English
新闻公告
More
化学进展 2021, Vol. 33 Issue (9): 1560-1570 DOI: 10.7536/PC200810 前一篇   后一篇

• 综述 •

甲醛氧化催化剂及反应机理

苏原1,2, 吉可明2,*(), 荀家瑶2, 赵亮1,*(), 张侃2, 刘平2,*()   

  1. 1 中国石油大学(北京)重质油国家重点实验室 北京 102249
    2 中国科学院山西煤炭化学研究所煤转化国家重点实验室 太原 030001
  • 收稿日期:2020-08-04 修回日期:2021-03-22 出版日期:2021-09-20 发布日期:2021-09-06
  • 通讯作者: 吉可明, 赵亮, 刘平
  • 基金资助:
    山西省新兴产业领军人才项目(E0SW986201)

Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism

Yuan Su1,2, Keming Ji2(), Jiayao Xun2, Liang Zhao1(), Kan Zhang2, Ping Liu2()   

  1. 1 State Key Laboratory of Heavy Oil Processing, China University of Petroleum,Beijing 102249, China
    2 State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences,Taiyuan 030001, China
  • Received:2020-08-04 Revised:2021-03-22 Online:2021-09-20 Published:2021-09-06
  • Contact: Keming Ji, Liang Zhao, Ping Liu
  • Supported by:
    project of leading talents in emerging industries of Shanxi province(E0SW986201)

甲醛具有致畸和致癌性,是主要的室内污染物。催化氧化法甲醛转化效率高,没有二次污染,相关研究日益受到关注。本文详细介绍了贵金属和非贵金属两类主要的甲醛氧化催化剂,探讨了活性组分、载体、催化剂助剂等催化剂组成对于其理化性质和反应性能的影响规律,讨论了制备方法、反应物中的水含量等因素对于催化反应的影响,分析了催化剂失活的主要因素。研究表明,催化剂表面活性氧、表面羟基、氧空位数量以及对反应物的吸脱附和存储能力是影响催化活性的关键因素。贵金属催化剂,特别是Pt催化剂具有较好的催化性能,可在较低温度实现甲醛充分转化;非贵金属催化剂具有可变价态,通过催化剂的合理设计可以具有足够的催化活性,其原料资源丰富,价廉易得,应用前景广阔。

Formaldehyde is the main indoor pollutant, which has teratogenicity and carcinogenicity. Catalytic oxidation of formaldehyde has high conversion efficiency without secondary pollution, therefore related research has been increasingly concerned. This paper introduces noble metal and non-noble metal catalysts in detail. The effects of active components, support and catalyst promoters on the physicochemical properties and reaction performance of the catalyst are discussed. The influence factors of catalytic reactions, such as preparation methods, and the level of water content in the reactants are discussed. Besides, the main factors of catalyst deactivation are analyzed. The results show that the number of reactive oxygen species, surface hydroxyl groups, oxygen vacancies, as well as the adsorption, desorption and storage capacity of the reactants are the key factors affecting the catalytic activity. Noble metal catalysts, especially Pt catalysts, have better catalytic performance and can fully convert formaldehyde at lower temperature. Non-noble metal catalysts have variable valence states and abundant raw material resources, is cheap and easy to obtain, and could have enough catalytic activity through reasonable design of catalyst, therefore its application prospect is broad.

Contents

1 Introduction

2 Influence of active components on catalytic performance

2.1 Noble metals active components

2.2 Non-noble metal active components

3 Influence of supports on catalytic performance

3.1 Single metal oxide supports

3.2 Composite metal oxide supports

4 Influence of promoters on catalytic performance

4.1 Alkali metal promoters

4.2 Transition metal promoters

5 Other factors affecting catalytic performance

5.1 Effects of preparation method

5.2 Effects of water

5.3 Effects of catalytic deactivation

6 Conclusion

()
图1 甲醛在贵金属催化剂上的催化氧化反应[19]
Fig.1 Catalytic oxidation of formaldehyde on noble metal catalyst[19]. Copyright 2018, Elsevier
图2 HCHO在TiO2负载的Pt、Rh、Pd、Au催化剂上催化氧化反应机理[56]
Fig.2 Reaction scheme of the catalytic oxidation of HCHO on the TiO2 supported Pt, Rh, Pd and Au catalysts[56]. Copyright 2007, Elsevier
图3 不同化学成分和晶体结构的锰氧化物:(a)β-MnO2,(b) γ-MnO2,(c) α-MnO2,(d) δ-MnO2,(e) λ-MnO2,(f) LiMn2O4,(g) Mn2O3,(h) Mn3 O 4[61]
Fig.3 Manganese oxides with different chemical composition and crystal structure: (a) β-MnO2, (b) γ-MnO2, (c) α-MnO2, (d) δ-MnO2, (e) λ-MnO2, (f)LiMn2O4, (g) Mn2O3, (h) Mn3 O 4[61]. Copyright 2013, American Chemical Society
图4 三种MnO2纳米结构的SEM(a,c,e)和TEM(b,d,f)图像;三种Pt/MnO2催化剂的催化性能[32]
Fig.4 SEM (a,c,e) and TEM (b,d,f) images of three MnO2 nanostructures; Catalytic performance of three Pt/MnO2 catalysts[32]. Copyright 2011, American Chemical Society
图5 室温下Pt/GOFe催化剂上可能的HCHO氧化机理示意图[101]
Fig.5 Schematic illustration of possible HCHO oxidation mechanism over Pt/GOFe catalyst at room temperature[101]. Copyright 2018, Elsevier
图6 MnO2单层结构的氧空位形成能[110]
Fig.6 Oxygen vacancy formation energy of calculated MnO2 monolayer super cell structures[110]. Copyright 2018, The Royal Society of Chemistry
图7 Ag/Fe0.1-MnOx催化剂TEM图像,Ag/Fe0.1-MnOx催化剂元素映射(b)Ag、(c)Mn、(d)Fe,(e)Ag/Fe0.1-MnOx催化剂的高分辨率TEM图像,(f)Fe在MnOx中的分布模型(红球-O原子,紫球-Mn原子,黄球-Fe原子);(g)HCHO在Ag/Fe-MnOx催化剂上可能的反应机理[100]
Fig.7 (a) TEM image of Ag/Fe0.1-MnOx catalyst, elemental mapping of (b) Ag, (c) Mn, (d) Fe images of Ag/Fe0.1-MnOx catalyst, (e) High resolution TEM images of Ag/Fe0.1-MnOx catalyst, (f) proposed model for the distribution of Fe in MnOx (the red ball-O atom, the purple ball-Mn atom, the yellow ball-Fe atom); and (g) Possible mechanism of HCHO oxidation process over Ag/Fe-MnOx catalyst[100]. Copyright 2016, Elsevier
图8 不同温度合成氧化锰催化剂的SEM图像:(a) BSW-80,(b) BSW-100,(c) BSW-120,(d) BSW-140[117]
Fig.8 SEM images of varied manganese oxide catalysts: (a) BSW-80, (b) BSW-100, (c) BSW-120, and (d) BSW-140[117]. Copyright 2011, Elsevier
图9 新鲜MCo2O4 (M=Mn, Ce, Cu)催化剂和失活MCo2O4催化剂在RH=45%条件下HCHO氧化过程的H2O-TPD剖面图[120]
Fig.9 H2O-TPD profiles of the fresh MCo2O4 (M=Mn, Ce, Cu) catalysts and the deactivated MCo2O4 catalysts in HCHO oxidation in RH=45% condition[120]. Copyright 2019, Elsevier
图10 HCHO催化氧化和卤素中毒的示意图[122]
Fig.10 Schematic of the HCHO catalytic oxidation and halogen poisoning effect over the as-prepared samples[122]. Copyright 2015, Elsevier
[1]
Jiang C J, Li D D, Zhang P Y, Li J G, Wang J, Yu J G. Build. Environ., 2017, 117: 118.

doi: 10.1016/j.buildenv.2017.03.004     URL    
[2]
Maddalena R, Russell M, Sullivan D P, Apte M G. Environ. Sci. Technol., 2009, 43(15): 5626.

pmid: 19731654
[3]
Marsh G M, Youk A O. Regul. Toxicol. Pharmacol., 2005, 42(3): 275.

doi: 10.1016/j.yrtph.2005.05.003     URL    
[4]
Tang X J, Bai Y, Duong A, Smith M T, Li L Y, Zhang L P. Environ. Int., 2009, 35(8): 1210.

doi: 10.1016/j.envint.2009.06.002     URL    
[5]
Tang X J, Bai Y, Duong A, Smith M T, Li L Y, Zhang L P. Environ. Int., 2009, 35(8): 1210.

doi: 10.1016/j.envint.2009.06.002     URL    
[6]
Giese M, Bauer-Doranth U, Langebartels C, Sandermann H. Plant Physiol., 1994, 104(4): 1301.

pmid: 12232169
[7]
Gilbert N L, Guay M, Gauvin D, Dietz R N, Chan C C, Lévesque B. Atmos. Environ., 2008, 42(10): 2424.

doi: 10.1016/j.atmosenv.2007.12.017     URL    
[8]
Ye J W, Zhu X F, Cheng B, Yu J G, Jiang C J. Environ. Sci. Technol. Lett., 2017, 4(1): 20.

doi: 10.1021/acs.estlett.6b00426     URL    
[9]
Suresh S, Bandosz T J. Carbon, 2018, 137: 207.

doi: 10.1016/j.carbon.2018.05.023     URL    
[10]
Ma C J, Li X H, Zhu T L. Carbon, 2011, 49(8): 2873.

doi: 10.1016/j.carbon.2011.02.058     URL    
[11]
Le Y, Guo D P, Cheng B, Yu J G. Appl. Surf. Sci., 2013, 274: 110.

doi: 10.1016/j.apsusc.2013.02.123     URL    
[12]
Liang W J, Li J, Li J X, Zhu T, Jin Y Q. J. Hazard. Mater., 2010, 175(1/3): 1090.

doi: 10.1016/j.jhazmat.2009.10.034     URL    
[13]
Wan Y J, Fan X, Zhu T L. Chem. Eng. J., 2011, 171(1): 314.

doi: 10.1016/j.cej.2011.04.011     URL    
[14]
Kibanova D, Sleiman M, Cervini-Silva J, Destaillats H. J. Hazard. Mater., 2012, 211/212: 233.

doi: 10.1016/j.jhazmat.2011.12.008     URL    
[15]
Yu J G, Wang S H, Low J, Xiao W. Phys. Chem. Chem. Phys., 2013, 15(39): 16883.

doi: 10.1039/c3cp53131g     URL    
[16]
Zhang G X, Sun Z M, Duan Y W, Ma R X, Zheng S L. Appl. Surf. Sci., 2017, 412: 105.

doi: 10.1016/j.apsusc.2017.03.198     URL    
[17]
Kehr E, Riehl G, Hoferichter E, Roffael E, Dix B. Holz Als Roh Und Werkstoff, 1994, 52(4): 253.

doi: 10.1007/BF02619105     URL    
[18]
Sun D, Wageh S, Al-Ghamdi A A, Le Y, Yu J G, Jiang C J. Appl. Surf. Sci., 2019, 466: 301.

doi: 10.1016/j.apsusc.2018.10.044     URL    
[19]
Guo J H, Lin C X, Jiang C J, Zhang P Y. Appl. Surf. Sci., 2019, 475: 237.

doi: 10.1016/j.apsusc.2018.12.238     URL    
[20]
Cui W Y, Wang X Y, Tan N D, Fine Chem., 2020, 37: 1977.
(崔维怡, 王希越, 谭乃迪. 精细化工, 2020, 37: 1977.).
[21]
Huang H B, Leung D Y C. J. Catal., 2011, 280(1): 60.

doi: 10.1016/j.jcat.2011.03.003     URL    
[22]
Guo Y L, Sun Y J, Yang D P, Dai J J, Liu Z L, Chen Y S, Huang J L, Li Q B. ACS Appl. Mater. Interfaces, 2020, 12(2): 2469.

doi: 10.1021/acsami.9b18490     URL    
[23]
Yang J Y, Fan Y P, Li Z L, Peng Z K, Yang J H, Liu B Z, Liu Z Y. Mol. Catal., 2020, 492: 110992.
[24]
Zhang K Y, Dai L Y, Liu Y X, Deng J G, Jing L, Zhang K F, Hou Z Q, Zhang X, Wang J, Feng Y, Zhang Y X, Dai H X. Appl. Catal. B: Environ., 2020, 279: 119372.

doi: 10.1016/j.apcatb.2020.119372     URL    
[25]
Huang H, Dai Q G, Wang X Y. Appl. Catal. B: Environ., 2014, 158/159: 96.

doi: 10.1016/j.apcatb.2014.01.062     URL    
[26]
Zhao J, Xi W J, Tu C S, Dai Q G, Wang X Y. Appl. Catal. B: Environ., 2020, 263: 118237.

doi: 10.1016/j.apcatb.2019.118237     URL    
[27]
Lin Y, Sun J, Li S J, Wang D, Zhang C H, Wang Z, Li X B. Catal. Lett., 2020, 150(11): 3206.

doi: 10.1007/s10562-020-03217-9     URL    
[28]
Zhao S Z, Wen Y F, Liu X J, Pen X Y, Lü F, Gao F Y, Xie X Z, Du C C, Yi H H, Kang D J, Tang X L. Nano Res., 2020, 13(6): 1544.

doi: 10.1007/s12274-020-2765-1     URL    
[29]
Zhang C B, He H, Tanaka K I. Catal. Commun., 2005, 6(3): 211.

doi: 10.1016/j.catcom.2004.12.012     URL    
[30]
Wang R H, Li J H. Catal. Lett., 2009, 131(3/4): 500.

doi: 10.1007/s10562-009-9939-5     URL    
[31]
Yu F L, Qu Z P, Zhang X D, Fu Q, Wang Y. J. Energy Chem., 2013, 22(6): 845.

doi: 10.1016/S2095-4956(14)60263-1     URL    
[32]
Yu X H, He J H, Wang D H, Hu Y C, Tian H, He Z C. J. Phys. Chem. C, 2012, 116(1): 851.

doi: 10.1021/jp208947e     URL    
[33]
Zhang C B, Liu F D, Zhai Y P, Ariga H, Yi N, Liu Y C, Asakura K, Flytzani-Stephanopoulos M, He H. Angew. Chem. Int. Ed., 2012, 51(38): 9628.

doi: 10.1002/anie.v51.38     URL    
[34]
Chen H Y, Rui Z B, Wang X Y, Ji H B. Catal. Today, 2015, 258: 56.

doi: 10.1016/j.cattod.2015.03.043     URL    
[35]
Qi L F, Cheng B, Yu J G, Ho W. J. Hazard. Mater., 2016, 301: 522.

doi: 10.1016/j.jhazmat.2015.09.026     URL    
[36]
Rasko J, Kecskes T, Kiss J. J. Catal., 2004, 226: 183.

doi: 10.1016/j.jcat.2004.05.024     URL    
[37]
Sun X C, Lin J, Guan H L, Li L, Sun L, Wang Y H, Miao S, Su Y, Wang X D. Appl. Catal. B: Environ., 2018, 226: 575.

doi: 10.1016/j.apcatb.2018.01.011     URL    
[38]
Camposeco R, Castillo S, Nava N, Maturano V, Zanella R. Catal. Lett., 2020, 150(11): 3342.

doi: 10.1007/s10562-020-03254-4     URL    
[39]
Huang H B, Leung D Y C. ACS Catal., 2011, 1(4): 348.

doi: 10.1021/cs200023p     URL    
[40]
Park S J, Bae I, Nam I S, Cho B K, Jung S M, Lee J H. Chem. Eng. J., 2012, 195/196: 392.

doi: 10.1016/j.cej.2012.04.028     URL    
[41]
Kim M S, Chung S H, Yoo C J, Lee M S, Cho I H, Lee D W, Lee K Y. Appl. Catal. B: Environ., 2013, 142/143: 354.

doi: 10.1016/j.apcatb.2013.05.033     URL    
[42]
Li H F, Zhang N, Chen P, Luo M F, Lu J Q. Appl. Catal. B: Environ., 2011, 110: 279.

doi: 10.1016/j.apcatb.2011.09.013     URL    
[43]
Liu B C, Li C Y, Zhang Y F, Liu Y, Hu W T, Wang Q, Han L, Zhang J. Appl. Catal. B: Environ., 2012, 111/112: 467.

doi: 10.1016/j.apcatb.2011.10.036     URL    
[44]
Li S P, Ezugwu C I, Zhang S P, Xiong Y, Liu S W. Appl. Surf. Sci., 2019, 487: 260.

doi: 10.1016/j.apsusc.2019.05.083     URL    
[45]
Qu Z P, Shen S J, Chen D, Wang Y. J. Mol. Catal. A: Chem., 2012, 356: 171.

doi: 10.1016/j.molcata.2012.01.013     URL    
[46]
Ma L, Wang D S, Li J H, Bai B Y, Fu L X, Li Y D. Appl. Catal. B: Environ., 2014, 148/149: 36.

doi: 10.1016/j.apcatb.2013.10.039     URL    
[47]
Fang R M, He M, Huang H B, Feng Q Y, Ji J, Zhan Y J, Leung D Y C, Zhao W. Chemosphere, 2018, 213: 235.

doi: 10.1016/j.chemosphere.2018.09.019     URL    
[48]
Lu S H, Wang X, Zhu Q Y, Chen C C, Zhou X F, Huang F L, Li K L, He L L, Liu Y X, Pang F J. RSC Adv., 2018, 8(26): 14221.

doi: 10.1039/C8RA01611A     URL    
[49]
Zhang C B, He H, Tanaka K I. Appl. Catal. B: Environ., 2006, 65(1/2): 37.

doi: 10.1016/j.apcatb.2005.12.010     URL    
[50]
Peng J X, Wang S D. Appl. Catal. B: Environ., 2007, 73(3/4): 282.

doi: 10.1016/j.apcatb.2006.12.012     URL    
[51]
Xu Q L, Lei W Y, Li X Y, Qi X Y, Yu J G, Liu G, Wang J L, Zhang P Y. Environ. Sci. Technol., 2014, 48(16): 9702.

doi: 10.1021/es5019477     URL    
[52]
Huang H B, Leung D Y C, Ye D Q. J. Mater. Chem., 2011, 21(26): 9647.

doi: 10.1039/c1jm10413f     URL    
[53]
Su Y, Ji K M, Xun J Y, Zhang K, Liu P, Zhao L. Chin. J. Chem. Eng., 2021, 29: 190.

doi: 10.1016/j.cjche.2020.04.024     URL    
[54]
Pei J J, Zhang J S S. Hvac&R Res., 2011, 17: 476.
[55]
Sidheswaran M A, Destaillats H, Sullivan D P, Larsen J, Fisk W J. Appl. Catal. B: Environ., 2011, 107(1/2): 34.

doi: 10.1016/j.apcatb.2011.06.032     URL    
[56]
Zhang C B, He H. Catal. Today, 2007, 126(3/4): 345.

doi: 10.1016/j.cattod.2007.06.010     URL    
[57]
Bai B Y, Qiao Q, Li J H, Hao J M. Chin. J. Catal., 2016, 37(1): 102.

doi: 10.1016/S1872-2067(15)61007-5     URL    
[58]
Sekine Y. Atmos. Environ., 2002, 36(35): 5543.

doi: 10.1016/S1352-2310(02)00670-2     URL    
[59]
Li S D, Zheng D S, Guo F. Modern Chem. Ind., 2020, 40: 52.
(李书典, 郑德山, 郭峰. 现代化工, 2020, 40: 52.).
[60]
Tian H, He J H. Chem. Bull., 2013, 76: 100.
(田华, 贺军辉. 化学通报, 2013, 76: 100.).
[61]
Robinson D M, Go Y B, Mui M, Gardner G, Zhang Z J, Mastrogiovanni D, Garfunkel E, Li J, Greenblatt M, Dismukes G C. J. Am. Chem. Soc., 2013, 135(9): 3494.

doi: 10.1021/ja310286h     pmid: 23391134
[62]
Zhang J H, Li Y B, Wang L, Zhang C B, He H. Catal. Sci. Technol., 2015, 5(4): 2305.

doi: 10.1039/C4CY01461H     URL    
[63]
Zhou J, Qin L F, Xiao W, Zeng C, Li N, Lv T, Zhu H. Appl. Catal. B: Environ., 2017, 207: 233.

doi: 10.1016/j.apcatb.2017.01.083     URL    
[64]
Rong S P, Zhang P Y, Liu F, Yang Y J. ACS Catal., 2018, 8(4): 3435.

doi: 10.1021/acscatal.8b00456     URL    
[65]
Chen T, Dou H Y, Li X L, Tang X F, Li J H, Hao J M. Microporous Mesoporous Mater., 2009, 122(1/3): 270.

doi: 10.1016/j.micromeso.2009.03.010     URL    
[66]
Wang M, Zhang L X, Huang W M, Xiu T P, Zhuang C G, Shi J L. Chem. Eng. J., 2017, 320: 667.

doi: 10.1016/j.cej.2017.03.098     URL    
[67]
Boyjoo Y, Rochard G, Giraudon J M, Liu J, Lamonier J F. Sustain. Mater. Technol., 2019, 20: e00091.
[68]
Bai B Y, Qiao Q, Li J H, Hao J M. Chin. J. Catal., 2016, 37(1): 27.

doi: 10.1016/S1872-2067(15)61026-9     URL    
[69]
Zhu D D, Huang Y, Cao J J, Lee S C, Chen M J, Shen Z X. Appl. Catal. B: Environ., 2019, 258: 117981.

doi: 10.1016/j.apcatb.2019.117981     URL    
[70]
Bai B Y, Arandiyan H, Li J H. Appl. Catal. B: Environ., 2013, 142/143: 677.

doi: 10.1016/j.apcatb.2013.05.056     URL    
[71]
Xie X W, Li Y, Liu Z Q, Haruta M, Shen W J. Nature, 2009, 458(7239): 746.

doi: 10.1038/nature07877     URL    
[72]
Ma C Y, Mu Z, Li J J, Jin Y G, Cheng J, Lu G Q, Hao Z P, Qiao S Z. J. Am. Chem. Soc., 2010, 132(8): 2608.

doi: 10.1021/ja906274t     URL    
[73]
Tang X F, Li Y G, Huang X M, de Xu Y, Zhu H Q, Wang J G, Shen W J. Appl. Catal. B: Environ., 2006, 62(3/4): 265.

doi: 10.1016/j.apcatb.2005.08.004     URL    
[74]
Wang Z, Wang W Z, Zhang L, Jiang D. Catal. Sci. Technol., 2016, 6(11): 3845.

doi: 10.1039/C5CY01709B     URL    
[75]
Wang Y, Zhu A M, Chen B B, Crocker M, Shi C. Catal. Commun., 2013, 36: 52.

doi: 10.1016/j.catcom.2013.03.007     URL    
[76]
Lu S H, Wang F, Chen C C, Huang F L, Li K L. J. Rare Earths, 2017, 35(9): 867.

doi: 10.1016/S1002-0721(17)60988-8     URL    
[77]
Jiang T T, Wang X, Chen J Z, Mai Y L, Liao B, Hu W. J. Mater. Sci.: Mater. Electron., 2020, 31(4): 3500.
[78]
Wu J M, Yi H H, Tang X L, Zhao S Z, Xu J L, Meng J X, Li Q. Mater. Chem. Phys., 2020, 240: 122123.

doi: 10.1016/j.matchemphys.2019.122123     URL    
[79]
Shi C, Wang Y, Zhu A M, Chen B B, Au C. Catal. Commun., 2012, 28: 18.

doi: 10.1016/j.catcom.2012.08.003     URL    
[80]
Shi C, Chen B B, Li X S, Crocker M, Wang Y, Zhu A M. Chem. Eng. J., 2012, 200/202: 729.

doi: 10.1016/j.cej.2012.06.103     URL    
[81]
Fan J W, Niu X F, Teng W, Zhang P, Zhang W X, Zhao D Y. J. Mater. Chem. A, 2020, 8(33): 17174.

doi: 10.1039/D0TA05473A     URL    
[82]
Kim S S, Park K H, Hong S C. Appl. Catal. A: Gen., 2011, 398(1/2): 96.

doi: 10.1016/j.apcata.2011.03.018     URL    
[83]
Yan Z X, Xu Z H, Yue L, Shi L, Huang L Y. Chin. J. Catal., 2018, 39(12): 1919.

doi: 10.1016/S1872-2067(18)63143-2     URL    
[84]
Su J F, Cheng C L, Guo Y P, Xu H, Ke Q F. J. Hazard. Mater., 2019, 380: 120890.

doi: 10.1016/j.jhazmat.2019.120890     URL    
[85]
Ding J J, Chen J S, Rui Z B, Liu Y L, Lv P, Liu X K, Li H Q, Ji H B. Catal. Today, 2018, 316: 107.

doi: 10.1016/j.cattod.2018.01.031     URL    
[86]
Ding J J, Rui Z B, Lyu P T, Liu Y L, Liu X K, Ji H B. Appl. Surf. Sci., 2018, 457: 670.

doi: 10.1016/j.apsusc.2018.06.302     URL    
[87]
Ma L Y, Liu C X, Guan Q X, Li W. Appl. Organomet. Chem., 2019, 33(11): e5217.
[88]
Huang Y, Liu Y, Wang W, Chen M J, Li H W, Lee S C, Ho W, Huang T T, Cao J J. Appl. Catal. B: Environ., 2020, 278: 119294.

doi: 10.1016/j.apcatb.2020.119294     URL    
[89]
Jiang X N, Yao W Y, Wang J T, Ling L C, Qiao W M. Ind. Eng. Chem. Res., 2018, 57(43): 14544.

doi: 10.1021/acs.iecr.8b03800     URL    
[90]
Lu L, Tian H, He J H, Yang Q W. J. Phys. Chem. C, 2016, 120(41): 23660.

doi: 10.1021/acs.jpcc.6b08312     URL    
[91]
Peng S, Yang X X, Strong J, Sarkar B, Jiang Q, Peng F, Liu D F, Wang H L. J. Hazard. Mater., 2020, 396: 122750.

doi: 10.1016/j.jhazmat.2020.122750     URL    
[92]
Chen D, Shi J, Yao Y B, Wang S W, Wu C L. React. Kinetics Mech. Catal., 2019, 127(1): 315.
[93]
Wang H C, Huang Z W, Jiang Z, Jiang Z, Zhang Y, Zhang Z X, Shangguan W F. ACS Catal., 2018, 8(4): 3164.

doi: 10.1021/acscatal.8b00309     URL    
[94]
Li H W, Huang T T, Lu Y F, Cui L, Wang Z Y, Zhang C F, Lee S, Huang Y, Cao J J, Ho W. Environ. Sci.: Nano, 2018, 5(5): 1130.
[95]
Wang C, Zou X H, Liu H B, Chen T H, Suib S L, Chen D, Xie J J, Li M X, Sun F W. Appl. Surf. Sci., 2019, 486: 420.

doi: 10.1016/j.apsusc.2019.04.257    
[96]
Han Z Y, Wang C, Zou X H, Chen T H, Dong S W, Zhao Y, Xie J J, Liu H B. Appl. Surf. Sci., 2020, 502: 144201.

doi: 10.1016/j.apsusc.2019.144201     URL    
[97]
Rong S P, Zhang P Y, Wang J L, Liu F, Yang Y J, Yang G L, Liu S. Chem. Eng. J., 2016, 306: 1172.

doi: 10.1016/j.cej.2016.08.059     URL    
[98]
Qi L F, Ho W, Wang J L, Zhang P Y, Yu J G. Catal. Sci. Technol., 2015, 5(4): 2366.

doi: 10.1039/C4CY01712A     URL    
[99]
Yan Z X, Xu Z H, Yu J G, Jaroniec M. Appl. Catal. B: Environ., 2016, 199: 458.

doi: 10.1016/j.apcatb.2016.06.052     URL    
[100]
Li D D, Yang G L, Li P L, Wang J L, Zhang P Y. Catal. Today, 2016, 277: 257.

doi: 10.1016/j.cattod.2016.02.040     URL    
[101]
Yan Z X, Xu Z H, Yang Z H, Yue L, Huang L Y. Appl. Surf. Sci., 2019, 467/468: 277.

doi: 10.1016/j.apsusc.2018.10.123     URL    
[102]
Yang M, Li S, Wang Y, Herron J A, Xu Y, Allard L F, Lee S, Huang J, Mavrikakis M, Flytzani-Stephanopoulos M. Science, 2014, 346(6216): 1498.

doi: 10.1126/science.1260526     URL    
[103]
Yang M, Liu J L, Lee S, Zugic B, Huang J, Allard L F, Flytzani-Stephanopoulos M. J. Am. Chem. Soc., 2015, 137(10): 3470.

doi: 10.1021/ja513292k     URL    
[104]
Nie L H, Yu J G, Li X Y, Cheng B, Liu G, Jaroniec M. Environ. Sci. Technol., 2013, 47(6): 2777.

doi: 10.1021/es3045949     URL    
[105]
Xiang N, Hou Y Q, Han X J, Li Y L, Guo Y P, Liu Y J, Huang Z G. ChemCatChem, 2019, 11(20): 5098.

doi: 10.1002/cctc.201901039    
[106]
Liu F, Shen J, Xu D F, Zhou W Y, Zhang S Y, Wan L. Chem. Eng. J., 2018, 334: 2283.

doi: 10.1016/j.cej.2017.11.114     URL    
[107]
Wang L, Yue H Q, Hua Z L, Wang H Y, Li X B, Li L C. Appl. Catal. B: Environ., 2017, 219: 301.
[108]
Huang Y C, Fan W J, Long B, Li H B, Qiu W T, Zhao F Y, Tong Y X, Ji H B. J. Mater. Chem. A, 2016, 4(10): 3648.

doi: 10.1039/C5TA09370H     URL    
[109]
Fang R M, Feng Q Y, Huang H B, Ji J, He M, Zhan Y J, Liu B Y, Leung D Y C. Catal. Today, 2019, 327: 154.

doi: 10.1016/j.cattod.2018.05.019     URL    
[110]
Rong S P, Li K Z, Zhang P Y, Liu F, Zhang J Y. Catal. Sci. Technol., 2018, 8(7): 1799.

doi: 10.1039/C7CY02121F     URL    
[111]
Fan Z Y, Zhang Z X, Fang W J, Yao X, Zou G C, Shangguan W F. Chin. J. Catal., 2016, 37(6): 947.

doi: 10.1016/S1872-2067(15)61086-5     URL    
[112]
Fan Z Y, Shi J, Zhang Z X, Chen M X. J. Chem. Technol. Biot., 2018, 93: 3562.
[113]
Li Y B, Chen X Y, Wang C Y, Zhang C B, He H. ACS Catal., 2018, 8(12): 11377.

doi: 10.1021/acscatal.8b03026     URL    
[114]
Shi Y Y, Qiao Z W, Liu Z L, Zuo J L. Catal. Lett., 2019, 149(5): 1319.

doi: 10.1007/s10562-019-02684-z     URL    
[115]
Cui W Y, Liu L, Yang J J, Tan N D. J. Dispers. Sci. Technol., 2020, 41(12): 1831.

doi: 10.1080/01932691.2019.1637752     URL    
[116]
Wu H C, Chen T C, Chen Y C, Lee J F, Chen C S. J. Catal., 2017, 355: 87.

doi: 10.1016/j.jcat.2017.08.029     URL    
[117]
Tian H, He J H, Liu L L, Wang D H, Hao Z P, Ma C Y. Microporous Mesoporous Mater., 2012, 151: 397.

doi: 10.1016/j.micromeso.2011.10.003     URL    
[118]
Zhou L, Zhang J, He J H, Hu Y C, Tian H. Mater. Res. Bull., 2011, 46(10): 1714.

doi: 10.1016/j.materresbull.2011.05.039     URL    
[119]
Kung H H, Kung M C. J. Catal., 2003, 216: 425.

doi: 10.1016/S0021-9517(02)00111-2     URL    
[120]
Ma C Y, Yang C G, Wang B, Chen C, Wang F B, Yao X L, Song M Y. Appl. Catal. B: Environ., 2019, 254: 76.

doi: 10.1016/j.apcatb.2019.04.085     URL    
[121]
Liu P, Wei G L, He H P, Liang X L, Chen H L, Xi Y F, Zhu J X. Appl. Surf. Sci., 2019, 464: 287.

doi: 10.1016/j.apsusc.2018.09.070     URL    
[122]
Zhu X, Cheng B, Yu J, Ho W. J. A. S. S., 2016, 364: 808.
[1] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[2] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[3] 王琼, 肖康. 中国城市住宅室内甲醛浓度及影响因素[J]. 化学进展, 2022, 34(3): 743-772.
[4] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[5] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[6] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[7] 李肖静, 李永红, 宇富航, 祁伟岩, 姜野, 鲁倩文. 催化氧化脱除二甲苯的催化剂[J]. 化学进展, 2021, 33(12): 2203-2214.
[8] 曾小珊, 单传家, 孙铭第, 何陶宏, 荣少鹏. 二氧化锰催化分解室内空气中甲醛的研究[J]. 化学进展, 2021, 33(12): 2245-2258.
[9] 田景晨, 吴功德, 刘雁军, 万杰, 王晓丽, 邓琳. 负载型廉价金属催化剂在低温催化氧化甲醛中的应用[J]. 化学进展, 2021, 33(11): 2069-2084.
[10] 康伟, 李璐, 赵卿, 王诚, 王建龙, 滕越. 新型析氢析氧电化学催化剂在固体聚合物水电解体系的应用[J]. 化学进展, 2020, 32(12): 1952-1977.
[11] 郭芬岈, 李宏伟, 周孟哲, 徐正其, 郑岳青, 黎挺挺. 基于非贵金属催化剂常温常压电化学合成氨[J]. 化学进展, 2020, 32(1): 33-45.
[12] 吴正颖, 刘谢, 刘劲松, 刘守清, 查振龙, 陈志刚. 二硫化钼基复合材料的合成及光催化降解与产氢特性[J]. 化学进展, 2019, 31(8): 1086-1102.
[13] 刘喆, 张晓岚, 蔡婷, 袁静, 赵昆峰, 何丹农. 用于甲醛催化氧化的锰基催化剂及协同效应的影响[J]. 化学进展, 2019, 31(2/3): 311-321.
[14] 赵文军, 秦疆洲, 尹志凡, 胡霞, 刘宝军. 新型2D MXenes 纳米材料在光催化领域的应用[J]. 化学进展, 2019, 31(12): 1729-1736.
[15] 吕记巍, 敖先权*, 陈前林, 谢燕, 曹阳, 张纪芳. 煤气化可弃型催化剂[J]. 化学进展, 2018, 30(9): 1455-1462.
阅读次数
全文


摘要

甲醛氧化催化剂及反应机理