化学进展 2021, Vol. 33 Issue (9): 1627-1647 DOI: 10.7536/PC200836 前一篇   后一篇

• 综述 •


何安恩1,2,3, 解姣姣1, 苑春刚1,*()   

  1. 1 华北电力大学环境科学与工程系 保定 071000
    2 中国科学院生态环境研究中心 北京 100085
    3 中国科学院大学资源与环境学院 北京 100049
  • 收稿日期:2020-08-17 修回日期:2020-11-16 出版日期:2021-09-20 发布日期:2020-12-28
  • 通讯作者: 苑春刚
  • 基金资助:
    国家自然科学基金项目(91543107); 中央高校基本科研业务费项目(2017ZZD07)

Heavy Metal Speciation Analysis and Distribution Characteristics in Atmospheric Particulate Matters

Anen He1,2,3, Jiaojiao Xie1, Chungang Yuan1()   

  1. 1 Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
    2 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    3 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-08-17 Revised:2020-11-16 Online:2021-09-20 Published:2020-12-28
  • Contact: Chungang Yuan
  • Supported by:
    National Natural Science Foundation of China(91543107); Fundamental Research Funds for the Central Universities(2017ZZD07)


Heavy metals (HMs), as one of the important toxic components in atmospheric particulate matters (PMs), are closely related to human health. The health risk of HMs in particulate matters highly depends on their species and bioavailability. Heavy metal speciation analysis in PMs is significant for the study of air pollution environmental health. Based on related researches in recent years, this paper summarizes and discusses about HMs species in atmospheric particulate matters from four key aspects: (1) Synthetic body fluids and sequential extraction procedures (such as BCR, Tessier's, Chester) have been widely used to extract operationally-defined species of HMs; (2) Chromatography-mass spectrometry technology and new functional materials have been applied for specific-selective analysis, and in-situ speciation and atomic cluster structures of HMs can be characterized by XAFS (X-ray absorption fine structure); (3) Particle size distribution of HMs species in PMs is complicated, which is affected by many factors and tends to be concentrated in fine particles; (4) Spatial and temporal distribution characteristics of HMs in PMs are highly regional. Social development, industrial, and climate are the main factors. Health risks at summer and hazy days are relatively higher.


1 Introduction

2 Heavy metal speciation analysis methods

2.1 Operationally-define speciation

2.2 Specific-selective speciation

2.3 In-situ speciation

3 Heavy metal speciation distribution characteristics

3.1 Spatial distribution characteristics

3.2 Temporal distribution characteristics

3.3 Particle size distribution characteristics

4 Conclusion and outlook

表1 国内外用于提取大气颗粒物可溶态重金属的提取剂及其化学组成
Table 1 Extractant and its chemical components for extracting soluble heavy metals from atmospheric particulate matters
Extractant Chemical components Reaction condition ref
Water Deionized water (pH=7.0) Shake/ultrasonicate for several hours 43~49
Buffered salt solution/dilute acid Normal saline (0.9% NaCl solution, pH=7.0)
1 mM Ethylenediaminetetraacetic acid (EDTA, pH=4.77)
10 mM CH3COOK/CH3COOH (acetate buffer, pH=4.3)
6∶2∶5 v/v HNO3∶HCl∶HClO4 (pH=1.0)
0.4% v/v HNO3 solution (pH=1.2)
15 mL 0.1 mol/L HCl (pH=1.0)
Ultrasonicate for 30 mins
Ultrasonicate for 15 mins
Ultrasonicate for 15 mins
Shake at 95 ℃ for 4 h
Shake for 24 h
Shake for 1 h
Serum-based fluid 4.5 g/L contained glucose, 2.4 g/L HEPES(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), 1500 g/L NaHCO3, 0.11 g/L Na-pyruvate,0.29 g/L L-glutamine,5 mL penicillin/streptomycin, 50 mL fetal bovine serum. (pH=7.4) Slowly shake at 37 ℃ for 24 h 54
Physiologically based
extraction test (PBET)-simulated gastric juice
0.5 g sodium citrate, 0.5 g malic acid, 420 μL lactic acid, 500 μL acetic acid, 1.25 g pepsin, finally dilute the volume to 1L with deionized water. (adjust pH to 2.0 with NaOH and HCl) Slowly shake at 37 ℃ for 24 h 55,56
Physiologically based
extraction test (PBET)-simulated intestinal
0.5 g sodium citrate, 0.5 g malic acid, 420 μL lactic acid, 500 μL acetic acid, 1.25 g pepsin, 0.05 g trypsin, 0.175 g bile salts, finally dilute the volume to 1L with deionized water. (adjust pH to 7.0 with saturated NaHCO3) Slowly shake at 37 ℃ for 24 h 55,56
Surrogate lung fluid
130 mM NaCl, 5 mM KCl, 1.2 mM MgSO4, 5mM NaHCO3, 1.5 mM CaCl2, 5.5 mM glucose, 10 mM HEPES. (pH=7.4) Slowly shake in the dark at
37 ℃
Artificial lysosomal fluid (ALF) 0.05 g/L MgCl2, 3.21 g/L NaCl, 0.071 g/L Na2HPO4, 0.039 g/L Na2SO4, 0.128 g/L CaCl2·H2O, 0.077 g/L C6H5Na3O7·2H2O, 6.00 g/L NaOH, 20.8 g/L C6H8O7, 0.059 g/L NH2CH2COOH, 0.090 g/L C4H4O6Na2·2H2O, 0.085 g/L C3H5NaO3, 0.086 g/L C3H3O3Na. (pH=4.5) Slowly shake in the dark at
37 ℃ in a closed container
Gamble's solution 0.095 g/L MgCl2, 6.019 g/L NaCl, 0.298 g/L KCl, 0.126 g/L Na2HPO4, 0.063 g/L Na2SO4, 0.368 g/L CaCl2·H2O, 0.574 g/L C2H3O2Na, 2.604 g/L NaHCO3, 0.097 g/L C6H5Na3O7·2H2O. (pH=7.4) Slowly shake in the dark at 37 ℃ in a closed container 60,61
表2 文献中主要的逐级提取法及其应用
Table 2 The main sequential extraction procedure in the literature and their applications
表3 中国、世界主要国家和地区的环境空气重金属标准限值(年均值,ng/m3)
Table 3 Standard limits for heavy metals in ambient air in China and major countries around the world (Annual mean, ng/m3)
表4 国外主要地区大气颗粒物重金属元素生物有效性平均体积浓度特征(ng/m3)
Table 4 The characteristics of the average volume concentration of heavy metal elements bioavailability in atmospheric particulate matters in foreign regions (ng/m3)
表5 中国各城市大气颗粒物重金属元素生物有效性平均体积浓度特征(ng/m3)
Table 5 The characteristics of the average volume concentration of heavy metal elements bioavailability in atmospheric particulate matters in Chinese cities (ng/m3)
表6 国内四个城市利用逐级提取法分析不同粒径重金属的形态平均百分比汇总表
Table 6 A summary table of the average percentage of heavy metals speciation with different particle sizes analyzed by the sequential extraction procedures in four domestic cities
Wang Y G, Ying Q, Hu J L, Zhang H L. Environ. Int., 2014, 73: 413.

doi: 10.1016/j.envint.2014.08.016     URL    
Chan C K, Yao X H. Atmos. Environ., 2008, 42(1): 1.

doi: 10.1016/j.atmosenv.2007.09.003     URL    
Cao C, Jiang W J, Wang B Y, Fang J H, Lang J D, Tian G, Jiang J K, Zhu T F. Environ. Sci. Technol., 2014, 48(3): 1499.

doi: 10.1021/es4048472     URL    
Zhang C G, Zou Z, Chang Y H, Zhang Y, Wang X F, Yang X. Chemosphere, 2020, 251: 126598.

doi: 10.1016/j.chemosphere.2020.126598     URL    
Cerro J C, Cerdà V, Querol X, Alastuey A, Bujosa C, Pey J. Sci. Total. Environ., 2020, 717: 137177.

doi: 10.1016/j.scitotenv.2020.137177     URL    
Wang Y H, Tang G Q, Zhao W, Yang Y, Wang L L, Liu Z R, Wen T X, Cheng M T, Wang Y M, Wang Y S. Atmos. Environ., 2020, 224: 117325.

doi: 10.1016/j.atmosenv.2020.117325     URL    
Ren G F, Yan X L, Ma Y G, Qiao L P, Chen Z X, Xin Y L, Zhou M, Shi Y C, Zheng K W, Zhu S H, Huang C, Li L. Atmos. Res., 2020, 237: 104817.

doi: 10.1016/j.atmosres.2019.104817     URL    
Ramírez O, Sánchez de la Campa A M, Sánchez-Rodas D, de la Rosa J D. Sci. Total. Environ., 2020, 710: 136344.

doi: 10.1016/j.scitotenv.2019.136344     URL    
Pérez Pastor R, Salvador P, García Alonso S, Alastuey A,García dos Santos S, Querol X, Artíñano B. Chemosphere, 2020, 248: 125896.

doi: 10.1016/j.chemosphere.2020.125896     URL    
Jo Y J, Lee H J, Jo H Y, Woo J H, Kim Y, Lee T, Heo G, Park S M, Jung D, Park J, Kim C H. Atmos. Res., 2020, 240: 104948.

doi: 10.1016/j.atmosres.2020.104948     URL    
International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risk to Human, 2012, 100C. [2020-6-15]. https://publications.iarc.fr/120.
Martin R, Dowling K, Pearce D, Sillitoe J, Florentine S. Geosciences, 2014, 4(3): 128.

doi: 10.3390/geosciences4030128     URL    
International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risk to human, 1993, 58. [2020-6-15]. https://publications.iarc.fr/76.
Hu X, Zhang Y, Ding Z H, Wang T J, Lian H Z, Sun Y Y, Wu J C. Atmos. Environ., 2012, 57: 146.

doi: 10.1016/j.atmosenv.2012.04.056     URL    
Faraji Ghasemi F, Dobaradaran S, Saeedi R, Nabipour I, Nazmara S,Ranjbar Vakil Abadi D, Arfaeinia H, Ramavandi B, Spitz J, Mohammadi M J, Keshtkar M. Environ. Sci. Pollut. Res., 2020, 27(5): 5305.

doi: 10.1007/s11356-019-07272-7     URL    
Chen P F, Bi X H, Zhang J Q, Wu J H, Feng Y C. Particuology, 2015, 20: 104.

doi: 10.1016/j.partic.2014.04.020     URL    
Xue H Q, Liu G J, Zhang H, Hu R Y, Wang X. Chemosphere, 2019, 220: 760.

doi: 10.1016/j.chemosphere.2018.12.123     URL    
Yuan C G, Zhang K G, Wang Z H, Jiang G B. J. Anal. At. Spectrom., 2010, 25(10): 1605.

doi: 10.1039/c0ja00005a     URL    
Yuan C G, Shi J B, He B, Liu J F, Liang L N, Jiang G B. Environ. Int., 2004, 30(6): 769.

doi: 10.1016/j.envint.2004.01.001     URL    
Wang Y W, Yuan C G, Jin X L, Jiang G B. J. Environ. Sci., 2005, 17 (4): 540.
Burnett R, Chen H, Szyszkowicz M, Fann N, Hubbell B, Pope C A, Apte J S, Brauer M, Cohen A, Weichenthal S. Proc. Natl. Acad. Sci. U.S.A., 2018, 115 (38): 9592.

doi: 10.1073/pnas.1803222115     URL    
Lelieveld J, Evans J S, Fnais M, Giannadaki D, Pozzer A. Nature, 2015, 525(7569): 367.

doi: 10.1038/nature15371     URL    
Lim S S, Vos T, Flaxman A D, Danaei G, Shibuya K, Adair-Rohani H, AlMazroa M A, Amann M, Anderson H R, Andrews K G, Aryee M, Atkinson C, Bacchus L J, Bahalim A N, Balakrishnan K, Balmes J, Barker-Collo S, Baxter A, Bell M L, Blore J D, Blyth F, Bonner C, Borges G, Bourne R, Boussinesq M, Brauer M, Brooks P, Bruce N G, Brunekreef B, Bryan-Hancock C, Bucello C, Buchbinder R, Bull F, Burnett R T, Byers T E, Calabria B, Carapetis J, Carnahan E, Chafe Z, Charlson F, Chen H L, Chen J S, Cheng A T A, Child J C, Cohen A, Colson K E, Cowie B C, Darby S, Darling S, Davis A, Degenhardt L, Dentener F, des Jarlais D C, Devries K, Dherani M, Ding E L, Dorsey E R, Driscoll T, Edmond K, Ali S E, Engell R E, Erwin P J, Fahimi S, Falder G, Farzadfar F, Ferrari A, Finucane M M, Flaxman S, Fowkes F G R, Freedman G, Freeman M K, Gakidou E, Ghosh S, Giovannucci E, Gmel G, Graham K, Grainger R, Grant B, Gunnell D, Gutierrez H R, Hall W, Hoek H W, Hogan A, Hosgood H D III, Hoy D, Hu H, Hubbell B J, Hutchings S J, Ibeanusi S E, Jacklyn G L, Jasrasaria R, Jonas J B, Kan H D, Kanis J A, Kassebaum N, Kawakami N, Khang Y H, Khatibzadeh S, Khoo J P, Kok C, Laden F, Lalloo R, Lan Q, Lathlean T, Leasher J L, Leigh J, Li Y, Lin J K, Lipshultz S E, London S, Lozano R, Lu Y, Mak J, Malekzadeh R, Mallinger L, Marcenes W, March L, Marks R, Martin R, McGale P, McGrath J, Mehta S, Memish Z A, Mensah G A, Merriman T R, Micha R, Michaud C, Mishra V, Hanafiah K M, Mokdad A A, Morawska L, Mozaffarian D, Murphy T, Naghavi M, Neal B, Nelson P K, Nolla J M, Norman R, Olives C, Omer S B, Orchard J, Osborne R, Ostro B, Page A, Pandey K D, Parry C D, Passmore E, Patra J, Pearce N, Pelizzari P M, Petzold M, Phillips M R, Pope D, Pope C A III, Powles J, Rao M, Razavi H, Rehfuess E A, Rehm J T, Ritz B, Rivara F P, Roberts T, Robinson C, Rodriguez-Portales J A, Romieu I, Room R, Rosenfeld L C, Roy A, Rushton L, Salomon J A, Sampson U, Sanchez-Riera L, Sanman E, Sapkota A, Seedat S, Shi P L, Shield K, Shivakoti R, Singh G M, Sleet D A, Smith E, Smith K R, Stapelberg N J, Steenland K, Stöckl H, Stovner L J, Straif K, Straney L, Thurston G D, Tran J H, van Dingenen R, van Donkelaar A, Veerman J L, Vijayakumar L, Weintraub R, Weissman M M, White R A, Whiteford H, Wiersma S T, Wilkinson J D, Williams H C, Williams W, Wilson N, Woolf A D, Yip P, Zielinski J M, Lopez A D, Murray C J, Ezzati M. Lancet, 2012, 380(9859): 2224.

doi: 10.1016/S0140-6736(12)61766-8     URL    
Wang Y H, Wang T, Xu M M, Yu H T, Ding C G, Wang Z J, Pan X F, Li Y B, Niu Y, Yan R X, Song J Y, Yan H F, Dai Y F, Sun Z W, Su W G, Duan H W. Environ. Int., 2020, 134: 105296.

doi: 10.1016/j.envint.2019.105296     URL    
Lu Y, Lin S, Fatmi Z, Malashock D, Hussain M M, Siddique A, Carpenter D O, Lin Z Q, Khwaja H A. Environ. Pollut., 2019, 252: 1412.

doi: 10.1016/j.envpol.2019.06.078     URL    
Dunea D, Iordache S, Liu H Y, Bøhler T, Pohoata A, Radulescu C. Environ. Sci. Pollut. Res., 2016, 23(15): 15395.

doi: 10.1007/s11356-016-6734-x     URL    
Chen K, Huang L, Yan B Z, Li H B, Sun H, Bi J. Environ. Sci. Technol., 2014, 48(21): 12930.

doi: 10.1021/es502994j     pmid: 25294690
Xie J J, Yuan C G, Xie J, Shen Y W, He K Q, Zhang K G. Environ. Pollut., 2019, 252: 336.

doi: 10.1016/j.envpol.2019.04.106     URL    
Xie J J, Yuan C G, Shen Y W, Xie J, He K Q, Zhu H T, Zhang K G. Ecotoxicol. Environ. Saf., 2019, 169: 487.

doi: 10.1016/j.ecoenv.2018.11.026     URL    
Dreher K L, Jaskot R H, Lehmann J R, Richards J H, McGee J K, Ghio A J, Costa D L. J. Toxicol. Environ. Health Sci., 1997, 50 (3): 285.
Prieditis H, Adamson I Y R. Exp. Lung Res., 2002, 28(7): 563.

pmid: 12396249
Gioda A, Fuentes-Mattei E, Jimenez-Velez B. Int. J. Environ. Heal. Res., 2011, 21(2): 106.
Wallenborn J G, McGee J K, Schladweiler M C, Ledbetter A D, Kodavanti U P. Toxicol. Sci., 2007, 98(1): 231.

pmid: 17434951
Gilmour P S, Schladweiler M C, Nyska A, McGee J K, Thomas R, Jaskot R H, Schmid J, Kodavanti U P. J. Toxicol. Environ. Heal. A, 2006, 69(22): 2011.

doi: 10.1080/15287390600746173     URL    
Kodavanti U P, Schladweiler M C, Gilmour P S, Wallenborn J G, Mandavilli B S, Ledbetter A D, Christiani D C, Runge M S, Karoly E D, Costa D L, Peddada S, Jaskot R, Richards J H, Thomas R, Madamanchi N R, Nyska A. Environ. Heal. Perspect., 2008, 116(1): 13.
Zhang Z H, Chau P Y K, Lai H K, Wong C M. Int. J. Environ. Heal. Res., 2009, 19(3): 175.
Kastury F, Smith E, Lombi E, Donnelley M W, Cmielewski P L, Parsons D W, Noerpel M, Scheckel K G, Kingston A M, Myers G R, Paterson D, de Jonge M D, Juhasz A L. Environ. Sci. Technol., 2019, 53(19): 11486.

doi: 10.1021/acs.est.9b03249     URL    
Sangani R G, Soukup J M, Ghio A J. Inhal. Toxicol., 2010, 22(8): 621.

doi: 10.3109/08958371003599037     pmid: 20388004
Grandjean P, Weihe P, White R F, Debes F. Environ. Res., 1998, 77(2): 165.

pmid: 9600810
Zahir F, Rizwi S J, Haq S K, Khan R H. Environ. Toxicol. Pharmacol., 2005, 20(2): 351.

doi: 10.1016/j.etap.2005.03.007     URL    
Wan X M, Li C Y, Parikh S J. Environ. Pollut., 2020, 261: 114157.

doi: 10.1016/j.envpol.2020.114157     URL    
Shaheen S M, Wang J X, Swertz A C, Feng X B, Bolan N, Rinklebe J. Environ. Pollut., 2019, 248: 1059.

doi: S0269-7491(18)31956-0     pmid: 31091638
Karthikeyan S, Joshi U M, Balasubramanian R. Anal. Chimica Acta, 2006, 576(1): 23.

doi: 10.1016/j.aca.2006.05.051     URL    
Wang G H, Huang L M, Gao S X, Gao S T, Wang L S. Atmos. Environ., 2002, 36(8): 1299.

doi: 10.1016/S1352-2310(01)00550-7     URL    
Birmili W, Allen A G, Bary F, Harrison R M. Environ. Sci. Technol., 2006, 40(4): 1144.

doi: 10.1021/es0486925     URL    
Sun J, Shen Z X, Zhang Y, Zhang Q, Lei Y L, Huang Y, Niu X Y, Xu H M, Cao J J, Ho S S H, Li X X. Atmos. Environ., 2019, 205: 36.

doi: 10.1016/j.atmosenv.2019.02.038     URL    
Galon-Negru A G, Olariu R I, Arsene C. Sci. Total. Environ., 2019, 695: 133839.

doi: 10.1016/j.scitotenv.2019.133839     URL    
Heal M R, Hibbs L R, Agius R M, Beverland I J. Atmos. Environ., 2005, 39(8): 1417.
Canepari S, Astolfi M L, Moretti S, Curini R. Talanta, 2010, 82(2): 834.

doi: 10.1016/j.talanta.2010.05.068     pmid: 20602978
Artelt S, Kock H, Nachtigall D, Heinrich U. Toxicol. Lett., 1998, 96: 163.
Dos Santos M, Gómez D, Dawidowski L, Gautier E, Smichowski P. Microchem. J., 2009, 91(1): 133.

doi: 10.1016/j.microc.2008.09.001     URL    
Graney J R, Landis M S, Norris G A. Atmos. Environ., 2004, 38(2): 237.

doi: 10.1016/j.atmosenv.2003.09.052     URL    
Voutsa D, Samara C. Atmos. Environ., 2002, 36(22): 3583.

doi: 10.1016/S1352-2310(02)00282-0     URL    
Gray J E, Plumlee G S, Morman S A, Higueras P L, Crock J G, Lowers H A, Witten M L. Environ. Sci. Technol., 2010, 44(12): 4782.

doi: 10.1021/es1001133     URL    
Oomen A G, Hack A, Minekus M, Zeijdner E, Cornelis C, Schoeters G, Verstraete W, van de Wiele T, Wragg J, Rompelberg C J M, Sips A J A M, van Wijnen J H. Environ. Sci. Technol., 2002, 36(15): 3326.

doi: 10.1021/es010204v     URL    
Huang H, Jiang Y, Xu X Y, Cao X D. Sci. Total. Environ., 2018, 610/611: 546.

doi: 10.1016/j.scitotenv.2017.08.074     URL    
Mazziotti Tagliani S, Carnevale M, Armiento G, Montereali M R, Nardi E, Inglessis M, Sacco F, Palleschi S, Rossi B, Silvestroni L, Gianfagna A. Atmos. Environ., 2017, 153: 47.

doi: 10.1016/j.atmosenv.2017.01.009     URL    
Charrier J G, McFall A S, Richards-Henderson N K, Anastasio C. Environ. Sci. Technol., 2014, 48(12): 7010.

doi: 10.1021/es501011w     URL    
Zhong L J, Liu X L, Hu X, Chen Y J, Wang H W, Lian H Z. J. Hazard. Mater., 2020, 381: 121202.

doi: 10.1016/j.jhazmat.2019.121202     URL    
Colombo C, Monhemius A J, Plant J A. Ecotoxicol. Environ. Saf., 2008, 71(3): 722.

doi: 10.1016/j.ecoenv.2007.11.011     URL    
Wiseman C L S, Zereini F. Atmos. Environ., 2014, 89: 282.

doi: 10.1016/j.atmosenv.2014.02.055     URL    
Verma V, Fang T, Xu L, Peltier R E, Russell A G, Ng N L, Weber R J. Environ. Sci. Technol., 2015, 49(7): 4646.

doi: 10.1021/es505577w     URL    
Verma V, Fang T, Guo H, King L, Bates J T, Peltier R E, Edgerton E, Russell A G, Weber R J. Atmos. Chem. Phys., 2014, 14(23): 12915.

doi: 10.5194/acp-14-12915-2014     URL    
Bates J T, Weber R J, Abrams J, Verma V, Fang T, Klein M, Strickland M J, Sarnat S E, Chang H H, Mulholland J A, Tolbert P E, Russell A G. Environ. Sci. Technol., 2015, 49(22): 13605.

doi: 10.1021/acs.est.5b02967     URL    
Fang T, Guo H Y, Zeng L H, Verma V, Nenes A, Weber R J. Environ. Sci. Technol., 2017, 51(5): 2611.

doi: 10.1021/acs.est.6b06151     URL    
Costa D L, Dreher K L. Environ. Heal. Perspect., 1997, 105: 1053.
Sun Y Y, Hu X, Wu J C, Lian H Z, Chen Y J. Sci. Total. Environ., 2014, 493: 487.

doi: 10.1016/j.scitotenv.2014.06.017     URL    
Wang J W, Wan Y J, Cheng L, Xia W, Li Y Y, Xu S Q. Atmos. Pollut. Res., 2020, 11(4): 785.

doi: 10.1016/j.apr.2020.01.006     URL    
Gleyzes C, Tellier S, Astruc M. Trac Trends Anal. Chem., 2002, 21(6/7): 451.

doi: 10.1016/S0165-9936(02)00603-9     URL    
Jin J W, Li Y N, Zhang J Y, Wu S C, Cao Y C, Liang P, Zhang J, Wong M H, Wang M Y, Shan S D, Christie P. J. Hazard. Mater., 2016, 320: 417.

doi: 10.1016/j.jhazmat.2016.08.050     URL    
Yuan C G, Liu S T, Yin L Q. Fresenius. Environ. Bull., 2010, 19 (5): 871.
Yuan C G, Jiang W P, Zhu T, Yuan B, Song X W. Spectrosc. Spectr. Anal., 2014, 34(8): 2259.
(苑春刚, 江万平, 祝涛, 袁博, 宋小卫. 光谱学与光谱分析, 2014, 34(8): 2259.).
He K Q, Yuan C G, Shi M D, Jiang Y H, Yu S J. RSC Adv., 2020, 10(16): 9226.

doi: 10.1039/C9RA08481A     URL    
Tessier A, Campbell P G C, Bisson M. Anal. Chem., 1979, 51(7): 844.

doi: 10.1021/ac50043a017     URL    
Quevauviller P, Ure A, Muntau H, Griepink B. Int. J. Environ. Anal. Chem., 1993, 51(1/4): 129.

doi: 10.1080/03067319308027618     URL    
Sahuquillo A, López-Sánchez J F, Rubio R, Rauret G, Thomas R P, Davidson C M, Ure A M. Anal. Chimica Acta, 1999, 382(3): 317.

doi: 10.1016/S0003-2670(98)00754-5     URL    
Obiols J, Devesa R, Sol A. Toxicol. Environ. Chem., 1986, 13(1/2): 121.
Rauret G, Rubio R, López-Sánchez J F. Int. J. Environ. Anal. Chem., 1989, 36(2): 69.

doi: 10.1080/03067318908026859     URL    
J. Serb. Chem. Soc., 1992, 57 (10): 697.
Lucho-Constantino C A, Álvarez-Suárez M, Beltrán-Hernández R I, Prieto-García F, Poggi-Varaldo H M. Environ. Int., 2005, 31(3): 313.

pmid: 15734185
Li H Y, Shi A B, Zhang X R. J. Environ. Sci., 2015, 32: 228.

doi: 10.1016/j.jes.2014.11.014     URL    
Ranjbar Jafarabadi A, Mitra S, Raudonytė-Svirbutavičienė E,Riyahi Bakhtiari A. J. Hazard. Mater., 2020, 400: 122988.

doi: S0304-3894(20)30977-8     pmid: 32947728
Fernández A J, Ternero M, Barragán F J, Jiménez J C. Chemosphere Glob. Change Sci., 2000, 2(2): 123.

doi: 10.1016/S1465-9972(00)00002-7     URL    
Feng X D, Dang Z, Huang W L, Yang C. Int. J. Environ. Sci. Technol., 2009, 6(3): 337.

doi: 10.1007/BF03326071     URL    
Kousi P, Remoundaki E, Hatzikioseyian A, Korkovelou V, Tsezos M. Environ. Sci. Pollut. Res., 2018, 25(36): 35883.

doi: 10.1007/s11356-018-1905-6     URL    
Kodirov O, Kersten M, Shukurov N, Martín Peinado F J. Sci. Total. Environ., 2018, 622/623: 1658.

doi: 10.1016/j.scitotenv.2017.10.049     URL    
Sakan S M, Đorđević D S, Manojlović D D, Predrag P S. J. Environ. Manag., 2009, 90(11): 3382.

doi: 10.1016/j.jenvman.2009.05.013     URL    
Saleem M, Iqbal J, Akhter G, Shah M H. J. Geochem. Explor., 2018, 184: 199.

doi: 10.1016/j.gexplo.2017.11.002     URL    
Ratuzny T, Gong Z, Wilke B M. Environ. Monit. Assess., 2009, 156(1/4): 171.

doi: 10.1007/s10661-008-0473-5     URL    
Abdu N, Agbenin J O, Buerkert A. Environ. Monit. Assess., 2012, 184(4): 2057.

doi: 10.1007/s10661-011-2099-2     URL    
Chester R, Lin F J, Murphy K J T. Environ. Technol. Lett., 1989, 10(10): 887.

doi: 10.1080/09593338909384810     URL    
Koçak M, Kubilay N, Herut B, Nimmo M. J. Atmos. Chem., 2007, 56(3): 239.

doi: 10.1007/s10874-006-9053-7     URL    
Bikkes M, Polyák K, Hlavay J. J. Anal. At. Spectrom., 2001, 16(1): 74.

doi: 10.1039/B005931P     URL    
Espinosa A J F, Rodriguez M T, La Rosa F J B D, Sanchez J C J. Atmos. Environ., 2002, 36 (5): 773.

doi: 10.1016/S1352-2310(01)00534-9     URL    
Betha R, Behera S N, Balasubramanian R. Environ. Sci. Technol., 2014, 48(8): 4327.

doi: 10.1021/es405533d     URL    
Huang R J, Cheng R, Jing M, Yang L, Li Y J, Chen Q, Chen Y, Yan J, Lin C S, Wu Y F, Zhang R J, El Haddad I, Prevot A S H, O'Dowd C D, Cao J J. Environ. Sci. Technol., 2018, 52(19): 10967.

doi: 10.1021/acs.est.8b02091     URL    
Wenzel W W, Kirchbaumer N, Prohaska T, Stingeder G, Lombi E, Adriano D C. Anal. Chimica Acta, 2001, 436(2): 309.

doi: 10.1016/S0003-2670(01)00924-2     URL    
Xie J J, Yuan C G, Xie J, Niu X D, Zhang X R, Zhang K G, Xu P Y, Ma X Y, Lv X B. Environ. Pollut., 2020, 259: 113881.

doi: 10.1016/j.envpol.2019.113881     URL    
Golia E E, Tsiropoulos N G, Dimirkou A, Mitsios I. Int. J. Environ. Anal. Chem., 2007, 87(13/14): 1053.

doi: 10.1080/03067310701451012     URL    
Davidson C M, Duncan A L, Littlejohn D, Ure A M, Garden L M. Anal. Chimica Acta, 1998, 363(1): 45.

doi: 10.1016/S0003-2670(98)00057-9     URL    
Davidson C M, Thomas R P, McVey S E, Perala R, Littlejohn D, Ure A M. Anal. Chimica Acta, 1994, 291(3): 277.

doi: 10.1016/0003-2670(94)80023-5     URL    
Usero J, Gamero M, Morillo J, Gracia I. Environ. Int., 1998, 24(4): 487.

doi: 10.1016/S0160-4120(98)00028-2     URL    
Xie J J, Yuan C G, Xie J, Niu X D, He A. Ecotoxicol. Environ. Saf., 2020, 192: 110249.

doi: 10.1016/j.ecoenv.2020.110249     URL    
Minatel B C, Sage A P, Anderson C, Hubaux R, Marshall E A, Lam W L, Martinez V D. Environ. Int., 2018, 112: 183.

doi: S0160-4120(17)31550-7     pmid: 29275244
Zatka V J, Warner J S, Maskery D. Environ. Sci. Technol., 1992, 26(1): 138.

doi: 10.1021/es00025a015     URL    
Vincent J H, Ramachandran G, Kerr S M. J. Environ. Monitor., 2001, 3(6): 565.

pmid: 11785627
Füchtjohann L, Jakubowski N, Gladtke D, Klockow D, Broekaert J A C. J. Environ. Monitor., 2001, 3(6): 681.

doi: 10.1039/b107010j     URL    
Liu G Y, Liu Z X, Zhang Y G, Gao P, Xu D H, Zheng S N. Environ. Chem., 2017, 36(11): 2357.
(刘广洋, 刘中笑, 张延国, 高苹, 徐东辉, 郑姝宁. 环境化学, 2017, 36(11): 2357.).
Yin Y G, Liu J F, He B, Shi J B, Jiang G B. J. Chromatogr. A, 2008, 1181(1/2): 77.

doi: 10.1016/j.chroma.2007.12.050     URL    
Wang Z H, Yin Y G, He B, Shi J B, Liu J F, Jiang G B. J. Anal. At. Spectrom., 2010, 25(6): 810.

doi: 10.1039/b924291k     URL    
Wang Y, Liu G L, Li Y B, Liu Y W, Guo Y Y, Shi J B, Hu L G, Cai Y, Yin Y G, Jiang G B. Environ. Sci. Technol. Lett., 2020, 7(7): 482.

doi: 10.1021/acs.estlett.0c00329     URL    
Mao Y X, Yin Y G, Li Y B, Liu G L, Feng X B, Jiang G B, Cai Y. Environ. Pollut., 2010, 158(11): 3378.

doi: 10.1016/j.envpol.2010.07.031     URL    
Mao Y X, Liu G L, Meichel G, Cai Y, Jiang G B. Anal. Chem., 2008, 80(18): 7163.

doi: 10.1021/ac800908b     URL    
Yin Y G, Liu Y, Liu J F, He B, Jiang G B. Anal. Methods, 2012, 4(4): 1122.

doi: 10.1039/c2ay05886c     URL    
Yuan C G, Jiang G B, He B. J. Anal. At. Spectrom., 2005, 20(2): 103.

doi: 10.1039/b416102e     URL    
Macedo S M, dos Santos D C, de Jesus R M, da Rocha G O, Ferreira S L C, de Andrade J B. Microchem. J., 2010, 96(1): 46.

doi: 10.1016/j.microc.2010.01.019     URL    
Šlejkovec Z, Salma I, van Elteren J T, Zemplén-Papp É. Fresenius' J. Anal. Chem., 2000, 366(8): 830.

doi: 10.1007/s002160051580     URL    
Farinha M M, Šlejkovec Z, Elteren J T, Wolterbeek H T, Freitas M C. J. Atmos. Chem., 2004, 49(1/3): 343.

doi: 10.1007/s10874-004-1248-1     URL    
Yang G S, Ma L L, Xu D D, Li J, He T T, Liu L Y, Jia H L, Zhang Y B, Chen Y, Chai Z F. Chemosphere, 2012, 87(8): 845.

doi: 10.1016/j.chemosphere.2012.01.023     URL    
Pantsar-Kallio M, Korpela A. Anal. Chimica Acta, 2000, 410(1/2): 65.

doi: 10.1016/S0003-2670(99)00892-2     URL    
Diaz-Bone R A, Hollmann M, Wuerfel O, Pieper D. J. Anal. At. Spectrom., 2009, 24(6): 808.

doi: 10.1039/b822968f     URL    
Yuan C G, Lu X F, Qin J, Rosen B P, Le X C. Environ. Sci. Technol., 2008, 42(9): 3201.

doi: 10.1021/es702910g     URL    
Jakob R, Roth A, Haas K, Krupp E M, Raab A, Smichowski P, Gómez D, Feldmann J. J. Environ. Monit., 2010, 12(2): 409.

doi: 10.1039/B915867G     URL    
Tziaras T, Pergantis S A, Stephanou E G. Environ. Sci. Technol., 2015, 49(19): 11640.

doi: 10.1021/acs.est.5b02328     URL    
Huang M J, Chen X W, Zhao Y G, Yu Chan C E, Wang W, Wang X M, Wong M H. Environ. Pollut., 2014, 188: 37.

doi: 10.1016/j.envpol.2014.01.001     URL    
Hong S, Kwon H O, Choi S D, Lee J S, Khim J S. Mar. Pollut. Bull., 2016, 108(1/2): 155.

doi: 10.1016/j.marpolbul.2016.04.035     URL    
Tsopelas F, Tsakanika L A, Ochsenkühn-Petropoulou M. Microchem. J., 2008, 89(2): 165.

doi: 10.1016/j.microc.2008.02.003     URL    
Huang C Z, Hu B, Jiang Z C. Spectrochimica Acta B: At. Spectrosc., 2007, 62(5): 454.

doi: 10.1016/j.sab.2007.04.012     URL    
Li P, Zhang X Q, Chen Y J, Bai T Y, Lian H Z, Hu X. RSC Adv., 2014, 4(90): 49421.

doi: 10.1039/C4RA06563H     URL    
Zhao L Y, Zhu Q Y, Mao L, Chen Y J, Lian H Z, Hu X. Talanta, 2019, 192: 339.

doi: 10.1016/j.talanta.2018.09.064     URL    
Huang C Y, Beauchemin D. J. Anal. At. Spectrom., 2003, 18(8): 951.

doi: 10.1039/b303355d     URL    
Burney D, Neal C R. J. Anal. At. Spectrom., 2019, 34(9): 1856.

doi: 10.1039/C9JA00003H     URL    
Huang B L. Spectrochimica Acta B: At. Spectrosc., 2008, 63(4): 455.

doi: 10.1016/j.sab.2008.02.001     URL    
Zhu X S, Hu B, Jiang Z C, Li M F. Water Res., 2005, 39(4): 589.

doi: 10.1016/j.watres.2004.11.006     URL    
Fang G Z, Tan J, Yan X P. Anal. Chem., 2005, 77(6): 1734.

doi: 10.1021/ac048570v     URL    
Liu Y, Li Y, Yan X P. Adv. Funct. Mater., 2008, 18(10): 1536.

doi: 10.1002/adfm.v18:10     URL    
Owlad M, Aroua M K, Daud W A W, Baroutian S. Water Air Soil Pollut., 2009, 200(1/4): 59.

doi: 10.1007/s11270-008-9893-7     URL    
Wei X, Hu L L, Chen M L, Yang T, Wang J H. Anal. Chem., 2016, 88(24): 12437.

doi: 10.1021/acs.analchem.6b03810     URL    
Huang Y F, Li Y, Jiang Y, Yan X P. J. Anal. At. Spectrom., 2010, 25(9): 1467.

doi: 10.1039/c004272b     URL    
Jiang H M, Yang T, Wang Y H, Lian H Z, Hu X. Talanta, 2013, 116: 361.

doi: 10.1016/j.talanta.2013.05.008     URL    
Zhao L Y, Fei J J, Lian H Z, Mao L, Cui X B. Talanta, 2020, 212: 120799.

doi: 10.1016/j.talanta.2020.120799     URL    
Zhu Q Y, Zhao L Y, Sheng D, Chen Y J, Hu X, Lian H Z, Mao L, Cui X B. Talanta, 2019, 195: 173.

doi: 10.1016/j.talanta.2018.11.043     URL    
Zhao L Y, Fei J J, Lian H Z, Mao L, Cui X B. J. Anal. At. Spectrom., 2019, 34(8): 1693.

doi: 10.1039/C9JA00157C     URL    
Fei J J, Zhao L Y, Wu X H, Cui X B, Min H, Lian H Z, Chen Y J. Microchimica Acta, 2020, 187(6): 1.

doi: 10.1007/s00604-019-3921-8     URL    
Smichowski P. Talanta, 2008, 75(1): 2.

doi: 10.1016/j.talanta.2007.11.005     pmid: 18371839
Najafi N M, Tavakoli H, Alizadeh R, Seidi S. Anal. Chimica Acta, 2010, 670(1/2): 18.

doi: 10.1016/j.aca.2010.04.059     URL    
Huang C Z, Hu B. J. Sep. Science, 2008, 31(4): 760.

doi: 10.1002/jssc.v31:4     URL    
Ou X X, Wang C, He M, Chen B B, Hu B. Spectrochimica Acta B: At. Spectrosc., 2020, 168: 105854.

doi: 10.1016/j.sab.2020.105854     URL    
Zhang Y, Duan J K, He M, Chen B B, Hu B. Talanta, 2013, 115: 730.

doi: 10.1016/j.talanta.2013.06.040     pmid: 24054655
Liu Y, He M, Chen B B, Hu B. Talanta, 2015, 142: 213.

doi: 10.1016/j.talanta.2015.04.050     URL    
He M, Su S W, Chen B B, Hu B. Talanta, 2020, 207: 120314.

doi: 10.1016/j.talanta.2019.120314     URL    
Jin C, Liu T, Zou Y, Zhang G L, Tan M G, Peng L, Li Y L, Lu W Z, Li Y, Xie Y N. Chin. Phys. C, 2005, 29: 89.
(金婵, 刘涛, 邹杨, 张桂林, 谈明光, 彭岚, 李玉兰, 陆文忠, 李燕, 谢亚宁. 高能物理与核物理, 2005, 29: 89.).
Wang Y S, Li A G, Zhang Y X, Xie Y N, Li D L, Li Y, Zhang G L. Chin. Sci. Bull., 2006, 51(18): 2275.

doi: 10.1007/s11434-006-2103-3     URL    
Tan M G, Zhang G L, Li X L, Zhang Y X, Yue W S, Chen J M, Wang Y S, Li A G, Li Y, Zhang Y M, Shan Z C. Anal. Chem., 2006, 78(23): 8044.

pmid: 17134138
Qi J H, Zhang M P, Feng L J, Li X G, Xie Z, Sun Z H, Hu T D. Molecules, 2003, 8(1): 31.

doi: 10.3390/80100031     URL    
Galbreath K C, Zygarlicke C J. Fuel Process. Technol., 2004, 85(6/7): 701.

doi: 10.1016/j.fuproc.2003.11.015     URL    
Ranjbar Jafarabadi A, Riyahi Bakhtiari A, Spanò N, Cappello T. Mar. Pollut. Bull., 2018, 137: 185.

doi: S0025-326X(18)30701-X     pmid: 30503425
中国环境保护部. 国家质量监督检验检疫总局. 中华人民共和国国家标准-环境空气质量标准, (2012-02-29). [2020-07-30]. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/dqhjbh/dqhjzlbz/201203/W020120410330232398521.pdf.
World Health Organization Regional Office for Europe Copenhagen. Air Quality Guidelines for Europe, 2000. 1. https://www.euro.who.int/__data/assets/pdf_file/0005/74732/E71922.pdf?ua=1.
EU European Parliament and the Council of the European Union. Air Quality Standards, (2012-12-31). [2020-09-30]. https://ec.europa.eu/environment/air/quality/standards.htm.
USEPA US Environmental Protection Agency. National ambient air quality criteria standards (NAAQS), (2015-10-01). [2020-07-30]. https://www.epa.gov/criteria-air-pollutants/naaqs-table (For Pb). https://scclmines.com/env/DOCS/NAAQS-2009.pdf (For As and Ni).
Rogula-Kozłowska W, Błaszczak B, Szopa S, Klejnowski K, Sówka I, Zwoździak A, Jabłońska M, Mathews B. Environ. Monit. Assess., 2013, 185(1): 581.

doi: 10.1007/s10661-012-2577-1     pmid: 22411028
Limbeck A, Wagner C, Lendl B, Mukhtar A. Anal. Chimica Acta, 2012, 750: 111.

doi: 10.1016/j.aca.2012.05.005     URL    
von Schneidemesser E, Stone E A, Quraishi T A, Shafer M M, Schauer J J. Sci. Total. Environ., 2010, 408(7): 1640.

doi: 10.1016/j.scitotenv.2009.12.022     URL    
Rashed M N. CLEAN Soil Air Water, 2008, 369(10/11): 850.
Kam W, Delfino R J, Schauer J J, Sioutas C. Environ. Sci.: Processes Impacts, 2013, 15(1): 234.
Niu J J, Rasmussen P E, Hassan N M, Vincent R. Water Air Soil Pollut., 2010, 213(1/4): 211.

doi: 10.1007/s11270-010-0379-z     URL    
Cavanagh J A E, Trought K, Brown L, Duggan S. Sci. Total. Environ., 2009, 407(18): 5007.

doi: 10.1016/j.scitotenv.2009.05.020     URL    
Francová A, Chrastný V, Vítková M, Šillerová H, Komárek M. Environ. Pollut., 2020, 260: 114057.

doi: S0269-7491(19)36211-6     pmid: 32004969
Furusjö E, Sternbeck J, Cousins A P. Sci. Total. Environ., 2007, 387(1/3): 206.

doi: 10.1016/j.scitotenv.2007.07.021     URL    
Wåhlin P, Berkowicz R, Palmgren F. Atmos. Environ., 2006, 40(12): 2151.

doi: 10.1016/j.atmosenv.2005.11.049     URL    
Li H M, Wang Q G, Yang M, Li F Y, Wang J H, Sun Y X, Wang C, Wu H F, Qian X. Atmos. Res., 2016, 181: 288.

doi: 10.1016/j.atmosres.2016.07.005     URL    
Tan J H, Zhang L M, Zhou X M, Duan J C, Li Y, Hu J N, He K B. Sci. Total. Environ., 2017, 601/602: 1743.

doi: 10.1016/j.scitotenv.2017.06.050     URL    
Huang L, Bai Y H, Ma R Y, Zhuo Z M, Chen L. Environ. Sci. Pollut. Res., 2019, 26(13): 13664.

doi: 10.1007/s11356-019-05001-8     URL    
Shao L Y, Shen R R, Wang J, Wang Z S, Deng Y H, Yang S S. Sci. Sin. Terrae, 2013, 43(5): 839.
(邵龙义, 沈蓉蓉, 王静, 王志石, 邓宇华, 杨书申. 中国科学: 地球科学, 2013, 43(5): 8390).
Yu X Y, Li J J, Yang R S. J. Guizhou U. Nat. Sci, 2011, 28: 137.
(俞相阳, 李金娟, 杨荣师. 贵州大学学报(自然科学版), 2011, 28: 137.).
Gu J L, Liu L, Liu C, Liu Z H, Cong X, Zhao G. Chem. R. Appli., 2016, 28: 1136.
(顾佳丽, 刘璐, 刘畅, 刘振华, 丛俏, 赵刚. 化学研究与应用, 2016, 28: 1136.).
Zhou L, Liu G J, Shen M C, Hu R Y, Sun M, Liu Y. Environ. Pollut., 2019, 251: 839.

doi: S0269-7491(19)31216-3     pmid: 31125814
Li H M, Wang J H, Wang Q G, Qian X, Qian Y, Yang M, Li F Y, Lu H, Wang C. Atmos. Environ., 2015, 103: 339.

doi: 10.1016/j.atmosenv.2014.12.065     URL    
Fang J, Fan J M, Lin Q, Wang Y Y, He X, Shen X D, Chen D L. Atmos. Pollut. Res., 2018, 9(4): 607.

doi: 10.1016/j.apr.2017.12.009     URL    
Hsu S C, Wong G T F, Gong G C, Shiah F K, Huang Y T, Kao S J, Tsai F, Candice Lung S C, Lin F J, Lin I I, Hung C C, Tseng C M. Mar. Chem., 2010, 120(1/4): 116.

doi: 10.1016/j.marchem.2008.10.003     URL    
Kaczynski S E, Kieber R J. Environ. Sci. Technol., 1994, 28(5): 799.

doi: 10.1021/es00054a009     pmid: 22191819
Pandey M, Pandey A K, Mishra A, Tripathi B D. Urban Clim., 2017, 19: 141.

doi: 10.1016/j.uclim.2017.01.004     URL    
Betha R, Pradani M, Lestari P, Joshi U M, Reid J S, Balasubramanian R. Atmos. Res., 2013, 122: 571.

doi: 10.1016/j.atmosres.2012.05.024     URL    
Anake W U, Benson N U, Theophilus Tenebe I, Emenike P C, E Ana G R E, Zhang S J. Hum. Ecol. Risk Assess.: Int. J., 2020, 26(1): 242.

doi: 10.1080/10807039.2018.1504672     URL    
Schleicher N J, Norra S, Chai F H, Chen Y Z, Wang S L, Cen K, Yu Y, Stüben D. Atmos. Environ., 2011, 45(39): 7248.

doi: 10.1016/j.atmosenv.2011.08.067     URL    
Lyu J L, Li M, Xie J F, Di Z D, Zhao L J, Liu R Q. Environ. Sci. Technol., 2016, 39(4): 126.
(吕佳莉, 李萌, 解静芳, 邸志东, 赵丽娟, 刘瑞卿. 环境科学与技术, 2016, 39(4): 126.).
Police S, Sahu S K, Pandit G G. Atmos. Pollut. Res., 2016, 7(4): 725.

doi: 10.1016/j.apr.2016.03.007     URL    
Arhami M, Hosseini V, Zare Shahne M, Bigdeli M, Lai A, Schauer J J. Atmos. Environ., 2017, 153: 70.

doi: 10.1016/j.atmosenv.2016.12.046     URL    
Karar K, Gupta A K. Atmos. Res., 2006, 81(1): 36.
Richter P, Griño P, Ahumada I, Giordano A. Atmos. Environ., 2007, 41(32): 6729.

doi: 10.1016/j.atmosenv.2007.04.053     URL    
Tan J H, Duan J C, Ma Y L, Yang F M, Cheng Y, He K B, Yu Y C, Wang J W. Sci. Total. Environ., 2014, 493: 262.

doi: 10.1016/j.scitotenv.2014.05.147     URL    
Lee B K, Park G H. J. Hazard. Mater., 2010, 184(1/3): 406.

doi: 10.1016/j.jhazmat.2010.08.050     URL    
Tanzer-Gruener R, Li J Y, Eilenberg S R, Robinson A L, Presto A A. Environ. Sci. Technol. Lett., 2020, 7(8): 554.

doi: 10.1021/acs.estlett.0c00365     URL    
Zhuang X L, Wang Y S, He H, Liu J G, Wang X M, Zhu T Y, Ge M F, Zhou J, Tang G Q, Ma J Z. J. Environ. Sci., 2014, 26(1): 2.

doi: 10.1016/S1001-0742(13)60376-9     URL    
Zhang J K, Sun Y, Liu Z R, Ji D S, Hu B, Liu Q, Wang Y S. Atmos. Chem. Phys., 2014, 14(6): 2887.

doi: 10.5194/acp-14-2887-2014     URL    
Li R, Yang X, Fu H B, Hu Q Q, Zhang L W, Chen J M. Chemosphere, 2017, 181: 259.

doi: 10.1016/j.chemosphere.2017.03.140     URL    
Liu L, Wang Y L, Du S Y, Zhang W J, Hou L J, Vedal S, Han B, Yang W, Chen M D, Bai Z P. J. Environ. Sci., 2016, 40: 145.
Li H M, Wang Q G, Shao M, Wang J H, Wang C, Sun Y X, Qian X, Wu H F, Yang M, Li F Y. Environ. Pollut., 2016, 208: 655.

doi: 10.1016/j.envpol.2015.10.042     URL    
Kim K H, Kabir E, Kabir S. Environ. Int., 2015, 74: 136.

doi: 10.1016/j.envint.2014.10.005     pmid: 25454230
Talbi A, Kerchich Y, Kerbachi R, Boughedaoui M. Environ. Pollut., 2018, 232: 252.

doi: 10.1016/j.envpol.2017.09.041     URL    
Kong S F, Lu B, Ji Y Q, Zhao X Y, Bai Z P, Xu Y H, Liu Y, Jiang H. J. Environ. Monit., 2012, 14(3): 791.

doi: 10.1039/c1em10555h     URL    
Ma Y D, Wang Z S, Tan Y F, Xu S, Kong S F, Wu G, Wu X F, Li H. J. Environ. Sci., 2017, 55: 339.

doi: 10.1016/j.jes.2016.05.045     URL    
Wiseman C L S. Anal. Chimica Acta, 2015, 877: 9.

doi: 10.1016/j.aca.2015.01.024     URL    
Ren H L, Yu Y X, An T C. Environ. Pollut., 2020, 265: 115070.

doi: 10.1016/j.envpol.2020.115070     URL    
Zereini F, Wiseman C L S, Püttmann W. Environ. Sci. Technol., 2012, 46(18): 10326.

doi: 10.1021/es3020887     pmid: 22913340
Puls C, Limbeck A, Hann S. Atmos. Environ., 2012, 55: 213.

doi: 10.1016/j.atmosenv.2012.03.023     URL    
Tang Z J, Hu X, Qiao J Q, Lian H Z. Atmosphere, 2018, 9(9): 340.

doi: 10.3390/atmos9090340     URL    
Mbengue S, Alleman L Y, Flament P. Environ. Geochem. Heal., 2015, 37(5): 875.

doi: 10.1007/s10653-015-9756-2     URL    
Sysalová J, Száková J, Tremlová J, Kašparovská K, Kotlík B, Tlustoš P, Svoboda P. Biol. Trace Elem. Res., 2014, 161(2): 216.

doi: 10.1007/s12011-014-0101-x     pmid: 25123460
Huang M J, Wang W, Chan C Y, Cheung K C, Man Y B, Wang X M, Wong M H. Sci. Total. Environ., 2014, 479/480: 117.

doi: 10.1016/j.scitotenv.2014.01.115     URL    
Wragg J, Klinck B. J. Environ. Sci. Heal. A, 2007, 42(9): 1223.

doi: 10.1080/10934520701436054     URL    
Xie S Y, Lao J Y, Wu C C, Bao L J, Zeng E Y. Environ. Int., 2018, 120: 295.

doi: 10.1016/j.envint.2018.08.015     URL    
Julien C, Esperanza P, Bruno M, Alleman L Y. J. Environ. Monit., 2011, 13(3): 621.

doi: 10.1039/c0em00439a     URL    
Li X P, Gao Y, Zhang M, Zhang Y, Zhou M, Peng L Y, He A, Zhang X, Yan X Y, Wang Y H, Yu H T. Ecotoxicol. Environ. Saf., 2020, 190: 110151.

doi: 10.1016/j.ecoenv.2019.110151     URL    
Xie J J, Yuan C G, Xie J, Shen Y W, Zha D W, Zhang K G, Zhu H T. Environ. Sci. Pollut. Res., 2019, 26(30): 30826.

doi: 10.1007/s11356-019-06176-w     URL    
Fang H D, Chen J F, Duan J M, Chen J S, Lin Q J, Chen S H. Ecology and Environmental Sciences, 2015, 24(11): 1872.
(方宏达, 陈锦芳, 段金明, 陈进生, 林清杰, 陈少华. 生态环境学报, 2015, 24(11): 1872.)
Schleicher N J, Norra S, Chai F H, Chen Y Z, Wang S L, Cen K, Yu Y, Stüben D. Atmos. Environ., 2011, 45(39): 7248.

doi: 10.1016/j.atmosenv.2011.08.067     URL    
Lu D W, Luo Q, Chen R, Zhuansun Y X, Jiang J, Wang W C, Yang X Z, Zhang L Y, Liu X L, Li F, Liu Q, Jiang G B. Nat. Commun., 2020, 11(1): 1.

doi: 10.1038/s41467-019-13993-7     URL    
[1] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[2] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[3] 陈冠益, 韩克旋, 刘彩霞, 旦增, 布多. 污泥中重金属处理方法[J]. 化学进展, 2021, 33(6): 998-1009.
[4] 张雨竹, 詹菁, 刘倩, 周群芳, 江桂斌. 大气细颗粒物引发的神经毒性和分子机理[J]. 化学进展, 2021, 33(5): 713-725.
[5] 钟来进, 唐直婕, 胡忻, 练鸿振. 大气颗粒物中有害成分的吸入生物可给性研究[J]. 化学进展, 2021, 33(10): 1766-1779.
[6] 杨世迎, 薛艺超, 王满倩. 络合态重金属废水处理:基于高级氧化技术的解络合机制[J]. 化学进展, 2019, 31(8): 1187-1198.
[7] 谭远铭, 孟皓, 张霞. 功能化MOFs及MOFs/聚合物复合膜在有机染料和重金属离子吸附分离中的应用[J]. 化学进展, 2019, 31(7): 980-995.
[8] 刘玥, 吴忆涵, 庞宏伟, 王祥学, 于淑君, 王祥科. 石墨相氮化碳材料在水环境污染物去除中的研究[J]. 化学进展, 2019, 31(6): 831-846.
[9] 陈贺, 张帅其, 赵致雪, 刘萌, 张庆瑞. 多巴胺功能材料在水污染控制中的应用[J]. 化学进展, 2019, 31(4): 571-579.
[10] 杨姗也, 王祥学, 陈中山, 李倩, 韦犇犇, 王祥科. 四氧化三铁基纳米材料制备及对放射性元素和重金属离子的去除[J]. 化学进展, 2018, 30(2/3): 225-242.
[11] 刘明学, 董发勤, 聂小琴, 丁聪聪, 何辉超, 杨刚. 光电子协同微生物介导的重金属离子还原与电子转移机理[J]. 化学进展, 2017, 29(12): 1537-1550.
[12] 孟德芃, 吴俊涛. 静电纺丝法制备新型吸附分离材料[J]. 化学进展, 2016, 28(5): 657-664.
[13] 傅骏青, 王晓艳, 李金花, 陈令新. 重金属离子印迹技术[J]. 化学进展, 2016, 28(1): 83-90.
[14] 刘榆, 傅瑞琪, 楼子墨, 方文哲, 王卓行, 徐新华. 功能化碳质材料的制备及其对水中重金属的去除[J]. 化学进展, 2015, 27(11): 1665-1678.
[15] 谭丽莎, 孙明洋, 胡运俊, 程丽华, 徐新华. 功能化纳米Fe3O4磁性材料的制备及其对水中重金属离子的去除[J]. 化学进展, 2013, 25(12): 2147-2158.