English
新闻公告
More
化学进展 2021, Vol. 33 Issue (8): 1311-1322 DOI: 10.7536/PC200750 前一篇   后一篇

• 综述 •

多相催化过硫酸盐工艺处理水环境中有机污染物的非自由基过程

刘佳, 史俊, 付坤, 丁超, 龚思成, 邓慧萍*()   

  1. 同济大学 长江水环境教育部重点实验室 上海污染控制与生态安全研究院 环境科学与工程学院 上海 200092
  • 收稿日期:2020-07-22 修回日期:2020-11-10 出版日期:2021-08-20 发布日期:2020-12-28
  • 通讯作者: 邓慧萍
  • 基金资助:
    国家水体污染控制与治理科技重大专项(2017ZX07201003-02)

Heterogeneous Catalytic Persulfate Oxidation of Organic Pollutants in the Aquatic Environment: Nonradical Mechanism

Jia Liu, Jun Shi, Kun Fu, Chao Ding, Sicheng Gong, Huiping Deng()   

  1. Key Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University,Shanghai 200092, China
  • Received:2020-07-22 Revised:2020-11-10 Online:2021-08-20 Published:2020-12-28
  • Contact: Huiping Deng
  • Supported by:
    Major Science and Technology Program for Water Pollution Control and Treatment of China(2017ZX07201003-02)

20世纪80年代至今,水处理技术中的高级氧化过程(AOP)已被广泛研究及应用。然而水体中的有机污染物仍因种类繁多和降解难易不同困扰着研究者们,因此对于AOP的机理过程需要更深入的分析认识,以利于技术的进一步发展及应用。AOP中的过硫酸盐氧化工艺近年来得到大量关注,其自由基机理的关键活性物种是·OH 和·SO4-。非自由基机理分为1O2氧化和PS直接氧化(也称电子转移),某些体系中高价态金属也直接或间接地参与氧化过程。但非自由基过程的发生机理及优势特点仍存在争议。本文综述了基于多相催化过硫酸盐高级氧化过程处理水中有机污染物的最新研究,阐述反应机理及其分析手段,并指出当前研究可能存在的问题。对于过硫酸盐高级氧化工艺中非自由基过程的未来研究方向及应用前景提出展望。

Since the 1980s, the advanced oxidation process(AOP) in water treatment technology has been widely researched and applied. However, organic pollutants in water still plague scholars due to their wide variety and difficulty in degradation. Therefore, the mechanism of AOP needs to be clearly understood and get deeper into, which is conducive to technological application. As a typical AOP, the peroxymonosulfate & peroxydisulfate oxidation process has received a lot of attention in recent years, whereas there are still numerous disputes on the mechanism, lacking a unified understanding. The key reactive species of free radical process are generally ·OH and ·SO4-. Nonradical process contains 1O2 oxidation and peroxymonosulfate & peroxydisulfate oxidation(known as an electron transfer process), and high valence metal also participates in the oxidation process directly or indirectly. The specific mechanism of nonradical processes are still controversial, also the advantages and disadvantages. For the above reasons, this paper reviews the latest researches on the treatment of organic pollutants based on heterogeneous catalytic persulfate oxidation process in water, explains the reaction mechanism and the analysis methods, and points out the possible current research problems. Prospects for the future research direction and the application perspective of persulfate oxidation are proposed, with an emphasis on nonradical processes.

Contents

1 Introduction

2 Mechanism of singlet oxygen

2.1 Activated by ketone group

2.2 Produced by superoxide anion radical

2.3 Produced by PMS anion radical

2.4 Other ways for producing singlet oxygen

3 Mechanism of electron transfer

3.1 Catalyst-mediated electron transfer

3.2 Activated persulfate on the surface of catalyst

4 Mechanism of high valence metal

5 Analysis methods and catalyst deactivation

5.1 Analysis methods

5.2 Catalyst deactivation

6 Conclusion and outlook

()
图1 2015年至2020年Web of Science过硫酸盐氧化工艺去除有机物染物及基于非自由基机理的发表物数量
Fig. 1 Number of publications on persulfate oxidation process for organic pollutants removal and nonradical mechanism on Web of Science during 2015 to 2020
表1 多相催化过硫酸盐氧化工艺研究成果
Table 1 Researches on heterogeneous catalytic persulfate oxidation process
Pollutant, Concentration Catalyst, Dosage
(*0.1 g/L)
Oxidant, Dosage Degradation(%)/
Adsorption(%)
Mechanism/nonradical process proportion pH/
Reaction time(min)
Cycles/
ΔDegradation(%)
ref
Phenol, 20 ppm N-SWCNT, 1 PMS, 6.5 mM 100/- Electron transfer/key role Neutral/30 3/11 23
Sulfamethoxazole, 20 μM FeCo2S4-C3N4, 0.1 PMS, 0.15 mM 92/15 1O2/dominated 6.5/15 3/24 24
Phenol, 100 μM MnO2, 4 PDS, 4 mM 100/12 1O2/100% 6.5/180 -/- 25
Tetracycline, 35 mg/L NMC, 1 PDS, 1 mM 100/23.7 Electron transfer/key role 7/120 5/21 26
Oxytetracycline, 250 mg/L Fe/C, 5 PMS, 1 mM 100/- 1O2/partial 8.2/30 -/- 27
4-Chlorophenol, 0.1 mM Ni-NiO, 2 PDS, 0.2 mM 80/- Electron transfer/partial 7/60 3/5 28
Atrazine, 10 mg/L Titanomagnetite, 80 PDS, 5.0 mM 92/- Fe/partial 6.3/90 5/35 29
Bisphenol A, 0.09 mM Cu-rGO LDH, 2.5 PMS, 3 mM 99/- 1O2/100% Neutral/40 3/10 30
Oxytetracycline, 40 μM Co3O4-MC, 2 PMS, 0.5 mM 95/17 1O2/partial 5/12 5/4 31
2,4-Dichlorophenol, 50 μM CuFe oxide, 2 PDS, 0.2 mM 100/limited Electron transfer/100% 5.8/120 3/15 32
Sulfamethoxazole, 5 mg/L Fe3C@NCNTs, 1 PDS, 1 mM 98/48 1O2/primary Neutral/100 4/80 33
Bisphenol A, 0.1 mM NCN, 1 PMS, 2 mM 100/25 1O2/primary 6.7/2 5/0 14
Phenol, 20 mg/L PPy-T, 1 PMS, 3.25 mM 97/- Electron transfer/dominated 2.8/120 3/20 34
4-Chlorophenol, 40 ppm CuOMgO/Fe3O4, 2 PMS, 2 mM 100/10 1O2/100% Neutral/40 -/- 35
2,4-Dichlorophenol, 5 μM CuO, 2 PDS, 40 μM 100/limited Electron transfer/100% 5.8/60 -/- 17
Trichlorophenol, 0.1 mM Au/Al2O3, 2.5 PMS, 1 mM 100/limited Electron transfer/dominated 7/60 -/- 36
2,4-Dichlorophenol, 0.05 mM CNT, 1 PDS, 0.05 mM 100/25 1O2, Electron transfer/100% 6.5/30 5/50 37
2,4-Dichlorophenol, 0.03 mM Fe/S-CNTs, 1 PDS, 0.03 mM 95/40 Electron transfer/key role 7/30 4/31 38
p-Chloroaniline, 0.5 mM CuO, 5 PDS, 2.3 mM 71.5/5 Electron transfer/key role 7/350 -/- 39
2,4,6-Trichlorophenol,0.1 mM CuO/rGO, 1 PDS, 2.5 mM 80/limited Electron transfer/key role 6/180 -/- 40
Bisphenol A, 5 mg/L CuO, 1 PMS, 0.5 mM 100/5 1O2/dominated 7.2/60 5/5 41
Diclofenac, 0.01 g/L CNOMS, 1 PMS, 0.2 g/L 98/- 1O2/partial 8.3/20 4/15 42
Ciprofloxacin, 0.03 mM CuO, 5 PDS, 1 mM 100/41 Electron transfer/dominated 8/60 5/0 43
Acid Red 1, 50 μM CuO-CF, 20 PMS, 0.5 mM 100/limited 1O2/dominated 10/10 5/limited 44
Sulfonamides, 40 μM rGO, 1 PDS, 0.6 mM 100/- 1O2/100% 5/30 -/- 45
图2 碳纳米管催化过二硫酸盐产生单线态氧的过程[50]
Fig. 2 Generation of1O2 by PDS catalyzed by CNTs[50]
图3 苯醌催化过一硫酸盐产生单线态氧的过程[47]
Fig. 3 Generation of1O2 by PMS catalyzed by BQ[47]
图4 二氧化锰催化过二硫酸盐产生单线态氧的过程[24]
Fig. 4 Generation of1O2 by PDS catalyzed by MnO2[24]
图5 产生单线态氧的几种方式
Fig. 5 Several ways for producing singlet oxygen
图6 过硫酸盐与碳纳米管形成活性复合物[48]
Fig. 6 Reactive Complexes formed by PS and CNTs[48]
图7 取代基对5种磺胺类药物降解机理的影响[44]
Fig. 7 Effects of substituents on degradation mechanism of five sulfonamides[44]
[1]
Andreozzi R, Caprio V, Insola A, Marotta R. Catalysis Today, 1999, 53: 51.

doi: 10.1016/S0920-5861(99)00102-9     URL    
[2]
Lee Y, von Gunten U. Water Res., 2010, 44(2): 555.

doi: 10.1016/j.watres.2009.11.045     URL    
[3]
Miklos D B, Remy C, Jekel M, Linden K G, Drewes J E, Hübner U. Water Res., 2018, 139: 118.

doi: S0043-1354(18)30238-0     pmid: 29631187
[4]
Neta P, Huie R E, Ross A B. J. Phys. Chem. Ref. Data, 1988, 17(3): 1027.

doi: 10.1063/1.555808     URL    
[5]
Liu H Z, Bruton T A, Doyle F M, Sedlak D L. Environ. Sci. Technol., 2014, 48(17): 10330.
[6]
Eberson L, Adv. Phys. Organ. Chem., 1982, 18:79.
[7]
Anipsitakis G P, Dionysiou D D. Environ. Sci. Technol., 2003, 37(20): 4790.

pmid: 14594393
[8]
Lee J, von Gunten U, Kim J H. Environ. Sci. Technol., 2020, 54(6): 3064.

doi: 10.1021/acs.est.9b07082     URL    
[9]
Wang J L, Wang S Z. Chem. Eng. J., 2018, 334: 1502.

doi: 10.1016/j.cej.2017.11.059     URL    
[10]
Xiao R Y, Luo Z H, Wei Z S, Luo S, Spinney R, Yang W C, Dionysiou D D. Curr. Opin. Chem. Eng., 2018, 19: 51.

doi: 10.1016/j.coche.2017.12.005     URL    
[11]
Duan X G, Sun H Q, Shao Z P, Wang S B. Appl. Catal. B: Environ., 2018, 224: 973.

doi: 10.1016/j.apcatb.2017.11.051     URL    
[12]
Yun E T, Yoo H Y, Bae H, Kim H I, Lee J. Environ. Sci. Technol., 2017, 51(17): 10090.
[13]
Yun E T, Lee J H, Kim J, Park H D, Lee J. Environ. Sci. Technol., 2018, 52(12): 7032.

doi: 10.1021/acs.est.8b00959     URL    
[14]
Gao Y W, Chen Z H, Zhu Y, Li T, Hu C. Environ. Sci. Technol., 2020, 54(2): 1232.

doi: 10.1021/acs.est.9b05856     URL    
[15]
Yang Y, Banerjee G, Brudvig G W, Kim J H, Pignatello J J. Environ. Sci. Technol., 2018, 52(10): 5911.

doi: 10.1021/acs.est.8b00735     pmid: 29664293
[16]
Ren W, Xiong L L, Nie G, Zhang H, Duan X G, Wang S B. Environ. Sci. Technol., 2020, 54(2): 1267.

doi: 10.1021/acs.est.9b06208     URL    
[17]
Zhang T, Chen Y, Wang Y R, Le Roux J, Yang Y, CrouÉ J P. Environ. Sci. Technol., 2014, 48(10): 5868.

doi: 10.1021/es501218f     pmid: 24779765
[18]
Wang Z, Jiang J, Pang S Y, Zhou Y, Guan C T, Gao Y, Li J, Yang Y, Qiu W, Jiang C C. Environ. Sci. Technol., 2018, 52(19): 11276.
[19]
Duan X G, Ao Z M, Zhou L, Sun H Q, Wang G X, Wang S B. Appl. Catal. B: Environ., 2016, 188: 98.

doi: 10.1016/j.apcatb.2016.01.059     URL    
[20]
Oh W D, Dong Z L, Lim T T. Appl. Catal. B: Environ., 2016, 194: 169.

doi: 10.1016/j.apcatb.2016.04.003     URL    
[21]
Brandt C, van Eldik R. Chem. Rev., 1995, 95(1): 119.

doi: 10.1021/cr00033a006     URL    
[22]
Oh W D, Lim T T. Chem. Eng. J., 2019, 358: 110.

doi: 10.1016/j.cej.2018.09.203     URL    
[23]
Duan X G, Sun H Q, Wang Y X, Kang J, Wang S B. ACS Catal., 2015, 5(2): 553.

doi: 10.1021/cs5017613     URL    
[24]
Li Y J, Li J, Pan Y T, Xiong Z K, Yao G, Xie R Z, Lai B. Chem. Eng. J., 2020, 384: 123361.
[25]
Zhu S S, Li X J, Kang J, Duan X G, Wang S B. Environ. Sci. Technol., 2019, 53(1): 307.

doi: 10.1021/acs.est.8b04669     URL    
[26]
Feng L Y, Li X Y, Chen X T, Huang Y J, Peng K S, Huang Y X, Yan Y Y, Chen Y G. Sci. Total. Environ., 2020, 708: 135071.
[27]
Li Z, Sun Y Q, Yang Y, Han Y T, Wang T S, Chen J W, Tsang D C W. Environ. Res., 2020, 183: 109156.
[28]
Kim H H, Lee D, Choi J, Lee H, Seo J, Kim T, Lee K M, Pham A L, Lee C. J. Hazard. Mater., 2020, 388: 121767.
[29]
Lai L D, Zhou H Y, Zhang H, Ao Z M, Pan Z C, Chen Q X, Xiong Z K, Yao G, Lai B. Chem. Eng. J., 2020, 387: 124165.
[30]
Shahzad A, Ali J, Ifthikar J, Aregay G G, Zhu J Y, Chen Z L, Chen Z Q. J. Hazard. Mater., 2020, 392: 122316.
[31]
Li Z L, Wang M, Jin C Y, Kang J, Liu J, Yang H R, Zhang Y Q, Pu Q Y, Zhao Y, You M Y, Wu Z M. Chem. Eng. J., 2020, 392: 123789.
[32]
Liu J Q, Wu P X, Yang S S, Rehman S, Ahmed Z, Zhu N W, Dang Z, Liu Z H. Appl. Catal. B: Environ., 2020, 261: 118232.
[33]
Shang Y N, Chen C, Zhang P, Yue Q Y, Li Y W, Gao B Y, Xu X. Chem. Eng. J., 2019, 375: 122004.
[34]
Hu P, Su H, Chen Z, Yu C, Li Q, Zhou ,., Alvarez P J J, Long M. Environ. Sci. Technol., 2017, 51: 11288.
[35]
Jawad A, Zhan K, Wang H B, Shahzad A, Zeng Z H, Wang J, Zhou X Q, Ullah H, Chen Z L, Chen Z Q. Environ. Sci. Technol., 2020, 54(4): 2476.

doi: 10.1021/acs.est.9b04696     pmid: 31971792
[36]
Ahn Y Y, Bae H, Kim H I, Kim S H, Kim J H, Lee S G, Lee J. Appl. Catal. B: Environ., 2019, 241: 561.

doi: 10.1016/j.apcatb.2018.09.056     URL    
[37]
Cheng X, Guo H G, Zhang Y L, Korshin G V, Yang B. Water Res., 2019, 157: 406.

doi: S0043-1354(19)30297-0     pmid: 30978663
[38]
Cheng X, Guo H G, Zhang Y L, Liu Y, Liu H W, Yang Y. J. Colloid Interface Sci., 2016, 469: 277.

doi: 10.1016/j.jcis.2016.01.067     URL    
[39]
Du X D, Zhang Y Q, Hussain I, Huang S B, Huang W L. Chem. Eng. J., 2017, 313: 1023.

doi: 10.1016/j.cej.2016.10.138     URL    
[40]
Du X D, Zhang Y Q, Si F, Yao C H, Du M M, Hussain I, Kim H, Huang S B, Lin Z, Hayat W. Chem. Eng. J., 2019, 356: 178.

doi: 10.1016/j.cej.2018.08.216     URL    
[41]
Wang S X, Gao S S, Tian J Y, Wang Q, Wang T, Hao X J, Cui F Y. J. Hazard. Mater., 2020, 387: 121995.
[42]
Wu M H, Fu K, Deng H P, Shi J. Chemosphere, 2019, 219: 756.

doi: 10.1016/j.chemosphere.2018.12.030     URL    
[43]
Xing S T, Li W Q, Liu B, Wu Y S, Gao Y Z. Chem. Eng. J., 2020, 382: 122837.
[44]
Yang Z Y, Dai D J, Yao Y Y, Chen L K, Liu Q B, Luo L S. Chem. Eng. J., 2017, 322: 546.

doi: 10.1016/j.cej.2017.04.018     URL    
[45]
Yin R, Guo W, Ren N, Zeng L, Zhu M. Water Res, 2020, 171: 115374.
[46]
Kautsky H. Trans. Faraday Soc., 1939, 35: 216.

doi: 10.1039/tf9393500216     URL    
[47]
di Mascio P, Martinez G R, Miyamoto S, Ronsein G E, Medeiros M H G, Cadet J. Chem. Rev., 2019, 119(3): 2043.

doi: 10.1021/acs.chemrev.8b00554     pmid: 30721030
[48]
Zhou Y, Jiang J, Gao Y, Ma J, Pang S Y, Li J, Lu X T, Yuan L P. Environ. Sci. Technol., 2015, 49(21): 12941.
[49]
Apul O G, Karanfil T. Water Res., 2015, 68: 34.

doi: 10.1016/j.watres.2014.09.032     URL    
[50]
Georgakilas V, Tiwari J N, Kemp K C, Perman J A, Bourlinos A B, Kim K S, Zboril R. Chem. Rev., 2016, 116(9): 5464.

doi: 10.1021/acs.chemrev.5b00620     pmid: 27033639
[51]
Lee H, Lee H J, Jeong J, Lee J, Park N B, Lee C. Chem. Eng. J., 2015, 266: 28.

doi: 10.1016/j.cej.2014.12.065     URL    
[52]
Indrawirawan S, Sun H Q, Duan X G, Wang S B. Appl. Catal. B: Environ., 2015, 179: 352.

doi: 10.1016/j.apcatb.2015.05.049     URL    
[53]
Cheng X, Guo H G, Zhang Y L, Wu X, Liu Y. Water Res., 2017, 113: 80.

doi: S0043-1354(17)30091-X     pmid: 28199865
[54]
Baptista M S, Cadet J di Mascio P, Ghogare A A, Greer A, Hamblin M R, Lorente C, Nunez S C, Ribeiro M S, Thomas A H, Vignoni M, Yoshimura T M. Photochem. Photobiol., 2017, 93(4): 912.

doi: 10.1111/php.2017.93.issue-4     URL    
[55]
Han X P, Zhang T R, Du J, Cheng F Y, Chen J. Chem. Sci., 2013, 4(1): 368.

doi: 10.1039/C2SC21475J     URL    
[56]
Feng Y, Wu D L, Deng Y, Zhang T, Shih K. Environ. Sci. Technol., 2016, 50(6): 3119.

doi: 10.1021/acs.est.5b05974     URL    
[57]
Lei Y, Chen C S, Tu Y J, Huang Y H, Zhang H. Environ. Sci. Technol., 2015, 49(11): 6838.

doi: 10.1021/acs.est.5b00623     URL    
[58]
Chen C, Liu L, Guo J, Zhou L X, Lan Y Q. Chem. Eng. J., 2019, 361: 1304.

doi: 10.1016/j.cej.2018.12.156     URL    
[59]
Li J, Ren Y, Ji F Z, Lai B. Chem. Eng. J., 2017, 324: 63.

doi: 10.1016/j.cej.2017.04.104     URL    
[60]
Zhang X L, Feng M B, Qu R J, Liu H, Wang L S, Wang Z Y. Chem. Eng. J., 2016, 301: 1.

doi: 10.1016/j.cej.2016.04.096     URL    
[61]
Shao P H, Tian J Y, Yang F, Duan X G, Gao S S, Shi W X, Luo X B, Cui F Y, Luo S L, Wang S B. Adv. Funct. Mater., 2018, 28(13): 1870081.
[62]
Wang S, Liu Y, Wang J. Environ. Sci. Technol., 2020.
[63]
Bao Y P, Oh W D, Lim T T, Wang R, Webster R D, Hu X. Water Res., 2019, 151: 64.

doi: 10.1016/j.watres.2018.12.007     URL    
[64]
Zhang C, Zeng G M, Huang D L, Lai C, Chen M, Cheng M, Tang W W, Tang L, Dong H R, Huang B B, Tan X F, Wang R Z. Chem. Eng. J., 2019, 373: 902.

doi: 10.1016/j.cej.2019.05.139    
[65]
Inyang M I, Gao B, Yao Y, Xue Y W, Zimmerman A, Mosa A, Pullammanappallil P, Ok Y S, Cao X D. Crit. Rev. Environ. Sci. Technol., 2016, 46(4): 406.

doi: 10.1080/10643389.2015.1096880     URL    
[66]
Zhu S S, Huang X C, Ma F, Wang L, Duan X G, Wang S B. Environ. Sci. Technol., 2018, 52(15): 8649.

doi: 10.1021/acs.est.8b01817     URL    
[67]
Liang J, Liang Z B, Zou R Q, Zhao Y L. Adv. Mater., 2017, 29(30): 1701139.
[68]
Sule K, Umbsaar J, Prenner E J. Biochim. Et Biophys. Acta BBA Biomembr., 2020, 1862(8): 183250.
[69]
Bennett S W, Adeleye A, Ji Z X, Keller A A. Water Res., 2013, 47(12): 4074.

doi: 10.1016/j.watres.2012.12.039     pmid: 23591109
[70]
Ren W, Xiong L L, Yuan X H, Yu Z W, Zhang H, Duan X G, Wang S B. Environ. Sci. Technol., 2019, 53(24): 14595.
[71]
Ren W, Nie G, Zhou P, Zhang H, Duan X G, Wang S B. Environ. Sci. Technol., 2020, 54(10): 6438.

doi: 10.1021/acs.est.0c01161     URL    
[72]
Yu Y Q, Tan P, Huang X J, Tao J J, Liu Y Y, Zeng R J, Chen M, Zhou S G. J. Hazard. Mater., 2020, 394: 122560.
[73]
Wang L H, Xu H D, Jiang N, Wang Z M, Jiang J, Zhang T. Environ. Sci. Technol., 2020, 54(7): 4686.

doi: 10.1021/acs.est.0c00284     URL    
[74]
Chen J B, Zhou X F, Sun P Z, Zhang Y L, Huang C H. Environ. Sci. Technol., 2019, 53(20): 11774.
[75]
Ike I A, Linden K G, Orbell J D, Duke M. Chem. Eng. J., 2018, 338: 651.

doi: 10.1016/j.cej.2018.01.034     URL    
[76]
Huang Z F, Yao Y Y, Lu J T, Chen C H, Lu W Y, Huang S Q, Chen W X. J. Hazard. Mater., 2016, 301: 214.

doi: 10.1016/j.jhazmat.2015.08.063     URL    
[77]
Wang Z, Qiu W, Pang S Y, Gao Y, Zhou Y, Cao Y, Jiang J. Water Res., 2020, 172: 115504.
[78]
Yang Z Qian J, Yu A, Pan B. Proc. Natl. Acad. Sci. U.S.A, 2019, 116: 6659.

doi: 10.1073/pnas.1819382116     URL    
[79]
Sui M, Liu J, Sheng L. Appl. Catal. B: Environ., 2011.
[80]
Feng Y, Lee P H, Wu D, Shih K. Water Res., 2017, 120: 12.

doi: 10.1016/j.watres.2017.04.070     URL    
[81]
Chen C Y, Zepp R G. Environ. Sci. Technol., 2015, 49(23): 13835.
[82]
Fang G D, Gao J, Dionysiou D D, Liu C, Zhou D M. Environ. Sci. Technol., 2013, 47(9): 4605.

doi: 10.1021/es400262n     URL    
[83]
Chen H, Li C, Qu L. Carbon, 2018, 140: 41.

doi: 10.1016/j.carbon.2018.08.027     URL    
[84]
Deng Y L, Handoko A D, Du Y H, Xi S B, Yeo B S. ACS Catal., 2016, 6(4): 2473.

doi: 10.1021/acscatal.6b00205     URL    
[85]
Guan C T, Jiang J, Pang S Y, Ma J, Chen X, Lim T T. Chem. Eng. J., 2019, 378: 122147.
[86]
Zhang X F, Lin Q T, Luo H Y, Huang R L, Xiao R B, Liu Q J. Sci. Total. Environ., 2019, 655: 614.

doi: 10.1016/j.scitotenv.2018.11.281     URL    
[87]
Zheng J, Chen Z, Fang J F, Wang Z, Zuo S F. J. Rare Earths, 2020, 38(9): 933.

doi: 10.1016/j.jre.2019.06.005     URL    
[88]
Duan X G, Sun H Q, Kang J, Wang Y X, Indrawirawan S, Wang S B. ACS Catal., 2015, 5(8): 4629.

doi: 10.1021/acscatal.5b00774     URL    
[1] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.
[2] 林刚, 张媛媛, 刘健. 仿生光(电)催化NADH再生[J]. 化学进展, 2022, 34(11): 2351-2360.
[3] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[4] 冯勇, 李谕, 应光国. 基于过硫酸盐活化的微界面电子转移氧化技术[J]. 化学进展, 2021, 33(11): 2138-2149.
[5] 刘明学, 董发勤, 聂小琴, 丁聪聪, 何辉超, 杨刚. 光电子协同微生物介导的重金属离子还原与电子转移机理[J]. 化学进展, 2017, 29(12): 1537-1550.
[6] 龙安华, 雷洋, 张晖. 活化过硫酸盐原位化学氧化修复有机污染土壤和地下水[J]. 化学进展, 2014, 26(05): 898-908.
[7] 张伟伟, 钟欣欣, 司玉冰, 赵仪*. Non-Condon电子转移速率理论与含时波包方法[J]. 化学进展, 2012, 24(06): 1166-1174.
[8] 杨鑫 杨世迎 邵雪婷 王雷雷 牛瑞. 活性炭催化过氧化物高级氧化技术降解水中有机污染物*[J]. 化学进展, 2010, 22(10): 2071-2078.
[9] 杨新国 张登 唐瑞仁. 以卟啉为中心核的树枝状化合物[J]. 化学进展, 2009, 21(12): 2595-2604.
[10] 杨世迎,陈友媛,胥慧真,王萍,刘玉红,张卫,王茂东. 过硫酸盐活化高级氧化新技术*[J]. 化学进展, 2008, 20(09): 1433-1438.
[11] 关毅,张鑫. 微生物燃料电池*[J]. 化学进展, 2007, 19(01): 74-79.
[12] 吴世康. 具有荧光发射能力有机化合物的光物理和光化学问题研究[J]. 化学进展, 2005, 17(01): 15-39.
[13] 王煜,晋卫军. 用于识别金属离子的超分子荧光/磷光传感器*[J]. 化学进展, 2003, 15(03): 178-.
[14] 贡浩飞,吕庆,刘鸣华. 界面光化学反应研究进展*[J]. 化学进展, 2001, 13(06): 420-.
[15] 李玥,刘向红,王秀岩. 分子团簇内的化学反应[J]. 化学进展, 1999, 11(01): 60-.