English
新闻公告
More
化学进展 2022, Vol. 34 Issue (11): 2405-2416 DOI: 10.7536/PC220434 前一篇   后一篇

• 综述 •

铋基金属有机框架的合成与应用

王文婧1,2, 曾滴2, 王举雪2, 张瑜2, 张玲2,*(), 王文中2,3,*()   

  1. 1 上海师范大学化学与材料科学学院 上海 200234
    2 中国科学院上海硅酸盐研究所 上海 200050
    3 国科大杭州高等研究院化学与材料科学学院 杭州 310024
  • 收稿日期:2022-04-25 修回日期:2022-07-07 出版日期:2022-11-24 发布日期:2022-09-19
  • 通讯作者: 张玲, 王文中
  • 基金资助:
    国家自然科学基金项目(51972327); 国家自然科学基金项目(51972325); 国家自然科学基金项目(52172256)

Synthesis and Application of Bismuth-Based Metal-Organic Framework

Wenjing Wang1,2, Di Zeng2, Juxue Wang2, Yu Zhang2, Ling Zhang2(), Wenzhong Wang2,3()   

  1. 1 College of Chemistry and Materials Science, Shanghai Normal University,Shanghai 200234, China
    2 Shanghai Institute of Ceramics, Chinese Academy of Sciences,Shanghai 200050, China
    3 School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences,Hangzhou 310024, China
  • Received:2022-04-25 Revised:2022-07-07 Online:2022-11-24 Published:2022-09-19
  • Contact: Ling Zhang, Wenzhong Wang
  • Supported by:
    National Natural Science Foundation of China(51972327); National Natural Science Foundation of China(51972325); National Natural Science Foundation of China(52172256)

金属有机框架(MOFs)材料因其丰富的拓扑结构和有序的孔洞结构被广泛关注,近年来人们按照其不同的应用前景分别进行了综述。尽管金属中心与有机框架材料的结构及性能有着密切联系,目前针对某种特定中心金属的金属有机框架材料的梳理还较少。金属铋是唯一一种具有较大丰度、低毒性的绿色重金属元素,铋基金属有机框架(Bi-MOFs)也因此在MOFs中脱颖而出,并具有广泛的应用。由于铋盐易水解的特性,在水相中合成铋基金属有机框架材料一直是一个挑战,所以对于Bi-MOFs的开发仍然处于开始阶段。本文介绍了近年来有关Bi-MOFs常用的合成配体以及一般的合成方法,综述了Bi-MOFs在光、电催化等领域的研究进展及其在药物载体、气体吸附剂及电极材料方面的应用概况。对存在的问题进行总结并提出可能的解决方法,对未来研究和应用提出展望,以推动Bi-MOFs材料的进一步研究与运用。

Metal-organic frameworks (MOFs), featuring the ordered porous structure and abundant topology, have been widely concerned and thoroughly reviewed according to its application prospects in recent years. Although the metal center is critical to the structure and performance of MOFs, summaries of the MOFs with a specific central metal are still few at present. As the only heavy metal element with considerable abundance and low toxicity, bismuth-based metal-organic frameworks (Bi-MOFs) stand out among MOFs for its innocuousness and biocompatibility. It would be a significant direction to design legitimately, synthesize successfully, and exploit steadily the Bi-MOFs with rich structures in the current MOFs research. However, this specific type of MOFs is still in its infancy, which is limited by the flexible coordination environment and low solubility of Bi (Ⅲ) cation. The synthesis of Bi-MOFs in the aqueous solution has always been an enormous challenge resulting from the hydrolysis of the bismuth salt. Herein, this article reviews the common ligands and general synthesis methods of Bi-MOFs in recent years, focusing on its application in photocatalysis, electrocatalysis, drug carriers, gas adsorbents and electrode materials. By profusely discussing the mechanism and reaction rules in catalytic reactions, this review aims to provide rewarding references for similar catalytic reactions to improve reaction efficiency and save costs. In addition, to highlight the unique advantages of Bi-MOFs, we make detailed comparisons with traditional materials. Some expanded applications of energy storage (mainly cationic battery energy storage), adsorption separation (selective adsorption of anions and enrichment of energy gas), drug delivery (the encapsulation and release of specific drugs) are also supplemented. For consideration of existing research, our work puts forward a prospect for future pioneering research to stimulate the research progress of Bi-MOFs.

Contents

1 Introduction

2 Components and synthesis methods of Bi-MOFs

2.1 The properties of the center metal

2.2 Types of organic ligands

3 Application of Bi-MOFs

3.1 Application in catalysis

3.2 Application in chemical adsorption

3.3 Bi-MOFs as sustained-release drug carriers

3.4 Application of Bi-MOFs as sensors

3.5 Application of Bi-MOFs as battery electrode materials

4 Conclusion and outlook

()
图1 1,3,5-三(4-羧基苯基)苯(H3BTB)、三嗪-2,4,6-三酰三苯甲酸(H3TATB)和1,3,5-均苯三甲酸(H3BTC)结构式
Fig.1 Structure of 1,3,5-tris(4-carboxyphenyl) benzene (H3BTB), triazine-2,4,6-triacyltribenzoic acid (H3TATB) and 1,3,5-trimellitic acid (H3BTC)
图2 沿[001]方向的CAU-7-TATB的晶体结构[26]
Fig. 2 Crystal structure of CAU-7-TATB (view along [001]). Reproduced from ref 26 with permission. Copy right 2017,The Royal Society of Chemistry
图3 化合物Bi-BTC中(a) Bi3+和(b) BTC3-阴离子的配位环境 (c)中心对称二聚体{Bi2O14}和1~6个连接的BTC3-配体的多面图; (d) Bi-BTC三维结构示意图[27],Bi:绿色,O:红色,C:浅灰色,N:蓝色
Fig. 3 Coordination environment of (a) Bi3+and (b) BTC3-anions in compound Bi-BTC; (c) polyhedral view of the centrosymmetric dimeric {Bi2O14} unit and the linked 1~6 BTC3-ligands; (d) view of the 3D structure of Bi-BTC. Bi: green, O: red, C: light grey, N: blue. Reproduced from ref 27 with permission. Copyright 2017,The Royal Society of Chemistry
图4 4,4',4″,4?-(芘-1,3,6,8-四基)四苯甲酸的结构式
Fig.4 Structure of 4,4',4″,4?-(1,9-dihydropyrene- 1,3,6,8-tetrayl) tetrabenzoic acid
图5 a) Bi-mna的计算电子定位函数(ELF)图;b) Bi-mna的Fukui函数F-(r)和F+(r),等值面值为0.0015e ?-3,Bi紫、C棕、O红、N灰、H粉[8]
Fig.5 a) Calculated electron localization function (ELF) plots for Bi-mna. b) Fukui function F-(r)and F+(r) for Bi-mna. The isosurface value is 0.0015 e ?-3. Bi purple, C brown, O red, N gray, H pink[8]. Copyright 2015, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图6 Bi-BTC催化DMF和AA制备PX的Diels-Alder反应示意图[48]
Fig.6 Schematic illustration of Bi-BTC catalyzed Diels-Alder reaction of DMF and AA to PX. Reproduced from ref 48 with permission. Copy right 2020, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
图7 a) 在吸附 SeO 3 2 -之前CAU-17的SEM图; b) CAU-17上活性位点的吸附图; c) CAU-17在48 h内吸收 SeO x 2 -的等温线; d) CAU-17的 SeO x 2 -吸附动力学行为
Fig.7 a) SEM of CAU-17 before adsorption of SeO 3 2 -. b) Probable mechanism model for phosphate adsorption of La-CAU-17. c) Isotherm of SeO x 2 - uptaken by CAU-17 over 48 hours. d) SeO x 2 -adsorption kinetic behavior of CAU-17[57]. Copyright 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图8 3,3',5,5'-联苯四甲酸结构式.
Fig.8 Structure of biphenyl-3,3',5,5'-tetracarboxylic acid
[1]
Wu H, Reali R S, Smith D A, Trachtenberg M C, Li J. Chemistry - A European Journal, 2010, 16(47): 13951.
[2]
Li F, Gu G H, Choi C, Kolla P, Hong S, Wu T, Soo Y, Masa J, Mukerjee S, Jung Y, Qiu J, Sun Z. Applied Catalysis B: Environmental, 2020, 277: 119241.

doi: 10.1016/j.apcatb.2020.119241     URL    
[3]
Yuan W, Wu J, Zhang X, Hou S, Xu M, Gu Z. J. Mater. Chem. A, 2020, 8(46): 24486.

doi: 10.1039/D0TA08092F     URL    
[4]
Zhao Y, Wang S, Zhai X, Shao L, Bai X, Liu Y, Wang T, Li Y, Zhang L, Fan F, Meng F, Zhang X, Fu Y. Acs Appl. Mater. Interfaces, 2021, 13(7): 9206.

doi: 10.1021/acsami.0c21583     URL    
[5]
Deibert B J, Velasco E, Liu W, Teat S J, Lustig W P, Li J. Cryst. Growth Des., 2016, 16(8): 4178.

doi: 10.1021/acs.cgd.6b00622     URL    
[6]
Hao J, Yan B. J. Mater. Chem. A, 2015, 3(9): 4788.

doi: 10.1039/C4TA06462C     URL    
[7]
Zhang X, Zhang Y, Li Q, Zhou X, Li Q, Yi J, Liu Y, Zhang J. J. Mater. Chem. A, 2020, 8(19): 9776.

doi: 10.1039/D0TA00384K     URL    
[8]
Wang G, Sun Q, Liu Y, Huang B, Dai Y, Zhang X, Qin X. Chemistry-A European Journal, 2015, 21(6): 2364.

doi: 10.1002/chem.201405047     URL    
[9]
An Y, Liu Y, An P, Dong J, Xu B, Dai Y, Qin X, Zhang X, Whangbo M, Huang B. Angewandte Chemie International Edition, 2017, 56(11): 3036.

doi: 10.1002/anie.201612423     URL    
[10]
Chee T, Tian Z, Zhang X, Lei L, Xiao C. J. Nucl. Mater., 2020, 542: 152526.

doi: 10.1016/j.jnucmat.2020.152526     URL    
[11]
Savage M, Yang S, Suyetin M, Bichoutskaia E, Lewis W, Blake A J, Barnett S A, Schröder M. Chemistry-A European Journal, 2014, 20(26): 8024.

doi: 10.1002/chem.201304799     URL    
[12]
Li J, Chen J. Chemical Industry and Engineering Progress, 2020, 39(6): 2235.
[13]
Orellana-Tavra C, Köppen M, Li A, Stock N, Fairen-Jimenez D. Acs Appl. Mater. Interfaces, 2020, 12(5): 5633.

doi: 10.1021/acsami.9b21692     URL    
[14]
Feng A, Wang Y, Ding J, Xu R, Li X. Curr. Drug Deliv., 2021, 18(3): 297.

doi: 10.2174/1567201817666200917120201     URL    
[15]
Yaghi O M, Li G, Li H. Nature, 1995, 378(6558): 703.

doi: 10.1038/378703a0     URL    
[16]
Crickmore T S, Sana H B, Mitchell H, Clark M, Bradshaw D. Chem. Commun., 2021, 57(81): 10592.

doi: 10.1039/D1CC04032D     URL    
[17]
Shi Y, Liang B, Alsalme A, Lin R, Chen B. J. Solid State Chem., 2020, 287: 121321.

doi: 10.1016/j.jssc.2020.121321     URL    
[18]
Sumida K, Hill M R, Horike S, Dailly A, Long J R. J. Am. Chem. Soc., 2009, 131(42): 15120.

doi: 10.1021/ja9072707     pmid: 19799422
[19]
You B, Jiang N, Sheng M, Drisdell W S, Yano J, Sun Y. Acs Catal., 2015, 5(12): 7068.

doi: 10.1021/acscatal.5b02325     URL    
[20]
Simon-Yarza T, Mielcarek A, Couvreur P, Serre C. Adv. Mater., 2018, 30(37): 1707365.

doi: 10.1002/adma.201707365     URL    
[21]
Lamagni P, Miola M, Catalano J, Hvid M S, Mamakhel M A H, Christensen M, Madsen M R, Jeppesen H S, Hu X M, Daasbjerg K, Skrydstrup T, Lock N. Adv. Funct. Mater., 2020, 30(16): 1910408.

doi: 10.1002/adfm.201910408     URL    
[22]
Feyand M, Mugnaioli E, Vermoortele F, Bueken B, Dieterich J M, Reimer T, Kolb U, de Vos D, Stock N. Angewandte Chemie International Edition, 2012, 51(41): 10373.

doi: 10.1002/anie.201204963     URL    
[23]
Köppen M, Beyer O, Wuttke S, Lüning U, Stock N. Dalton Trans., 2017, 46(26): 8658.

doi: 10.1039/c7dt01744h     pmid: 28650040
[24]
Nguyen V H, Pham A L H, Nguyen V, Lee T, Nguyen T D. Chemical Engineering Research and Design, 2022, 177: 321.

doi: 10.1016/j.cherd.2021.10.043     URL    
[25]
Zhang R, Liu Y, An Y, Wang Z, Wang P, Zheng Z, Qin X, Zhang X, Dai Y, Huang B. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 560: 315.

doi: 10.1016/j.colsurfa.2018.10.011     URL    
[26]
Zhang R, Liu Y, Wang Z, Wang P, Zheng Z, Qin X, Zhang X, Dai Y, Whangbo M, Huang B. Applied Catalysis B: Environmental, 2019, 254: 463.

doi: 10.1016/j.apcatb.2019.05.024     URL    
[27]
Wang G, Liu Y, Huang B, Qin X, Zhang X, Dai Y. Dalton Trans., 2015, 44(37): 16238.

doi: 10.1039/C5DT03111G     URL    
[28]
Köppen M, Meyer V, ångström J, Inge A K, Stock N. Cryst. Growth Des., 2018, 18(7): 4060.

doi: 10.1021/acs.cgd.8b00439     URL    
[29]
Grape E S, Flores J G, Hidalgo T, Martínez-Ahumada E, GutiÉrrez-Alejandre A, Hautier A, Williams D R, O Keeffe M, öhrström L, Willhammar T, Horcajada P, Ibarra I A, Inge A K. J. Am. Chem. Soc., 2020, 142(39): 16795.

doi: 10.1021/jacs.0c07525     URL    
[30]
Rubio-Martinez M, Avci-Camur C, Thornton A W, Imaz I, Maspoch D, Hill M R. Chem. Soc. Rev., 2017, 46(11): 3453.

doi: 10.1039/c7cs00109f     pmid: 28530737
[31]
Pilloni M, Padella F, Ennas G, Lai S, Bellusci M, Rombi E, Sini F, Pentimalli M, Delitala C, Scano A, Cabras V, Ferino I. Microporous Mesoporous Mat., 2015, 213: 14.

doi: 10.1016/j.micromeso.2015.04.005     URL    
[32]
Sun Y, Huang H, Vardhan H, Aguila B, Zhong C, Perman J A, Al-Enizi A M, Nafady A, Ma S. Acs Appl. Mater. Interfaces, 2018, 10(32): 27124.

doi: 10.1021/acsami.8b08914     URL    
[33]
Wu X, Gagliardi L, Truhlar D G. J. Am. Chem. Soc., 2018, 140(25): 7904.

doi: 10.1021/jacs.8b03613     URL    
[34]
Sun M, Yan S, Sun Y, Yang X, Guo Z, Du J, Chen D, Chen P, Xing H. Dalton Trans., 2018, 47(3): 909.

doi: 10.1039/C7DT04062H     URL    
[35]
Kent C A, Liu D, Ma L, Papanikolas J M, Meyer T J, Lin W. J. Am. Chem. Soc., 2011, 133(33): 12940.

doi: 10.1021/ja204214t     URL    
[36]
Rodríguez N A, Parra R, Grela M A. Rsc Adv., 2015, 5(89): 73112.

doi: 10.1039/C5RA11182J     URL    
[37]
Xiao Y, Guo X, Liu J, Liu L, Zhang F, Li C. Chinese Journal of Catalysis, 2019, 40(9): 1339.

doi: 10.1016/S1872-2067(19)63329-2     URL    
[38]
Chen W, Fang J, Zhang Y, Chen G, Zhao S, Zhang C, Xu R, Bao J, Zhou Y, Xiang X. Nanoscale, 2018, 10(9): 4463.

doi: 10.1039/C7NR08943K     URL    
[39]
Xu D, Chen L, Zhang X, Li L, Ding Q, Zhu G. Surf. Interfaces, 2021, 27: 101514.
[40]
Nguyen V H, Van Tan L, Lee T, Nguyen T D. Sustain. Chem. Pharm., 2021, 20: 100385.
[41]
Lei L, Han L, Wang J, Liu Y, Wang Z, Wang P, Zheng Z, Cheng H, Dai Y, Huang B. Chemsuschem, 2021, 14(3): 892.

doi: 10.1002/cssc.202002242     URL    
[42]
Chen Z, Liu J, Cui H, Zhang L, Su C. Acta Chim. Sin., 2019, 77(3): 242.
[43]
Lu K, He C, Guo N, Chan C, Ni K, Weichselbaum R R, Lin W. J. Am. Chem. Soc., 2016, 138(38): 12502.

doi: 10.1021/jacs.6b06663     URL    
[44]
Zhao Y, Kuang Y, Liu M, Wang J, Pei R. Chem. Mat., 2018, 30(21): 7511.

doi: 10.1021/acs.chemmater.8b02467     URL    
[45]
Ronaghi N, Shade D, Moon H J, Najmi S, Cleveland J W, Walton K S, France S, Jones C W. Acs Sustain. Chem. Eng., 2021, 9(34): 11581.

doi: 10.1021/acssuschemeng.1c04463     URL    
[46]
Wang F, Chen Z, Chen H, Goetjen T A, Li P, Wang X, Alayoglu S, Ma K, Chen Y, Wang T, Islamoglu T, Fang Y, Snurr R Q, Farha O K. Acs Appl. Mater. Interfaces, 2019, 11(35): 32090.

doi: 10.1021/acsami.9b07769     URL    
[47]
Ravon U, Chaplais G, Chizallet C, Seyyedi B, Bonino F, Bordiga S, Bats N, Farrusseng D. Chemcatchem, 2010, 2(10): 1235.

doi: 10.1002/cctc.201000055     URL    
[48]
Yeh J, Chen S S, Li S, Chen C H, Shishido T, Tsang D C W, Yamauchi Y, Li Y, Wu K C W. Angewandte Chemie International Edition, 2021, 60(2): 514.

doi: 10.1002/anie.202015607     URL    
[49]
Ju Z, Yao X, Liu X, Ni L, Xin J, Xiao W. Ind. Eng. Chem. Res., 2019, 58(25): 11111.

doi: 10.1021/acs.iecr.9b01585     URL    
[50]
Ni L, Xin J, Dong H, Lu X, Liu X, Zhang S. Chemsuschem, 2017, 10(11): 2319.

doi: 10.1002/cssc.201700829     URL    
[51]
Odrobina J, Scholz J, Risch M, Dechert S, Jooss C, Meyer F. Acs Catal., 2017, 7(9): 6235.

doi: 10.1021/acscatal.7b01883     URL    
[52]
Suzuki S, Onodera T, Kawaji J, Mizukami T, Morishima M, Yamaga K. J. Power Sources, 2013, 223: 79.

doi: 10.1016/j.jpowsour.2012.09.042     URL    
[53]
Furukawa H, Gándara F, Zhang Y, Jiang J, Queen W L, Hudson M R, Yaghi O M. J. Am. Chem. Soc., 2014, 136(11): 4369.

doi: 10.1021/ja500330a     URL    
[54]
Furukawa H, Ko N, Go Y B, Aratani N, Choi S B, Choi E, Yazaydin A Ö, Snurr R Q, Keeffe M, Kim J, Yaghi O M. Science, 2010, 329(5990): 424.

doi: 10.1126/science.1192160     URL    
[55]
Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, Kapteijn F, LlabrÉs I Xamena F X, Gascon J. Nat. Mater., 2015, 14(1): 48.

doi: 10.1038/nmat4113     pmid: 25362353
[56]
Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, O’Keeffe M, Yaghi O M. Science, 2003, 300(5622): 1127.

doi: 10.1126/science.1083440     URL    
[57]
Ouyang H, Chen N, Chang G, Zhao X, Sun Y, Chen S, Zhang H, Yang D. Angewandte Chemie International Edition, 2018, 57(40): 13197.

doi: 10.1002/anie.201807891     URL    
[58]
Lu B, Wang S, Zhao L, Zhou D, Dong S, Wang G. Chem. Eng. J., 2021, 425: 131514.

doi: 10.1016/j.cej.2021.131514     URL    
[59]
Tagliabue M, Farrusseng D, Valencia S, Aguado S, Ravon U, Rizzo C, Corma A, Mirodatos C. Chem. Eng. J., 2009, 155(3): 553.

doi: 10.1016/j.cej.2009.09.010     URL    
[60]
Li L, Lin R, Krishna R, Li H, Xiang S, Wu H, Li J, Zhou W, Chen B. Science, 2018, 362(6413): 443.

doi: 10.1126/science.aat0586     URL    
[61]
Qian Q, Asinger P A, Lee M J, Han G, Mizrahi Rodriguez K, Lin S, Benedetti F M, Wu A X, Chi W S, Smith Z P. Chem. Rev., 2020, 120(16): 8161.

doi: 10.1021/acs.chemrev.0c00119     URL    
[62]
Li L, Han S, Yang C, Liu L, Zhao S, Wang X, Liu B, Pan H, Liu Y. Nanotechnology, 2020, 31(32): 325602.

doi: 10.1088/1361-6528/ab8c03     URL    
[63]
Bieniek A, Terzyk A P,Wi,? niewski M, Roszek K, Kowalczyk P, Sarkisov L, Keskin S, Kaneko K. Prog. Mater. Sci., 2021, 117: 100743.

doi: 10.1016/j.pmatsci.2020.100743     URL    
[64]
Velásquez-Hernández M D J, Linares-Moreau M, Astria E, Carraro F, Alyami M Z, Khashab N M, Sumby C J, Doonan C J, Falcaro P. Coord. Chem. Rev., 2021, 429: 213651.

doi: 10.1016/j.ccr.2020.213651     URL    
[65]
Zhang Q, Liu Y, Wang Z, Wang P, Zheng Z, Cheng H, Qin X, Zhang X, Dai Y, Huang B. J. Colloid Interface Sci., 2022, 617: 578.

doi: 10.1016/j.jcis.2022.01.188     URL    
[66]
Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank J F, Heurtaux D, Clayette P, Kreuz C, Chang J, Hwang Y K, Marsaud V, Bories P, Cynober L, Gil S, FÉrey G, Couvreur P, Gref R. Nat. Mater., 2010, 9(2): 172.

doi: 10.1038/nmat2608     pmid: 20010827
[67]
Horcajada P, Gref R, Baati T, Allan P K, Maurin G, Couvreur P, FÉrey G, Morris R E, Serre C. Chem. Rev., 2012, 112(2): 1232.

doi: 10.1021/cr200256v     pmid: 22168547
[68]
Horcajada P, Serre C, Maurin G, Ramsahye N A, Balas F, Vallet-Regí M, Sebban M, Taulelle F, FÉrey G. J. Am. Chem. Soc., 2008, 130(21): 6774.

doi: 10.1021/ja710973k     pmid: 18454528
[69]
Horcajada P, Serre C, Vallet-Regí M, Sebban M, Taulelle F, FÉrey G. Angewandte Chemie International Edition, 2006, 45(36): 5974.

doi: 10.1002/anie.200601878     URL    
[70]
Zhang Q, Liu Y, Wang Z, Wang P, Zheng Z, Cheng H, Qin X, Zhang X, Dai Y, Huang B. J. Colloid Interface Sci., 2022, 617: 578.

doi: 10.1016/j.jcis.2022.01.188     URL    
[71]
Song L, Xiao J, Cui R, Wang X, Tian F, Liu Z. Sensors and Actuators B: Chemical, 2021, 336: 129753.

doi: 10.1016/j.snb.2021.129753     URL    
[72]
Xu L, Xu Y, Li X, Wang Z, Sun T, Zhang X. Dalton Trans., 2018, 47(46): 16696.

doi: 10.1039/C8DT03474E     URL    
[73]
Kim M, Kim M, Park J, Kim J, Ahn C, Jin A, Mun J, Sung Y. Nanoscale, 2020, 12(28): 15214.

doi: 10.1039/D0NR03219K     URL    
[74]
Song J, Xiao B, Lin Y, Xu K, Li X. Adv. Energy Mater., 2018, 8(17): 1703082.

doi: 10.1002/aenm.201703082     URL    
[75]
Zhang W, Yan W, Jiang H, Wang C, Zhou Y, Ke F, Cong H, Deng H. Acs Sustain. Chem. Eng., 2020, 8(1): 335.

doi: 10.1021/acssuschemeng.9b05474     URL    
[76]
Su S, Liu Q, Wang J, Fan L, Ma R, Chen S, Han X, Lu B. Acs Appl. Mater. Interfaces, 2019, 11(25): 22474.

doi: 10.1021/acsami.9b06379     URL    
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[4] 赵晓竹, 李雯, 赵学瑞, 何乃普, 李超, 张学辉. MOFs在乳液中的可控生长[J]. 化学进展, 2023, 35(1): 157-167.
[5] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[6] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[7] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[8] 冯海弟, 赵璐, 白云峰, 冯锋. 纳米金属有机框架在肿瘤靶向治疗中的应用[J]. 化学进展, 2022, 34(8): 1863-1878.
[9] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[10] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[11] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[12] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[13] 卢明龙, 张晓云, 杨帆, 王 练, 王育乔. 表界面调控电催化析氧反应[J]. 化学进展, 2022, 34(3): 547-556.
[14] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[15] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
阅读次数
全文


摘要

铋基金属有机框架的合成与应用