English
新闻公告
More
化学进展 2023, Vol. 35 Issue (2): 330-349 DOI: 10.7536/PC220718 前一篇   

• 综述 •

光催化产过氧化氢材料

李锋1,2, 何清运2, 李方2, 唐小龙1,2, 余长林2,*()   

  1. 1 华南理工大学化学与化工学院 广州 510000
    2 广东石油化工学院化学工程学院 茂名 525000
  • 收稿日期:2022-07-14 修回日期:2022-11-21 出版日期:2023-02-24 发布日期:2023-02-15
  • 基金资助:
    国家自然科学基金项目(22272034); 广东省珠江学者特聘教授资助计划(2019); 广东省自然科学基金(2021A1515010305); 广东省自然科学基金(2022A1515011900); 广东省普通高校能源和环境绿色催化创新团队(2022KCXTD019)

Materials for Hydrogen Peroxide Production via Photocatalysis

Feng Li1,2, Qingyun He2, Fang Li2, Xiaolong Tang1,2, Changlin Yu2()   

  1. 1 School of Chemistry and Chemical Engineering, South China University of Technology,Guangzhou 510000, China
    2 School of Chemical Engineering, Guangdong University of Petrochemical Technology,Maoming 525000, China
  • Received:2022-07-14 Revised:2022-11-21 Online:2023-02-24 Published:2023-02-15
  • Contact: *e-mail: yuchanglinjx@163.com
  • Supported by:
    National Natural Science Foundation of China(22272034); Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme of China(2019); Guangdong Basic and Applied Basic Research Foundation(2021A1515010305); Guangdong Basic and Applied Basic Research Foundation(2022A1515011900); Environment and Energy Green Catalysis Innovation Team of Colleges and Universities of Guangdong Province(2022KCXTD019)

过氧化氢(H2O2)是一种很有潜力的能量载体,且作为一种环保型氧化剂广泛运用于有机合成、饮用水处理、废水处理等工业和医疗卫生领域。随着对环境保护要求的提升,预计H2O2的需求量将大幅增加。传统的蒽醌法(AQ)制备H2O2的工艺流程繁琐和存在有机物污染环境的现象。以O2和H2O为原料、太阳能为能源、半导体为光催化剂的光催化生产H2O2是一个绿色化学过程,具有反应条件温和、操作简单可控和无二次污染等优点。近年来,光催化产H2O2引起了人们的广泛关注。本综述介绍了光催化产H2O2的机理和效率低的原因,重点论述了光催化生成H2O2的体系以及提高光催化产H2O2的策略,最后对光催化产H2O2未来的发展方向进行了展望。

Hydrogen peroxide (H2O2) is a promising energy carrier and an environmentally friendly oxidant which is widely used in industry and health fields including organic synthesis, drinking water treatment, wastewater treatment and medical hygiene. With the promotion of environmental protection requirements, the demand for H2O2 is expected to increase substantially. H2O2 production by the traditional anthraquinone method (AQ) has a tedious process and pollutes the environment with a large amount of organic matter. In contrast, photocatalytic H2O2 production technology is a green process which uses O2 and H2O as raw materials, solar energy as energy source, and semiconductor as photocatalyst, with some distinct advantages, e. g, mild reaction conditions, simple and controllable operation, and no secondary pollution. Nowadays, the production of H2O2 via photocatalytic route has attracted extensive attention. This review introduces the mechanism of photocatalytic H2O2 production and the reasons for its low efficiency. The typical photocatalyst systems and strategies for enhancing photocatalytic efficiency in H2O2 production are intensively summarized and discussed. Finally, the perspective for the future development of photocatalytic H2O2 production is proposed.

Contents

1 Introduction

2 The mechanism of photocatalytic H2O2 production and the reason for its low selectivity

3 Photocatalytic H2O2 production materials

3.1 g-C3N4

3.2 Metal oxide

3.3 Transition metal sulfide

3.4 Organic framework

4 Modification strategies for photocatalyst materials

4.1 Morphology optimization

4.2 Defective engineering

4.3 Heterojunction engineering

4.4 Metal nanoparticles loading

4.5 Element doping

4.6 Introduction of quantum dot modification

4.7 Introduction of organic molecule or group

4.8 Construction of three phase reaction system

5 Conclusion and outlook

()
图1 光催化产H2O2机理图
Fig.1 Mechanism diagram of photocatalytic H2O2 production
图2 光催化生成H2O2三种途径:(a)Au-Ag/TiO2光催化一步双电子ORR生成H2O2机理图[14],(b)a-C3N4光催化两步单电子ORR生成H2O2机理图[15],(c)CN1.8/ICT/CDs光催化双通道途径生成H2O2机理图[20]
Fig.2 Three ways of photocatalytic H2O2 production:(a) Mechanism diagram of Au-Ag/TiO2 photocatalytic generation of H2O2 by one-step two-electron ORR[14], (b) Mechanism diagram of a-C3N4 photocatalytic H2O2 production by two-step single-electron ORR[17],(c) Mechanism diagram of CN1.8/ICT/CDs photocatalytic H2O2 production by two channel way[20]
图3 (a)光催化产H2O2涉及反应的电位图,(b)光催化剂CB底和VB顶部电位图,(c) 在Au(111)上的4e-(蓝色)和2e-(红色)氧还原的自由能图[35]
Fig.3 (a) Potential diagram of the reaction involved in photocatalytic production of H2O2, (b) Potential diagram of CB bottom and VB top of photocatalysts, (c) Free energy diagram for the four- and two-electron oxygen reduction in blue and red, respectively, on Au(111)[35]
表1 g-C3N4基光催化剂光催化生成H2O2
Table 1 Summary of the photocatalytic production of H2O2 with g-C3N4-based photocatalysts
表2 金属氧化物基光催化剂光催化生成H2O2
Table 2 Summary of the photocatalytic production of H2O2 with metallic oxide-based photocatalysts
表3 金属硫化物基光催化剂光催化生成H2O2
Table 3 Summary of the photocatalytic production of H2O2 with metal sulfide-based photocatalysts
表4 有机框架光催化剂光催化生成H2O2
Table 4 Summary of the photocatalytic production of H2O2 with organic framework-based photocatalysts
图4 引入C/N空位的g-C3N4分子模型图[79]
Fig.4 Molecular model diagram of g-C3N4 with C/N-vacancy[79]
图5 合成氮空位g-C3N4纳米片[26]
Fig.5 Synthesis of nitrogen vacancy g-C3N4 nanosheets[26]
图6 (a)Nv—C≡N—CN制备过程示意图[86],(b)g-C3N4七嗪单元合成过程中的缺陷结构变化[86](蓝色、灰色和白色的球体分别代表N、C和H原子),(c)合成过程中g-C3N4微观形态的变化[86]
Fig.6 (a) Schematic illustration of the preparation process of Nv—C≡N—CN[86], (b) Defect structure changes in g-C3N4 heptazine units during synthesis[86](The blue, gray, and white spheres represent N, C and H atoms, respectively), (c) The changes in the microscopic morphology of g-C3N4 during synthesis[86]
图7 (a)Z-型异质结原理图,(b)S-型异质结原理图
Fig.7 (a) Schematic diagram of Z-type heterojunction, (b) Schematic diagram of S-type heterojunction
图8 合成样品的(a)光电流和(b)电化学阻抗谱[72],(c)合成Lu3NbO7:Yb,Ho/CQDs/AgInS2/In2S3异质结[72]
Fig.8 Photocurrents (a) and electrochemical impedance spectra(b) of as-synthesized samples[72], (c) The synthetic process of Lu3NbO7:Yb,Ho/CQDs/AgInS2/In2S3 heterostructure[72]
图9 (a)制备的样品在紫外-可见光照射下光催化产生H2O2[99],(b)制备的样品驱动H2O2分解[99],(c) g-C3N4、Cu2(OH)PO4、CN/CuPO(20 wt%)的O2-TPD图[19],(d) g-C3N4、CQD@g-C3N4、α-Fe2O3/CQD@g-C3N4和α-Fe2O3的紫外-可见漫反射吸收光谱[96]
Fig.9 (a) Photocatalytic H2O2 production over the prepared samples under UV-vis light irradiation[99], (b) Light-driven H2O2 decomposition on the prepared samples[99], (c)O2-TPD of g-C3N4, Cu2(OH)PO4, and CN/CuPO(20 wt%)[19], (d) UV-vis DRS spectra of g-C3N4, CQD@g-C3N4, α-Fe2O3/CQD@g-C3N4, and α-Fe2O3[96]
图10 (a) CoOx和Pd在Mo:BiVO4上负载示意图,扫描电镜图像:(b) Mo:BiVO4,(c) CoOx/Mo:BiV O 4 ,(d) CoOx/Mo:BiVO4/Pd,(e,f)伴随着白色箭头CoOx/Mo:BiVO4/Pd能量色散X射线光谱(EDS)元素图和谱线图[74]
Fig.10 (a) Schematic deposition processes of CoOx and Pd on Mo:BiVO4 and the corresponding SEM images of (b) Mo:BiVO4, (c)CoOx/Mo:BiVO4, and (d) CoOx/Mo:BiVO4/Pd. (e,f) Energy-dispersive X-ray spectroscopy (EDS) elemental mapping and line profile along with the white arrow of CoOx/Mo:BiVO4/Pd[74]
图11 B-CNT、P-CNT和S-CNT制备示意图[114]
Fig.11 Schematic illustration for the fabrication of B-CNT, P-CNT, and S-CNT[114]
图12 制备样品的稳态光致发光光谱(a)和时间分辨光致发光衰减光谱(b)[119]
Fig.12 Steady-state photoluminescence spectra (a) and time-resolved photoluminescence decay spectra of the as-prepared samples (b)[119]
图13 使用不同CTFs生成H2O2的不同反应途径示意图[125]
Fig.13 Schematic illustration of different reaction pathways toward H2O2 production using different CTFs[125]
图14 (a)UiO-66、UiO-66-B和UiO-66-B-X的制备示意图(X是MOF中CPBA的摩尔百分比),(b)UiO-66和(c)UiO-66-B吸附氧气后的模拟电子密度分布[126]
Fig.14 (a) Schematic diagram for the preparation of UiO-66, UiO-66-B and UiO-66-B-X (X is the molar percentage of CPBA in the MOF). Simulated electron density distribution after O2 adsorption onto (b) UiO-66 and (c) UiO-66-B[126]
[1]
Hou H L, Zeng X K, Zhang X W. Angew. Chem. Int. Ed., 2020, 59(40): 17356.

doi: 10.1002/anie.v59.40     URL    
[2]
Fukuzumi S. Joule, 2017, 1(4): 689.

doi: 10.1016/j.joule.2017.07.007     URL    
[3]
Shiraishi Y, Takii T, Hagi T, Mori S, Kofuji Y, Kitagawa Y, Tanaka S, Ichikawa S, Hirai T. Nat. Mater., 2019, 18(9): 985.

doi: 10.1038/s41563-019-0398-0     pmid: 31263224
[4]
Hofrichter M, Kellner H, Herzog R, Karich A, Kiebist J, Scheibner K, Ullrich R. Antioxidants, 2022, 11(1): 163.

doi: 10.3390/antiox11010163     URL    
[5]
Sharma V K, Yu X, McDonald T J, Jinadatha C, Dionysiou D D, Feng M B. Front. Environ. Sci. Eng., 2019, 13(3): 37.

doi: 10.1007/s11783-019-1122-7    
[6]
Imamovic B, Trebse P, Omeragic E, Becic E, Pecet A, Dedic M. Molecules., 2022, 27(6): 1874.

doi: 10.3390/molecules27061874     URL    
[7]
Stella Peccin M, Duarte M L, Imoto A M, Taminato M, Saconato H, Puga M E, Franco E S B, Camargo E B, Donato Gottems L B,Atallah Á N. Sao Paulo Med. J., 2022, 140(1): 56.

doi: 10.1590/1516-3180.2021.0128.r1.18052021     URL    
[8]
Pan Z Y, Xing D F. Modern Chemical Industry. 2021, 41(04): 11.
(潘智勇, 邢定峰. 现代化工, 2021, 41(04): 11.).
[9]
Li H B, Zheng B, Pan Z Y, Zong B N, Qiao M H. Front. Chem. Sci. Eng., 2018, 12(1): 124.

doi: 10.1007/s11705-017-1676-5     URL    
[10]
Perry S C, Pangotra D, Vieira L, Csepei L I, Sieber V, Wang L, Ponce de LeÓn C, Walsh F C. Nat. Rev. Chem., 2019, 3(7): 442.

doi: 10.1038/s41570-019-0110-6    
[11]
Ranganathan S, Sieber V. Catalysts, 2018, 8(9): 379.

doi: 10.3390/catal8090379     URL    
[12]
Wang Q, Domen K. Chem. Rev., 2020, 120(2): 919.

doi: 10.1021/acs.chemrev.9b00201     URL    
[13]
Tsukamoto D, Shiro A, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S, Hirai T. ACS Catal., 2012, 2(4): 599.

doi: 10.1021/cs2006873     URL    
[14]
Zheng L H, Zhang J Z, Hu Y H, Long M C. J. Phys. Chem. C, 2019, 123(22): 13693.

doi: 10.1021/acs.jpcc.9b02311     URL    
[15]
Xu Z X, Li Y, Cao Y Y, Du R F, Bao Z K, Zhang S J, Shao F J, Ji W K, Yang J, Zhuang G L, Deng S W, Wei Z Z, Yao Z H, Zhong X, Wang J G. J. Energy Chem., 2022, 64: 47.

doi: 10.1016/j.jechem.2021.03.055     URL    
[16]
Chen Y M, Gu W Q, Tan L, Ao Z M, An T C, Wang S B. Appl. Catal. A Gen., 2021, 618: 118127.

doi: 10.1016/j.apcata.2021.118127     URL    
[17]
Guo H, Niu C G, Yang Y Y, Liang C, Niu H Y, Liu H Y, Li L, Tang N. Chem. Eng. J., 2021, 422: 130029.

doi: 10.1016/j.cej.2021.130029     URL    
[18]
Li Z, Xiong N N, Gu G Z. Dalton Trans., 2019, 48(1): 182.

doi: 10.1039/C8DT04081H     URL    
[19]
Wang X W, Han Z, Yu L H, Liu C T, Liu Y F, Wu G. ACS Sustainable Chem. Eng., 2018, 6(11): 14542.

doi: 10.1021/acssuschemeng.8b03171     URL    
[20]
Li Y, Zhao Y, Wu J, Han Y D, Huang H, Liu Y, Kang Z H. J. Mater. Chem. A, 2021, 9(45): 25453.

doi: 10.1039/D1TA07802J     URL    
[21]
Wei K Q, Nie H D, Li Y, Wang X, Liu Y, Zhao Y J, Shi H, Huang H, Liu Y, Kang Z H. J. Colloid Interface Sci., 2022, 616: 769.

doi: 10.1016/j.jcis.2022.02.107     URL    
[22]
Zhao Y J, Liu Y, Cao J J, Wang H, Shao M W, Huang H, Liu Y, Kang Z H. Appl. Catal. B Environ., 2020, 278: 119289.

doi: 10.1016/j.apcatb.2020.119289     URL    
[23]
Di T M, Xu Q L, Ho W, Tang H, Xiang Q J, Yu J G. ChemCatChem, 2019, 11(5): 1394.

doi: 10.1002/cctc.v11.5     URL    
[24]
Wu T, He Q Y, Liu Z F, Shao B B, Liang Q H, Pan Y, Huang J, Peng Z, Liu Y, Zhao C H, Yuan X Z, Tang L, Gong S X. J. Hazard. Mater., 2022, 424: 127177.

doi: 10.1016/j.jhazmat.2021.127177     URL    
[25]
Yu X H, Viengkeo B, He Q, Zhao X, Huang Q L, Li P P, Huang W, Li Y G. Adv. Sustainable Syst., 2021, 5(10): 2100184.

doi: 10.1002/adsu.v5.10     URL    
[26]
Liu L L, Chen F, Wu J H, Ke M K, Cui C, Chen J J, Yu H Q. Appl. Catal. B Environ., 2022, 302: 120845.

doi: 10.1016/j.apcatb.2021.120845     URL    
[27]
Hu S Z, Qu X Y, Li P, Wang F, Li Q, Song L J, Zhao Y F, Kang X X. Chem. Eng. J., 2018, 334: 410.

doi: 10.1016/j.cej.2017.10.016     URL    
[28]
Weng B, Qi M Y, Han C, Tang Z R, Xu Y J. ACS Catal., 2019, 9(5): 4642.

doi: 10.1021/acscatal.9b00313    
[29]
Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat. Mater., 2009, 8(1): 76.

doi: 10.1038/nmat2317    
[30]
Tang R D, Gong D X, Deng Y C, Xiong S, Zheng J F, Li L, Zhou Z P, Su L, Zhao J. J. Hazard. Mater., 2022, 423: 126944.

doi: 10.1016/j.jhazmat.2021.126944     URL    
[31]
Si Q S, Guo W Q, Wang H Z, Liu B H, Zheng S S, Zhao Q, Luo H C, Ren N Q, Yu T. Appl. Catal. B Environ., 2021, 299: 120694.

doi: 10.1016/j.apcatb.2021.120694     URL    
[32]
Lin M X, Li F Y, Cheng W Y, Rong X M, Wang W. Chemosphere, 2022, 288: 132620.

doi: 10.1016/j.chemosphere.2021.132620     URL    
[33]
Zhang M L, Yang Y, An X Q, Zhao J J, Bao Y P, Hou L. J. Hazard. Mater., 2022, 424: 127424.

doi: 10.1016/j.jhazmat.2021.127424     URL    
[34]
Wang L X, Zhang J J, Zhang Y, Yu H G, Qu Y H, Yu J G. Small, 2022, 18(8): 2104561.

doi: 10.1002/smll.v18.8     URL    
[35]
Kulkarni A, Siahrostami S, Patel A, Nørskov JK. Chem. Rev., 2018, 118(5): 2302.

doi: 10.1021/acs.chemrev.7b00488     URL    
[36]
Watanabe E, Ushiyama H, Yamashita K. Catal. Sci. Technol., 2015, 5(5): 2769.

doi: 10.1039/C5CY00088B     URL    
[37]
Teng Z Y, Zhang Q T, Yang H B, Kato K, Yang W J, Lu Y R, Liu S X, Wang C Y, Yamakata A, Su C L, Liu B, Ohno T. Nat. Catal., 2021, 4(5): 374.

doi: 10.1038/s41929-021-00605-1    
[38]
Chu C H, Huang D H, Zhu Q H, Stavitski E, Spies J A, Pan Z H, Mao J, Xin H L, Schmuttenmaer C A, Hu S, Kim J H. ACS Catal., 2019, 9(1): 626.

doi: 10.1021/acscatal.8b03738     URL    
[39]
Liu W J, Xu Z R, Zhao D T, Pan X Q, Li H C, Hu X, Fan Z Y, Wang W K, Zhao G H, Jin S, Huber G W, Yu H Q. Nat. Commun., 2020, 11: 265.

doi: 10.1038/s41467-019-14157-3    
[40]
Zhao S, Zhao X. Appl. Catal. B Environ., 2019, 250: 408.

doi: 10.1016/j.apcatb.2019.02.031     URL    
[41]
Fujishima A, Honda K. Nature, 1972, 238(5358): 37.

doi: 10.1038/238037a0    
[42]
Hernández S, Hidalgo D, Sacco A, Chiodoni A, Lamberti A, Cauda V, Tresso E, Saracco G. Phys. Chem. Chem. Phys., 2015, 17(12): 7775.

doi: 10.1039/c4cp05857g     pmid: 25715190
[43]
Pelaez M, Nolan N T, Pillai S C, Seery M K, Falaras P, Kontos A G, Dunlop P S M, Hamilton J W J, Byrne J A, O'Shea K, Entezari M H, Dionysiou D D. Appl. Catal. B Environ., 2012, 125: 331.

doi: 10.1016/j.apcatb.2012.05.036     URL    
[44]
Zhang C L, Zhou F, Zhan S, Song Y P, Wang F G, Lai J F. Environ. Res., 2021, 197: 111129.

doi: 10.1016/j.envres.2021.111129     URL    
[45]
Domènech X, AyllÓn J A, Peral J. Environ. Sci. Pollut. Res., 2001, 8(4): 285.

doi: 10.1007/BF02987409     URL    
[46]
An X Q, Yu J C, Wang Y, Hu Y M, Yu X L, Zhang G J. J. Mater. Chem., 2012, 22(17): 8525.

doi: 10.1039/c2jm16709c     URL    
[47]
Sun M H, Wang X G, Chen Z Q, Murugananthan M, Chen Y, Zhang Y R. Appl. Catal. B Environ., 2020, 273: 119061.

doi: 10.1016/j.apcatb.2020.119061     URL    
[48]
Shi H Y, Li Y, Wang K Y, Li S K, Wang X F, Wang P, Chen F, Yu H G. Chem. Eng. J., 2022, 443: 136429.

doi: 10.1016/j.cej.2022.136429     URL    
[49]
Yu X L, An X Q, Shavel A, Ibáñez M, Cabot A. J. Mater. Chem. A, 2014, 2(31): 12317.

doi: 10.1039/C4TA01315H     URL    
[50]
Xu F Y, Zhang J J, Zhu B C, Yu J G, Xu J S. Appl. Catal. B Environ., 2018, 230: 194.

doi: 10.1016/j.apcatb.2018.02.042     URL    
[51]
Guo J R, Wang L P, Wei X, Alothman Z A, Albaqami M D, Malgras V, Yamauchi Y, Kang Y Q, Wang M Q, Guan W S, Xu X T. J. Hazard. Mater., 2021, 415: 125591.

doi: 10.1016/j.jhazmat.2021.125591     URL    
[52]
Qi S H, Yin Z Z, Deng S K, Ding C S, Chen P, Li Z L, Gan W, Guo J, Zhang M, Sun Z Q. J. Electrochem. Soc., 2022, 169(7): 073512.

doi: 10.1149/1945-7111/ac80d4    
[53]
Wang S B, Guan B Y, Lu Y, Lou X W. J. Am. Chem. Soc., 2017, 139(48): 17305.

doi: 10.1021/jacs.7b10733     URL    
[54]
Chen Q, Wang X, Liu W Y, Luo T, Jin Z, Zhang Y, Huang J, Zhang H, Wang J H, Peng F M. J. Solid State Chem., 2022, 306: 122721.

doi: 10.1016/j.jssc.2021.122721     URL    
[55]
Liu C, Bao T, Yuan L, Zhang C Q, Wang J, Wan J J, Yu C Z. Adv. Funct. Mater., 2022, 32(15): 2111404.

doi: 10.1002/adfm.v32.15     URL    
[56]
Lin S, Wang Q, Huang H W, Zhang Y H. Small, 2022, 18(19): 2200914.

doi: 10.1002/smll.v18.19     URL    
[57]
Chen L, Yang Z, Chen B L. Energy Fuels, 2021, 35(13): 10746.

doi: 10.1021/acs.energyfuels.1c00688     URL    
[58]
Zhang E H, Zhu Q H, Huang J H, Liu J, Tan G Q, Sun C J, Li T, Liu S, Li Y M, Wang H Z, Wan X D, Wen Z H, Fan F T, Zhang J T, Ariga K. Appl. Catal. B Environ., 2021, 293: 120213.

doi: 10.1016/j.apcatb.2021.120213     URL    
[59]
Ghoreishian S M, Ranjith K S, Park B, Hwang S K, Hosseini R, Behjatmanesh-Ardakani R, Pourmortazavi S M, Lee H U, Son B, Mirsadeghi S, Han Y K, Huh Y S. Chem. Eng. J., 2021, 419: 129530.

doi: 10.1016/j.cej.2021.129530     URL    
[60]
Diercks C S, Yaghi O M. Science, 2017, 355(6328): eaal1585.

doi: 10.1126/science.aal1585     URL    
[61]
Krishnaraj C, Sekhar Jena H, Bourda L, Laemont A, Pachfule P, Roeser J, Chandran C V, Borgmans S, Rogge S M J, Leus K, Stevens C V, Martens J A, Van Speybroeck V, Breynaert E, Thomas A, Van Der Voort P. J. Am. Chem. Soc., 2020, 142(47): 20107.

doi: 10.1021/jacs.0c09684     pmid: 33185433
[62]
Kou M P, Wang Y Y, Xu Y X, Ye L Q, Huang Y P, Jia B H, Li H, Ren J Q, Deng Y, Chen J H, Zhou Y, Lei K, Wang L, Liu W, Huang H W, Ma T Y. Angewandte Chemie Int. Ed., 2022, 61(19): e202200413.
[63]
Wang Y, Feng L, Pang J D, Li J L, Huang N, Day G S, Cheng L, Drake H F, Wang Y, Lollar C, Qin J S, Gu Z Y, Lu T B, Yuan S, Zhou H C. Adv. Sci., 2019, 6(11): 1970064.

doi: 10.1002/advs.v6.11     URL    
[64]
Ge T, Jin X L, Cao J, Chen Z H, Xu Y X, Xie H Q, Su F Y, Li X, Lan Q, Ye L Q. J. Taiwan Inst. Chem. Eng., 2021, 129: 104.

doi: 10.1016/j.jtice.2021.09.036     URL    
[65]
Geng X L, Wang L, Zhang L, Wang H, Peng Y Y, Bian Z Y. Chem. Eng. J., 2021, 420: 129722.

doi: 10.1016/j.cej.2021.129722     URL    
[66]
Zhou L, Feng J R, Qiu B C, Zhou Y, Lei J Y, Xing M Y, Wang L Z, Zhou Y B, Liu Y D, Zhang J L. Appl. Catal. B Environ., 2020, 267: 118396.

doi: 10.1016/j.apcatb.2019.118396     URL    
[67]
Zhang X D, Zeng Y M, Shi W Y, Tao Z, Liao J J, Ai C Z, Si H W, Wang Z P, Fisher A C, Lin S W. Chem. Eng. J., 2022, 429: 131312.

doi: 10.1016/j.cej.2021.131312     URL    
[68]
Liang Q H, Liu X J, Shao B B, Tang L, Liu Z F, Zhang W, Gong S X, Liu Y, He Q Y, Wu T, Pan Y, Tong S H. Chem. Eng. J., 2021, 426(10): 130831.

doi: 10.1016/j.cej.2021.130831     URL    
[69]
Liu B Y, Du J Y, Ke G L, Jia B, Huang Y J, He H C, Zhou Y, Zou Z G. Adv. Funct. Mater., 2022, 32(15): 2111125.

doi: 10.1002/adfm.v32.15     URL    
[70]
Yu X, Hu C W, Hao D N, Liu G, Xu R, Zhu X D, Yu X, Ma Y Q, Ma L. Sol. RRL, 2021: 2000827.
[71]
Lu N, Liu N, Hui Y, Shang K F, Jiang N, Li J, Wu Y. Chemosphere., 2019, 241: 124927.

doi: 10.1016/j.chemosphere.2019.124927     URL    
[72]
Zhang K L, Zhou M, Yang K, Yu C L, Mu P, Yu Z Z, Lu K Q, Huang W Y, Dai W X. J. Hazard. Mater., 2022, 423: 127172.

doi: 10.1016/j.jhazmat.2021.127172     URL    
[73]
Shi H Y, Li Y, Wang X F, Yu H G, Yu J G. Appl. Catal. B Environ., 2021, 297: 120414.

doi: 10.1016/j.apcatb.2021.120414     URL    
[74]
Liu T, Pan Z H, Vequizo J J M, Kato K, Wu B B, Yamakata A, Katayama K, Chen B L, Chu C H, Domen K. Nat. Commun., 2022, 13: 1034.

doi: 10.1038/s41467-022-28686-x    
[75]
Wu Y, Li X M, Yang Q, Wang D B, Yao F B, Cao J, Chen Z, Huang X D, Yang Y, Li X P. Chem. Eng. J., 2020, 390: 124519.

doi: 10.1016/j.cej.2020.124519     URL    
[76]
dos Reis F V E, Antonin V S, Hammer P, Santos M C, Camargo P H C. J. Catal., 2015, 326: 100.

doi: 10.1016/j.jcat.2015.04.007     URL    
[77]
Li L J, Li B D, Feng L W, Zhang X Q, Zhang Y Q, Zhao Q N, Zuo G F, Meng X G. Molecules, 2021, 26(13): 3844.

doi: 10.3390/molecules26133844     URL    
[78]
Ma P J, Zhang X, Wang C, Wang Z W, Wang K W, Feng Y B, Wang J X, Zhai Y D, Deng J G, Wang L H, Zheng K. Appl. Catal. B Environ., 2022, 300: 120736.

doi: 10.1016/j.apcatb.2021.120736     URL    
[79]
Kumar A, Raizada P, Hosseini-Bandegharaei A, Thakur V K, Nguyen V H, Singh P. J. Mater. Chem. A, 2021, 9(1): 111.

doi: 10.1039/D0TA08384D     URL    
[80]
Li S N, Dong G H, Hailili R, Yang L P, Li Y X, Wang F, Zeng Y B, Wang C Y. Appl. Catal. B Environ., 2016, 190: 26.

doi: 10.1016/j.apcatb.2016.03.004     URL    
[81]
Xie H, Zheng Y M, Guo X L, Liu Y Y, Zhang Z, Zhao J J, Zhang W J, Wang Y X, Huang Y. ACS Sustainable Chem. Eng., 2021, 9(19): 6788.

doi: 10.1021/acssuschemeng.1c01012     URL    
[82]
Lei J Y, Chen B, Lv W J, Zhou L, Wang L Z, Liu Y D, Zhang J L. ACS Sustainable Chem. Eng., 2019, 7(19): 16467.

doi: 10.1021/acssuschemeng.9b03678     URL    
[83]
Shi L, Yang L Q, Zhou W, Liu Y Y, Yin L S, Hai X, Song H, Ye J H. Small, 2018, 14(9): 1703142.

doi: 10.1002/smll.v14.9     URL    
[84]
Zheng Y M, Luo Y, Ruan Q S, Yu J, Guo X L, Zhang W J, Xie H, Zhang Z, Zhao J J, Huang Y. J. Colloid Interface Sci., 2022, 609: 75.

doi: 10.1016/j.jcis.2021.12.006     URL    
[85]
Chen X L, Kuwahara Y, Mori K, Louis C, Yamashita H. J. Mater. Chem. A, 2020, 8(4): 1904.

doi: 10.1039/C9TA11120D     URL    
[86]
Zhang X, Ma P J, Wang C, Gan L Y, Chen X J, Zhang P, Wang Y, Li H, Wang L H, Zhou X Y, Zheng K. Energy Environ. Sci., 2022, 15(2): 830.

doi: 10.1039/D1EE02369A     URL    
[87]
Tian Z L, Han C, Zhao Y, Dai W R, Lian X, Wang Y N, Zheng Y, Shi Y, Pan X, Huang Z C, Li H X, Chen W. Nat. Commun., 2021, 12: 2039.

doi: 10.1038/s41467-021-22394-8    
[88]
Chen X, Zhang W W, Zhang L X, Feng L P, Zhang C X, Jiang J, Wang H. ACS Appl. Mater. Interfaces, 2021, 13(22): 25868.

doi: 10.1021/acsami.1c02953     URL    
[89]
Ma X, Wang L, Zhang Q, Jiang H L. Angew. Chem. Int. Ed., 2019, 58(35): 12175.

doi: 10.1002/anie.v58.35     URL    
[90]
Kondo Y, Kuwahara Y, Mori K, Yamashita H. J. Phys. Chem. C, 2021, 125(51): 27909.

doi: 10.1021/acs.jpcc.1c07735     URL    
[91]
Low J, Yu J G, Jaroniec M, Wageh S, Al-Ghamdi A A. Adv. Mater., 2017, 29(20): 1601694.

doi: 10.1002/adma.v29.20     URL    
[92]
Bard A J. J. Photochem., 1979, 10(1): 59.

doi: 10.1016/0047-2670(79)80037-4     URL    
[93]
Maeda K. ACS Catal., 2013, 3(7): 1486.

doi: 10.1021/cs4002089     URL    
[94]
Xu Q L, Zhang L Y, Cheng B, Fan J J, Yu J G. Chem, 2020, 6(7): 1543.

doi: 10.1016/j.chempr.2020.06.010     URL    
[95]
Mei F F, Dai K, Zhang J F, Li W Y, Liang C H. Appl. Surf. Sci., 2019, 488: 151.

doi: 10.1016/j.apsusc.2019.05.257     URL    
[96]
Chen X, Zhang W W, Zhang L X, Feng L P, Zhang C X, Jiang J, Yan T J, Wang H. J. Mater. Chem. A, 2020, 8(36): 18816.

doi: 10.1039/D0TA05753C     URL    
[97]
Zhang Y F, Park S J. J. Mater. Chem. A, 2018, 6(41): 20304.

doi: 10.1039/C8TA08385A     URL    
[98]
Zheng Y Z, Zhou H L, Zhou B S, Mao J C, Zhao Y H. Catal. Sci. Technol., 2022, 12(3): 969.

doi: 10.1039/D1CY02166D     URL    
[99]
Liu B W, Bie C B, Zhang Y, Wang L X, Li Y J, Yu J G. Langmuir, 2021, 37(48): 14114.

doi: 10.1021/acs.langmuir.1c02360     URL    
[100]
Li X B, Kang B B, Dong F, Zhang Z Q, Luo X D, Han L, Huang J T, Feng Z J, Chen Z, Xu J L, Peng B L, Wang Z L. Nano Energy, 2021, 81: 105671.

doi: 10.1016/j.nanoen.2020.105671     URL    
[101]
Yang Y, Cheng B, Yu J G, Wang L X, Ho W. Nano Res., 2021: 1.
[102]
Zhao Y J, Liu Y, Wang Z Z, Ma Y R, Zhou Y J, Shi X F, Wu Q Y, Wang X, Shao M W, Huang H, Liu Y, Kang Z H. Appl. Catal. B Environ., 2021, 289: 120035.

doi: 10.1016/j.apcatb.2021.120035     URL    
[103]
Zhao K, Su Y, Quan X, Liu Y M, Chen S, Yu H T. J. Catal., 2018, 357: 118.

doi: 10.1016/j.jcat.2017.11.008     URL    
[104]
Chen X L, Kondo Y, Li S J, Kuwahara Y, Mori K, Zhang D Q, Louis C, Yamashita H. J. Mater. Chem. A, 2021, 9(46): 26371.

doi: 10.1039/D1TA08036A     URL    
[105]
Samanta S, Martha S, Parida K. ChemCatChem, 2014, 6(5): 1453.
[106]
Jiang S J, Xiong C B, Song S Q, Cheng B. ACS Sustainable Chem. Eng., 2019, 7(2): 2018.

doi: 10.1021/acssuschemeng.8b04338     URL    
[107]
Cai J S, Huang J Y, Wang S C, Iocozzia J, Sun Z T, Sun J Y, Yang Y K, Lai Y K, Lin Z Q. Adv. Mater., 2019, 31(15): 1806314.

doi: 10.1002/adma.v31.15     URL    
[108]
Meng X G, Zong P X, Wang L, Yang F, Hou W S, Zhang S T, Li B D, Guo Z L, Liu S S, Zuo G F, Du Y, Wang T, Roy V A L. Catal. Commun., 2020, 134: 105860.

doi: 10.1016/j.catcom.2019.105860     URL    
[109]
Wang Y C, Wang Y R, Zhao J J, Chen M, Huang X B, Xu Y M. Appl. Catal. B Environ., 2021, 284: 119691.

doi: 10.1016/j.apcatb.2020.119691     URL    
[110]
Chen X L, Kondo Y, Kuwahara Y, Mori K, Louis C, Yamashita H. Phys. Chem. Chem. Phys., 2020, 22(26): 14404.

doi: 10.1039/D0CP01759K     URL    
[111]
Kim K, Park J, Kim H, Jung G Y, Kim M G. ACS Catal., 2019, 9(10): 9206.

doi: 10.1021/acscatal.9b02269     URL    
[112]
Moon G H, Kim W, Bokare A D, Sung N E, Choi W. Energy Environ. Sci., 2014, 7(12): 4023.

doi: 10.1039/C4EE02757D     URL    
[113]
Feng C Y, Tang L, Deng Y C, Wang J J, Liu Y N, Ouyang X L, Yang H R, Yu J F, Wang J J,. Appl. Catal. B Environ., 2021, 281: 119539.

doi: 10.1016/j.apcatb.2020.119539     URL    
[114]
Liu Y Y, Zheng Y M, Zhang W J, Peng Z B, Xie H, Wang Y X, Guo X L, Zhang M, Li R, Huang Y. J. Mater. Sci. Technol., 2021, 95: 127.

doi: 10.1016/j.jmst.2021.03.025     URL    
[115]
Xu F H, Lai C, Zhang M M, Li B S, Liu S Y, Chen M, Li L, Xu Y, Qin L, Fu Y K, Liu X G, Yi H, Yang X F. J. Colloid Interface Sci., 2021, 601: 196.

doi: 10.1016/j.jcis.2021.05.124     URL    
[116]
Hirakawa T, Nosaka Y. J. Phys. Chem. C, 2008, 112(40): 15818.

doi: 10.1021/jp8055015     URL    
[117]
Lee J H, Cho H, Park S O, Hwang J M, Hong Y, Sharma P, Jeon W C, Cho Y, Yang C, Kwak S K, Moon H R, Jang J W. Appl. Catal. B Environ., 2021, 284: 119690.

doi: 10.1016/j.apcatb.2020.119690     URL    
[118]
Zhao C, Wang X Y, Ye S, Liu J. Sol. RRL, 2022, 6(10): 2200427.

doi: 10.1002/solr.v6.10     URL    
[119]
Yang Y, Zhang C, Huang D L, Zeng G M, Huang J H, Lai C, Zhou C Y, Wang W J, Guo H, Xue W J, Deng R, Cheng M, Xiong W P. Appl. Catal. B Environ., 2019, 245: 87.

doi: 10.1016/j.apcatb.2018.12.049     URL    
[120]
Zheng L H, Su H R, Zhang J Z, Walekar L S, Vafaei Molamahmood H, Zhou B X, Long M C, Hu Y H. Appl. Catal. B Environ., 2018, 239: 475.

doi: 10.1016/j.apcatb.2018.08.031     URL    
[121]
Wang P, Li D Z, Chen J, Zhang X Y, Xian J J, Yang X, Zheng X Z, Li X F, Shao Y. Appl. Catal. B Environ., 2014, 160/161: 217.

doi: 10.1016/j.apcatb.2014.05.032     URL    
[122]
Li Y R, Liu Z M, Wu Y C, Chen J T, Zhao J Y, Jin F M, Na P. Appl. Catal. B Environ., 2018, 224: 508.

doi: 10.1016/j.apcatb.2017.10.023     URL    
[123]
Zeng X K, Liu Y, Kang Y, Li Q Y, Xia Y, Zhu Y L, Hou H L, Uddin M H, Gengenbach T R, Xia D H, Sun C H, McCarthy D T, Deletic A, Yu J G, Zhang X W. ACS Catal., 2020, 10(6): 3697.

doi: 10.1021/acscatal.9b05247     URL    
[124]
Hu J D, Yang T Y, Chen J J, Yang X G, Qu J F, Cai Y H. Chem. Eng. J., 2022, 430: 133039.

doi: 10.1016/j.cej.2021.133039     URL    
[125]
Chen L, Wang L, Wan Y Y, Zhang Y, Qi Z M, Wu X J, Xu H X. Adv. Mater., 2020, 32(2): 1904433.

doi: 10.1002/adma.v32.2     URL    
[126]
Li Y J, Ma F H, Zheng L R, Liu Y Y, Wang Z Y, Wang P, Zheng Z K, Cheng H F, Dai Y, Huang B B. Mater. Horiz., 2021, 8(10): 2842.

doi: 10.1039/D1MH00869B     URL    
[127]
Chen X L, Kuwahara Y, Mori K, Louis C, Yamashita H. J. Mater. Chem. A, 2021, 9(5): 2815.

doi: 10.1039/D0TA10944D     URL    
[128]
Fuku K, Takioka R, Iwamura K, Todoroki M, Sayama K, Ikenaga N. Appl. Catal. B Environ., 2020, 272: 119003.

doi: 10.1016/j.apcatb.2020.119003     URL    
[129]
Sun M H, Wang X G, Li Y, Pan H H, Murugananthan M, Han Y D, Wu J, Zhang M, Zhang Y R, Kang Z H. ACS Catal., 2022, 12(4): 2138.

doi: 10.1021/acscatal.1c05324     URL    
[130]
Järn M, Xu Q, LindÉn M. Langmuir, 2010, 26(13): 11330.

doi: 10.1021/la1006583     URL    
[131]
Li L J, Xu L P, Hu Z F, Yu J. Adv. Funct. Mater., 2021, 31(52): 2106210.
[132]
Hong Y, Cho Y, Go E M, Sharma P, Cho H, Lee B, Lee S M, Park S O, Ko M, Kwak S K, Yang C, Jang J W. Chem. Eng. J., 2021, 418: 129346.

doi: 10.1016/j.cej.2021.129346     URL    
[133]
Isaka Y, Kawase Y, Kuwahara Y, Mori K, Yamashita H. Angew. Chem. Int. Ed., 2019, 58(16): 5402.

doi: 10.1002/anie.v58.16     URL    
[134]
Moscow S, Kavinkumar V, Sriramkumar M, Jothivenkatachalam K, Saravanan P, Rajamohan N, Vasseghian Y, Rajasimman M. Chemosphere, 2022, 299: 134343.

doi: 10.1016/j.chemosphere.2022.134343     URL    
[135]
Dang X M, Wu S, Zhao H M. ACS Sustainable Chem. Eng., 2022, 10(13): 4161.

doi: 10.1021/acssuschemeng.1c07985     URL    
[136]
Shiraishi Y, Kanazawa S, Sugano Y, Tsukamoto D, Sakamoto H, Ichikawa S, Hirai T. ACS Catal., 2014, 4(3): 774.

doi: 10.1021/cs401208c     URL    
[137]
Hirakawa H, Shiota S, Shiraishi Y, Sakamoto H, Ichikawa S, Hirai T. ACS Catal., 2016, 6(8): 4976.

doi: 10.1021/acscatal.6b01187     URL    
[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[3] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 刘振东, 潘嘉杰, 刘全兵. 机器学习在设计高性能锂电池正极材料与电解质中的应用[J]. 化学进展, 2023, 35(4): 577-592.
[7] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[8] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[9] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[10] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[11] 蒋昊洋, 熊丰, 覃木林, 高嵩, 何刘如懿, 邹如强. 用于电热转化、存储与利用的导电相变材料[J]. 化学进展, 2023, 35(3): 360-374.
[12] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[13] 叶娟, 林子谦, 李伟健, 向洪平, 容敏智, 章明秋. 自修复有机硅材料的制备策略[J]. 化学进展, 2023, 35(1): 135-156.
[14] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[15] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
阅读次数
全文


摘要

光催化产过氧化氢材料