English
新闻公告
More
化学进展 2021, Vol. 33 Issue (8): 1323-1330 DOI: 10.7536/PC200743 前一篇   后一篇

• 综述 •

光催化降解土壤中多环芳烃

陈肖萍, 陈巧珊*(), 毕进红*()   

  1. 福州大学环境与资源学院 福州 350108
  • 收稿日期:2020-07-20 修回日期:2020-12-10 出版日期:2021-08-20 发布日期:2020-12-28
  • 通讯作者: 陈巧珊, 毕进红
  • 基金资助:
    国家自然科学基金项目(51672047); 福建省自然科学基金面上项目(2019J01648); 福建省教育厅青年基金(JAT190055)

Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil

Xiaoping Chen, Qiaoshan Chen(), Jinhong Bi()   

  1. College of Environment and Resources, Fuzhou University,Fuzhou 350108, China
  • Received:2020-07-20 Revised:2020-12-10 Online:2021-08-20 Published:2020-12-28
  • Contact: Qiaoshan Chen, Jinhong Bi
  • Supported by:
    National Natural Science Foundation of China(51672047); Natural Science Foundation of Fujian Province(2019J01648); Foundation of Fujian Educational Committee(JAT190055)

多环芳烃(PAHs)是一类广泛分布于土壤中的持久性有机污染物,其化学结构稳定,具有高疏水性、难降解性和三致毒性,多产生于交通运输、工业生产、垃圾焚烧等人为活动中。近年来,日益严峻的PAHs污染给土壤生态、食品安全和民众健康带来严重威胁。因此,对土壤PAHs污染的治理具有重要意义且亟待解决。在众多PAHs处理技术中,光催化技术凭借能耗低、操作简便、环境友好等优势,受到了研究者们的广泛关注。本文概述了PAHs的光催化降解机理与途径,综述了光催化修复土壤PAHs领域的研究进展,讨论了不同环境因素对催化剂降解效果的影响,并总结了当前光催化技术应用于土壤PAHs污染修复所面临的挑战。

As a class of persistent organic pollutants, polycyclic aromatic hydrocarbons(PAHs) have been widely distributed in soil, which is highly stable, hydrophobic, cytotoxic and difficult to degrade. The PAHs are commonly produced from transportation, industrial production and waste incineration. In recent years, the increasingly serious pollution of PAHs in soil has become a great threat to soil ecology, food safety and public health. Hence, the treatment of PAHs contaminated soil is of great importance and urgently needed. Among numerous strategies for PAHs degradation, photocatalytic technology has attracted extensive attention due to its low energy consumption, facile operation and environmental friendliness. In this paper, the photocatalytic degradation mechanism and pathway of PAHs are overviewed, the current state of knowledge concerning photocatalytic remediation of PAHs contaminated soils is reviewed, and the impacts of different environmental factors on the degradation efficiency of photocatalysts are discussed. Furthermore, we summarize the challenges to apply photocatalytic technology in the field of PAHs contaminated soil remediation.

Contents

1 Introduction

2 Photocatalytic mechanism of PAHs degradation

3 Applications of photocatalysts in remediation of PAHs in soil

3.1 TiO2

3.2 Iron-based materials

3.3 g-C3N4

4 The main environmental factors affecting degradation of PAHs in soil

4.1 Light irradiation

4.2 Soil thickness

4.3 Soil moisture content

4.4 Soil pH

4.5 Solid phase of soil

5 Conclusion and outlook

()
表1 优先控制的16种PAHs的结构与基本性质
Table 1 The structure and basic properties of the 16 priority PAHs
图1 TiO2光催化降解PAHs机理图
Fig. 1 Photocatalytic degradation of PAHs by TiO2
图2 铁氧化物降解中性(a)、酸性(b)和碱性(c)土壤中苯并(a)芘的可能途径[21]
Fig. 2 Possible pathway for degradation of B[a]P by iron oxides in neutral(a); acidic(b) and basic(c) soil[21]
表2 光催化技术修复土壤PAHs污染的应用实例
Table 2 Examples for remediation of PAHs in soil by photocatalysis
Catalyst PAHs studied Experimental conditions ref
anatase TiO2
0~4 wt%
PYR
40 mg/kg
5 g soil, UV irradiation(253.7 nm, 119, 238, 357 μW/cm), 25 h, Distance between light source and samples 10 cm, 25 ℃, 0~40 mg/kg humic acid, 0~30 wt% H2O2 27
rutile TiO2
0~4 wt%
PHEN, PYR
40 mg/kg
same as above 28
anatase TiO2
0.5~3 wt%
PHEN, PYR, B(a)P
40 mg/kg
5 g soil, UV irradiation(254, 310, 365 nm, 1071 μW/cm), 120 h, Distance between light source and samples 15 cm, pH 4.2, 6.8, 9.7, 30 ℃, 0~40 mg/kg humic acid 29
anatase TiO2
0.5~3 wt%
B(a)P
40 mg/kg
same as above 30
P25 TiO2
1 wt%、10 wt%、20 wt%
12 PAH
4382 ng/g
UV-A and UV-C irradiation, 24 h, pH 10.1, 18 and 30 ℃ 31
P25 TiO2
10 mg/mL
FANTH
19.4 mg/kg
200 mg soil, Xenon lamp, Extraction of FANTH from soil with 22.5 mL cyclohexane and 7.5 mL ethanol, 6 h 32
TiO2@ZnHCF
5~25 mg
ACN, PHEN, FLUO
60~300 mg/kg
solar light(463±181 W/m), 24 h, Water to soil ratio 30∶1, pH 5~9, 32.3±3.8 ℃ 33
Fe2O3
1~7 wt%
PHEN, PYR, B(a)P
40 mg/kg
5 g soil, UV irradiation(254 nm, 1071 μW/cm), 120 h, Distance between light source and samples 15 cm, pH 4.2, 6.8, 9.7, 30 ℃, 5~40 mg/kg humic acid 34
akaganeite nano-rods
0~10 wt%
PHEN
50 μg/g
2 g soil, UV irradiation(254, 365, 410 nm), 120 h, pH 4.5, 7.2, 9.2, 0~5 wt% oxalic acid 35
iron oxides
0~5 wt%
B(a)P
50 μm/g
UV irradiation(254, 365, 410 nm), 120 h, pH 5.4, 6.8, 8.1, 0~40 wt% oxalic acid 21
FeHCF
5 wt%
B(a)P, PHEN, FLUO,
CHR, ANTH
50~200 mg/g
0.5 g soil, sunlight(452±183 W/m) and UV irradiation, 48 h, pH 5.1, 6.8, 8.0, 31.1 ± 1.7 ℃ 36
KZnHCF
25 mg
B(a)P, PHEN, FLUO,
CHR, ANTH
50~200 mg/
0.5 g soil, solar light(10.04 kW/m2/day) and UV irradiation(254 nm), 48 h, pH 5.1, 6.8, 8.0 37
MMCRC
2 wt%
PHEN
200 mg/kg
15 g soil, Aged for a month, visible light, 10 h, Distance between light source and samples 15 cm, under 30 ℃, moisture content 60%~80% 38
g-C3N4
6 wt%
PHEN
200 mg/kg
visible light(15 g soil, under 30 ℃), solar light(250 g soil, 33~38 ℃), 10 h, moisture content about 60% 39
g-C3N4@Fe3O4
3 wt%
PHEN
200 mg/kg
15 g soil, Aged for 6 month, visible light, 2 h, under 30 ℃, moisture content about 50% 40
[1]
Gao P, da Silva E, Hou L, Denslow N D, Xiang P, Ma L Q. Environ. Int., 2018, 119: 466.

doi: 10.1016/j.envint.2018.07.017     URL    
[2]
Manariotis I D, Karapanagioti H K, Chrysikopoulos C V. Water Res., 2011, 45(8): 2587.

doi: 10.1016/j.watres.2011.02.009     pmid: 21414649
[3]
Idowu O, Semple K T, Ramadass K, O'Connor W, Hansbro P, Thavamani P. Environ. Int., 2019, 123: 543.

doi: 10.1016/j.envint.2018.12.051     URL    
[4]
Kim K H, Jahan S A, Kabir E, Brown R J C. Environ. Int., 2013, 60: 71.

doi: 10.1016/j.envint.2013.07.019     pmid: 24013021
[5]
U. S. Environmental Protection Agency. Health Assessment Document for Diesel Engine Exhaust, Washington, DC: U. S. Environmental Protection Agency, 2002, Report EPA/600/8-90/057F.
[6]
The State Council. Action plan for soil pollution prevention and control,(2016-05-31). [2020-06-29]. http://www.gov.cn/zhengce/content/2016/05/31/content5078377.htm
[7]
Chen Y Y. Doctoral Dissertation of Zhejiang University, 2008.
(陈宇云. 浙江大学博士论文, 2008.).
[8]
Yao L L, Zhang C X, Li J L, Liao X P, Wang Y X. Environ. Sci., 2013, 34(4): 1553.
(姚林林, 张彩香, 李佳乐, 廖小平, 王焰新. 环境科学, 2013, 34(4): 1553.)
[9]
Ministry of Environmental Protection of the People’s Republic of China, Ministry of Land and Resources of the People’s Republic of China. Bulletin of the ational survey on soil pollution status,(2014-04-17). [2020-06-29]. http://www.gov.cn/foot/2014-04/17/content_2661768.htm
[10]
Zhang P, Chen Y G. Sci. Total. Environ., 2017,(605/606): 1011.
[11]
Maliszewska-Kordybach B. Appl. Geochem., 1996, 11(1/2): 121.

doi: 10.1016/0883-2927(95)00076-3     URL    
[12]
Sanches S, Leitão C, Penetra A, Cardoso V V, Ferreira E, Benoliel M J, Crespo M T B, Pereira V J. J. Hazard. Mater., 2011, 192(3): 1458.

doi: 10.1016/j.jhazmat.2011.06.065     pmid: 21784577
[13]
Gan S, Lau E V, Ng H K. J. Hazard. Mater., 2009, 172(2/3): 532.

doi: 10.1016/j.jhazmat.2009.07.118     URL    
[14]
Bisht S, Pandey P, Bhargava B, Sharma S, Kumar V, Sharma K D. Braz. J. Microbiol., 2015, 46(1): 7.

doi: 10.1590/S1517-838246120131354     URL    
[15]
Liu S, Meng F B, Ding Z, Chi J. Int. J. Phytoremediation, 2018, 20(13): 1317.

doi: 10.1080/15226514.2018.1488811     URL    
[16]
Wu M J, Wang H, Wu Y N, Wang W H, Zou H F. Chin. Agric. Sci. Bull., 2020, 36(5): 60.
(吴名杰, 王贺, 伍一宁, 王伟华, 邹红菲. 中国农学通报, 2020, 36(5): 60.)
[17]
Cheng M, Zeng G M, Huang D L, Lai C, Xu P, Zhang C, Liu Y. Chem. Eng. J., 2016, 284: 582.

doi: 10.1016/j.cej.2015.09.001     URL    
[18]
Hoffmann M R, Martin S T, Choi W, Bahnemann D W. Chem. Rev., 1995, 95(1): 69.

doi: 10.1021/cr00033a004     URL    
[19]
Rubio-Clemente A, Torres-Palma R A, Peñuela G A. Sci. Total. Environ., 2014, 478: 201.

doi: 10.1016/j.scitotenv.2013.12.126     URL    
[20]
Woo O T, Chung W K, Wong K H, Chow A T, Wong P K. J. Hazard. Mater., 2009, 168(2/3): 1192.

doi: 10.1016/j.jhazmat.2009.02.170     URL    
[21]
Gupta H, Gupta B. Chemosphere, 2015, 138: 924.

doi: 10.1016/j.chemosphere.2014.12.028     URL    
[22]
Wen S, Zhao J C, Sheng G Y, Fu J M, Peng P A. Chemosphere, 2003, 50(1): 111.

pmid: 12656236
[23]
Wang Y, Liu C S, Li F B, Liu C P, Liang J B. J. Hazard. Mater., 2009, 162(2/3): 716.

doi: 10.1016/j.jhazmat.2008.05.086     URL    
[24]
Kudlek E, Dudziak M. Water Sci. Technol., 2018, 77(10): 2407.

doi: 10.2166/wst.2018.192     URL    
[25]
Rani M, Rachna, Shanker U. J. Colloid Interface Sci., 2019, 555: 676.

doi: 10.1016/j.jcis.2019.08.016     URL    
[26]
Han S T, Xi H L, Shi R X, Fu X Z, Wang X X. Chin. J. Chem. Phys., 2003, 16(5): 339.
(韩世同, 习海玲, 史瑞雪, 付贤智, 王绪绪. 化学物理学报, 2003, 16(5): 339.)
[27]
Dong D B, Li P J, Li X J, Zhao Q, Zhang Y Q, Jia C Y, Li P. J. Hazard. Mater., 2010, 174(1/3): 859.

doi: 10.1016/j.jhazmat.2009.09.132     URL    
[28]
Dong D B, Li P J, Li X J, Xu C B, Gong D W, Zhang Y Q, Zhao Q, Li P. Chem. Eng. J., 2010, 158(3): 378.

doi: 10.1016/j.cej.2009.12.046     URL    
[29]
Zhang L H, Li P J, Gong Z Q, Li X M. J. Hazard. Mater., 2008, 158(2/3): 478.

doi: 10.1016/j.jhazmat.2008.01.119     URL    
[30]
Zhang L H, Li P J, Li X M, Chen Z L. J. Agro-Environ. Sci., 2009, 28(4): 649.
(张利红, 李培军, 李雪梅, 陈忠林. 农业环境科学学报, 2009, 28(4): 649.)
[31]
Eker G, Hatipoglu M. Environ. Technol., 2019, 40(28): 3793.

doi: 10.1080/09593330.2018.1491635     URL    
[32]
Rababah A, Matsuzawa S. Chemosphere, 2002, 46(1): 49.

doi: 10.1016/S0045-6535(01)00090-X     URL    
[33]
(Rachna, Rani M, Shanker U. J. Environ. Manag., 2019, 248: 109340.
[34]
Zhang L H, Jia N, Xu C B, Li X M. Adv. Mater. Res., 2011, (189/193): 420.
[35]
Gupta H. RSC Adv., 2016, 6(114): 112721.
[36]
Shanker U, Jassal V, Rani M. J. Environ. Chem. Eng., 2017, 5(4): 4108.

doi: 10.1016/j.jece.2017.07.042     URL    
[37]
Shanker U, Jassal V, Rani M. J. Environ. Manag., 2017, 204: 337.

doi: 10.1016/j.jenvman.2017.09.015     URL    
[38]
Luo Z J, Wang J, Song Y Y, Zheng X R, Qu L L, Wu Z R, Wu X Y. ACS Sustainable Chem. Eng., 2018, 6(10): 13262.
[39]
Luo Z J, Song Y Y, Wang M J, Zheng X R, Qu L L, Wang J, Wu X Y, Wu Z R. J. Photochem. Photobiol. A: Chem., 2020, 389: 112241.
[40]
Wang J, Luo Z J, Song Y Y, Zheng X R, Qu L L, Qian J C, Wu Y W, Wu X Y, Wu Z R. Chemosphere, 2019, 221: 554.

doi: 10.1016/j.chemosphere.2019.01.078     URL    
[41]
Bennedsen L R, Krischker A, Jørgensen T H, Søgaard E G. J. Hazard. Mater., 2012,(199/200): 128.
[42]
Luo Z J, Min Y H, Qu L L, Song Y Y, Hong Y X. Chemosphere, 2021, 265: 129070.
[43]
Feng J, Chen T T, Liu S N, Zhou Q H, Ren Y M, Lv Y, Fan Z J. J. Colloid Interface Sci., 2016, 479: 1.

doi: 10.1016/j.jcis.2016.06.040     URL    
[44]
Akyol A, Bayramoğlu M. J. Hazard. Mater., 2005, 124(1/3): 241.

doi: 10.1016/j.jhazmat.2005.05.006     URL    
[45]
Balmer M E, Goss K U, Schwarzenbach R P. Environ. Sci. Technol., 2000, 34(7): 1240.

doi: 10.1021/es990910k     URL    
[46]
Zhao X, Quan X, Zhao Y Z, Zhao H M, Chen S, Chen J W. J. Environ. Sci., 2004, 16(6): 938.
[47]
Graebing P, Frank M, Chib J S. J. Agric. Food Chem., 2002, 50(25): 7332.

doi: 10.1021/jf020488i     URL    
[48]
Higarashi M M, Jardim W F. Catal. Today, 2002, 76(2/4): 201.

doi: 10.1016/S0920-5861(02)00219-5     URL    
[49]
Špadina M, Gourdin-Bertin S, Dražić G, Selmani A, Dufrêche J F, Bohinc K. ACS Appl. Mater. Interfaces, 2018, 10(15): 13130.
[50]
Lemos A T, Rocha J A V, Vargas V M F. Chemosphere, 2018, 209: 666.

doi: 10.1016/j.chemosphere.2018.06.057     URL    
[51]
Wang C, Zhu L Z, Zhang C L. J. Soils Sediments, 2015, 15(5): 1139.

doi: 10.1007/s11368-015-1083-9     URL    
[52]
Huang Q D, Hong C S. Chemosphere, 2000, 41(6): 871.

pmid: 10864160
[53]
Alexander M. Environ. Sci. Technol., 2000, 34(20): 4259.

doi: 10.1021/es001069+     URL    
[54]
Zhao X, Quan X, Zhao H M, Chen S, Zhao Y Z, Chen J W. J. Photochem. Photobiol. A: Chem., 2004, 167(2/3): 177.

doi: 10.1016/j.jphotochem.2004.05.003     URL    
[55]
Thirumavalavan M, Hu Y L, Lee J F. J. Hazard. Mater., 2012,(217/218): 323.
[56]
Chen Y, Liu L, Su J, Liang J F, Wu B, Zuo J L, Zuo Y G. Chemosphere, 2017, 187: 261.

doi: 10.1016/j.chemosphere.2017.08.110     URL    
[57]
Hsu Y K, Chen Y C, Lin Y G, Chen L C, Chen K H. J. Mater. Chem., 2012, 22(6): 2733.

doi: 10.1039/C1JM14355G     URL    
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[4] 国纪良, 彭剑飞, 宋爱楠, 张进生, 杜卓菲, 毛洪钧. 机动车尾气二次有机气溶胶生成研究[J]. 化学进展, 2023, 35(1): 177-188.
[5] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[6] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[7] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[8] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[9] 王琼, 肖康. 中国城市住宅室内甲醛浓度及影响因素[J]. 化学进展, 2022, 34(3): 743-772.
[10] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[11] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[12] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[13] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[14] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[15] 郭俊兰, 梁英华, 王欢, 刘利, 崔文权. 光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114.
阅读次数
全文


摘要

光催化降解土壤中多环芳烃