纳米晶的光催化性能及应用领域
Table 1 Photocatalytic properties and application fields of lead-free halide perovskite nanocrystals
[1]
Fujishima A, Honda K. Nature, 1972, 238(5358): 37.

doi: 10.1038/238037a0     URL    
[2]
Wang Z J, Hong J J, Ng S F, Liu W, Huang J J, Chen P F, Ong W J. Acta Physico-Chimica Sinica, 2021, 37(6):76.
王则鉴, 洪佳佳, Ng Sue-Faye, 刘雯, 黄俊杰, 陈鹏飞, Ong Wee-Jun. 物理化学学报, 2021, 37(6): 76.).
[3]
Wang J J, Teng J, Pu L Z, Huang J, Wang Y, Li Q X. Int. J. Quantum Chem., 2019, 119(14): e25930.
[4]
Wang X, Hisatomi T, Wang Z, Song J, Qu J L, Takata T, Domen K. Angew. Chem., 2019, 131(31): 10776.
[5]
Zhang G, Sun S, Jiang W, Xiang M, Sun Z. Adv. Energy Mater., 2017, 7: 1600932.
[6]
Liu Y L, Zhang M F, Tung C H, Wang Y F. ACS Catal., 2016, 6(12): 8389.

doi: 10.1021/acscatal.6b03076     URL    
[7]
Ong C B, Ng L Y, Mohammad A W. Renew. Sustain. Energy Rev., 2018, 81: 536.

doi: 10.1016/j.rser.2017.08.020     URL    
[8]
Su Y, Li H F, Ma H B, Robertson J, Nathan A. ACS Appl. Mater. Interfaces, 2017, 9(9): 8100.

doi: 10.1021/acsami.6b15648     URL    
[9]
Yang J H, Yan H J, Wang X L, Wen F Y, Wang Z J, Fan D Y, Shi J Y, Li C. J. Catal., 2012, 290: 151.

doi: 10.1016/j.jcat.2012.03.008     URL    
[10]
Yu S, Fan X B, Wang X, Li J G, Zhang Q, Xia A D, Wei S Q, Wu L Z, Zhou Y, Patzke G R. Nat. Commun., 2018, 9: 4009.

doi: 10.1038/s41467-018-06294-y     URL    
[11]
Li X, Zhang T Y, Wang T, Zhao Y X. Acta Chimica Sin., 2019, 77(11): 1075.
李鑫, 张太阳, 王甜, 赵一新. 化学学报, 2019, 77(11): 1075.).

doi: 10.6023/A19080292    
[12]
He R A, Cao S W, Zhou P, Yu J G. Chin. J. Catal., 2014, 35(7): 989.

doi: 10.1016/S1872-2067(14)60075-9     URL    
[13]
Ge M Z, Li Q S, Cao C Y, Huang J Y, Li S H, Zhang S N, Chen Z, Zhang K Q, Al-Deyab S S, Lai Y K. Adv. Sci., 2017, 4(1): 1600152.
[14]
Wen J Q, Xie J, Chen X B, Li X. Appl. Surf. Sci., 2017, 391: 72.

doi: 10.1016/j.apsusc.2016.07.030     URL    
[15]
Li X Y, Zhou C C, Wang Y H, Ding F F, Zhou H W, Zhang X X. Progress in Chemistry, 2019, 31(6): 882.
李晓茵, 周传聪, 王英华, 丁菲菲, 周华伟, 张宪玺. 化学进展, 2019, 31(6): 882.).

doi: 10.7536/PC181103    
[16]
Stranks S D, Snaith H J. Nat. Nanotechnol., 2015, 10(5): 391.

doi: 10.1038/nnano.2015.90     pmid: 25947963
[17]
Huang H, Zhao W R, Li Y, Luo L. Chin. J. Lumin., 2020, 41(9): 1058.
黄浩, 赵韦人, 李杨, 罗莉. 发光学报, 2020, 41(9): 1058.).
[18]
Zhou L, Xu Y F, Chen B X, Kuang D B, Su C Y. Small, 2018, 14(11): 1703762.
[19]
Bresolin B M, Hammouda S B, Sillanpää M. J. Photochem. Photobiol. A Chem., 2019, 376: 116.

doi: 10.1016/j.jphotochem.2019.03.009     URL    
[20]
Zhang Z Z, Liang Y Q, Huang H L, Liu X Y, Li Q, Chen L X, Xu D S. Angew. Chem. Int. Ed., 2019, 58(22): 7263.

doi: 10.1002/anie.201900658     URL    
[21]
Lyu B, Guo X, Gao D, Kou M, Bao X. J. Hazard. Mater., 2021, 403(1): 123967.
[22]
Fan Q Q. Doctoral Dissertation of Shaanxi University of Science and Technology, 2019.
范倩倩. 陕西科技大学博士论文, 2019.).
[23]
Kulkarni S A, Mhaisalkar S G, Mathews N, Boix P P. Small Methods, 2019, 3(1): 1800231.
[24]
Shamsi J, Urban A S, Imran M, de Trizio L, Manna L. Chem. Rev., 2019, 119(5): 3296.

doi: 10.1021/acs.chemrev.8b00644     pmid: 30758194
[25]
Leng M Y, Chen Z W, Yang Y, Li Z, Zeng K, Li K H, Niu G D, He Y S, Zhou Q C, Tang J. Angew. Chem. Int. Ed., 2016, 55(48): 15012.
[26]
Yang B, Chen J S, Hong F, Mao X, Zheng K B, Yang S Q, Li Y J, Pullerits T, Deng W Q, Han K L. Angew. Chem. Int. Ed., 2017, 56(41): 12471.
[27]
Jellicoe T C, Richter J M, Glass H F J, Tabachnyk M, Brady R, Dutton S E, Rao A, Friend R H, Credgington D, Greenham N C, Böhm M L. J. Am. Chem. Soc., 2016, 138(9): 2941.

doi: 10.1021/jacs.5b13470     pmid: 26901659
[28]
Pal J, Manna S M, Mondal A, Das S, Adarsh K V, Nag A. Angew. Chem. Int. Ed., 2017, 56(45): 14187.
[29]
Bhosale S S, Kharade A K, Jokar E, Fathi A, Chang S M, Diau E W G. J. Am. Chem. Soc., 2019, 141(51): 20434.
[30]
Cao X R, Kang L, Guo S X, Zhang M G, Lin Z S, Gao J H. ACS Appl. Mater. Interfaces, 2019, 11(42): 38648.
[31]
Lu C, Itanze D S, Aragon A G, Ma X, Li H, Ucer K B, Hewitt C, Carroll D L, Williams R T, Qiu Y J, Geyer S M. Nanoscale, 2020, 12(5): 2987.

doi: 10.1039/C9NR07722G     URL    
[32]
Wang Y Y, Huang H L, Zhang Z Z, Wang C, Yang Y Y, Li Q, Xu D S. Appl. Catal. B Environ., 2021, 282: 119570.
[33]
Guo Y M, Liu G N, Li Z X, Lou Y B, Chen J X, Zhao Y X. ACS Sustainable Chem. Eng., 2019, 7(17): 15080.
[34]
Wang T, Yue D T, Li X, Zhao Y X. Appl. Catal. B Environ., 2020, 268: 118399.
[35]
Romani L, Speltini A, Ambrosio F, Mosconi E, Profumo A, Marelli M, Margadonna S, Milella A, Fracassi F, Listorti A, de Angelis F, Malavasi L. Angew. Chem. Int. Ed., 2021, 60(7): 3611.

doi: 10.1002/anie.202007584     pmid: 33047446
[36]
Li K K, Li S, Zhang W L, Shi Z F, Wu D, Chen X, Lin P, Tian Y T, Li X J. J. Colloid Interface Sci., 2021, 596: 376.

doi: 10.1016/j.jcis.2021.03.144     URL    
[37]
Zhang W N, Zhao Q G, Wang X H, Yan X X, Xu J Q, Zeng Z G. Catal. Sci. Technol., 2017, 7(13): 2753.

doi: 10.1039/C7CY00389G     URL    
[38]
Gao G, Xi Q Y, Zhou H, Zhao Y X, Wu C Q, Wang L D, Guo P R, Xu J W. Nanoscale, 2017, 9(33): 12032.
[39]
Araña J, Sousa D G, Díaz O G, Melián E P, Rodríguez J M D. Appl. Catal., B, 2019, 244: 660.

doi: 10.1016/j.apcatb.2018.12.005     URL    
[40]
Huo B, Yang J, Bian Y, Wu D, Tang X. Chem. Eng. J., 2021, 406: 126740.
[41]
Wu D, Tao Y, Huang Y, Huo B, Tang X. J. Catal., 2021, 397: 27.

doi: 10.1016/j.jcat.2021.03.007     URL    
[42]
Águia C, Ângelo J, Madeira L M, Mendes A. Polym. Degrad. Stab., 2011, 96(5): 898.

doi: 10.1016/j.polymdegradstab.2011.01.032     URL    
[1] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[2] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[3] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[4] 郭俊兰, 梁英华, 王欢, 刘利, 崔文权. 光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114.
[5] 曹军文, 张文强, 李一枫, 赵晨欢, 郑云, 于波. 中国制氢技术的发展现状[J]. 化学进展, 2021, 33(12): 2215-2244.
[6] 淡猛, 蔡晴, 向将来, 李筠连, 于姗, 周莹. 用于光催化分解硫化氢制氢的金属硫化物[J]. 化学进展, 2020, 32(7): 917-926.
[7] 姚淇露, 杜红霞, 卢章辉. 氨硼烷催化水解制氢[J]. 化学进展, 2020, 32(12): 1930-1951.
[8] 封啸, 任颜卫, 江焕峰. 金属-有机框架材料在光催化二氧化碳还原中的应用[J]. 化学进展, 2020, 32(11): 1697-1709.
[9] 陈雅静, 李旭兵, 佟振合, 吴骊珠. 人工光合成制氢[J]. 化学进展, 2019, 31(1): 38-49.
[10] 赵冲, 徐芬*, 孙立贤*, 范明慧, 邹勇进, 褚海亮. 铝基材料水解制氢技术[J]. 化学进展, 2016, 28(12): 1870-1879.
[11] 张圆正, 谢利利, 周怡静, 殷立峰*. 二维Z型光催化材料及其在环境净化和太阳能转化中的应用[J]. 化学进展, 2016, 28(10): 1528-1540.
[12] 王栋东, 董化, 雷小丽, 于跃, 焦博, 吴朝新. 光敏化铱配合物三线态材料[J]. 化学进展, 2015, 27(5): 492-502.
[13] 翟康, 李孔斋, 祝星, 魏永刚. 两步热化学分解水制氢用氧交换材料[J]. 化学进展, 2015, 27(10): 1481-1499.
[14] 殷巧巧, 乔儒, 童国秀. 离子掺杂氧化锌光催化纳米功能材料的制备及其应用[J]. 化学进展, 2014, 26(10): 1619-1632.
[15] 马广璐, 庄大为, 戴洪斌, 王平. 铝/水反应可控制氢[J]. 化学进展, 2012, 24(04): 650-658.