化学进展 2022, Vol. 34 Issue (1): 142-154 DOI: 10.7536/PC201231 前一篇   后一篇

• 综述 •


唐晨柳1,2, 邹云杰1,2, 徐明楷, 凌岚1,2,*()   

  1. 1 污染控制与资源化研究国家重点实验室 同济大学环境科学与工程学院 上海 200092
    2 福州大学 能源与环境光催化国家重点实验室 福州 350116
  • 收稿日期:2020-12-18 修回日期:2021-01-19 出版日期:2022-01-20 发布日期:2021-03-04
  • 通讯作者: 凌岚
  • 基金资助:
    国家自然科学基金优秀青年基金项目(21822607); 能源与环境光催化国家重点实验室开放课题(SKLPEE-KF201701)

Photocatalytic Reduction of Carbon Dioxide with Iron Complexes

Chenliu Tang1,2, Yunjie Zou1,2, Mingkai Xu, Lan Ling1,2()   

  1. 1 State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University,Shanghai 200092, China
    2 State Key Laboratory of Photocatalysis on Energy and Environment,Fuzhou University, Fuzhou 350116, China
  • Received:2020-12-18 Revised:2021-01-19 Online:2022-01-20 Published:2021-03-04
  • Contact: Lan Ling
  • Supported by:
    National Natural Science Foundation of China(21822607); State Key Laboratory of Photocatalysis on Energy and Environment(SKLPEE-KF201701)


Photocatalytic CO2 reduction for fuel production has attracted much attention due to its potential for simultaneously solving energy and global warming problems. As a molecular catalyst, earth-abundant and eco-friendly iron complexes take the advantages of adjustable structure, rich valence, and easy synthesis, exhibiting good CO2 photocatalytic reduction performance, and hence have attracted much attention in the field of CO2 photocatalytic reduction. This review focuses on the recent progress in photocatalytic reduction of CO2 based on iron complexes. First, the homogeneous photocatalytic CO2 reduction systems using iron complex as catalyst, including iron porphyrin, iron polypyridine and iron pentadentate complex, are summarized. Visible-light-driven CO2 reduction system is generally composed of three basic components: photosensitizer for absorption of visible light, catalyst for catalytic reduction of CO2, and sacrificial electron donors for providing electrons in reduction reaction. Beyond catalytic efficiency, CO2 photoreduction is a multi-electron transfer process boosted by the catalysts and inevitable competition with hydrogen evolution is a general issue for molecular catalysis of the CO2-to-CO conversion, therefore the selectivity of the products is an important indicator. The selectivity and efficiency could be tuned by changing the ligand of iron complex, photosensitizer and sacrificial electron donors. Moreover, the mechanisms for the homogeneous photocatalytic CO2 reduction, including catalyst activation and reduction process, are deciphered in detail. Second, the recent works of heterogeneous catalytic systems, which combine semiconductor nanomaterials/quantum dots with metal iron complexes as catalysts, are introduced. Considering the superior stability and fairly strong light absorption capacity of inorganic materials to the organic counterparts, the solid nanomaterials can be used as the photosensitizers to incorporate with the molecular catalysts. At the end, the current issues and perspectives on photocatalytic reduction of CO2 based on iron complexes are discussed. For examples, porphyrin metal organic frameworks become a new research interest, and the design and construction of iron porphyrin metal organic frameworks is a promising way for getting new photocatalytic systems functioning in aqueous conditions. Besides, further efforts could be made on the mechanistic studies, especially the 8e-/8H+ reduction to methane.


1 Introduction

2 Homogeneous photocatalytic CO2 reduction systems using iron complex as catalyst

2.1 Iron porphyrin as photocatalyst

2.2 Iron polypyridine as photocatalyst

2.3 Iron pentadentate complex as photocatalyst

3 Heterogeneous photocatalytic CO2 reduction systems using iron complex as catalyst

3.1 Semiconductor nanomaterials as photosensitizers

3.2 Quantum dots as photosensitizers

4 Conclusion and outlook

图式1 CO2光催化还原体系中主要的几种铁卟啉催化剂
Scheme 1 Main Fe porphyrin catalysts for the CO2 photostimulated conversion
图式2 CO2光催化还原体系中主要的无机和有机光敏剂
Scheme 2 Main organic and inorganic sensitizers employed for the CO2 photostimulated conversion
图式3 常见的电子牺牲剂
Scheme 3 Typically used sacrificial electron donors
表1 O2光催化还原体系中主要的还原产物以及产物的选择性、体系的催化效率
Table 1 The main reduction products, selectivity and catalytic efficiency in CO2 photocatalytic reduction system
catalyst product selectivity (%) TON photosensitizer sacrificial electron donor light source solvent ref
iron porphyrin complex
(2 μM)
CO 93 140 Ir(ppy)3
(0.2 mM)
(0.36 M)
λ>420 nm CO2-saturated MeCN solution 63
CO 100 60 9CNA
(0.2 mM)
(0.05 M)
λ>400 nm CO2-saturated MeCN solution
FeTPP CO 8 17 - Triethylamine
(0.36 M)
λ>280 nm CO2-saturated ACN solution 66
Fe-o-OH H2 - 37 CO2-saturated ACN solution
(0.05 M trifluoroethanol (TFE))
Fe-o-OH-F CO 93 28
FeTPP H2 - 10
Fe-o-OH CO 76 23
Fe-o-OH-F H2 - 15
CO 8 7
H2 - 23
CO 93 30
H2 - 10
CO 76 23
H2 - 12
(2 μM)
CO 100 101 - TEA (0.05 M)/BIH (0.02 M) λ>420 nm CO2-saturated MeCN solution 67
(2 μM)
CO 95 60 purpurin
(0.02 mM)
TEA (0.05 M) λ>420 nm CO2-saturated MeCN/H2O (1∶9 v/v) solution 61
H2 5 3 TEOA (0.05 M)
CO 95 71 purpurin
(0.04 mM)
EDTA (0.05 M)
H2 5 4
CO 91 42 purpurin
(0.02 mM)
H2 9 4
CO 92 46 purpurin
(0.02 mM)
H2 8 4
(2 μM)
CO 78 367 Ir(ppy)3
(0.2 mM)
(0.05 M)
λ>420 nm CO2-saturated MeCN solution 69
CH4 17 79 λ>420 nm CO-saturated MeCN solution
(2 μM)
H2 5 26 Ir(ppy)3
(0.2 mM)
(0.05 M)
CO-saturated MeCN solution
( 0.1 M TFE)
CH4 87 140
H2 13 28
CH4 82 159
H2 18 34
(1 μM)
CO 99 450 CuInS2/ZnS quantum dot (QD) TEA λ=450 nm 5 mM KCl in CO2-
saturated water
catalyst product selectivity (%) TON photosensitizer sacrificial electron
light source solvent ref
(10 μM)
CH4 15 29 Phen2
(1 mM)
(0.1 M)
λ>435 nm CO2-saturated DMF solution (0.1 M TFE) 70
CO - 140
H2 - 23 CO-saturated DMF solution (0.1 M TFE)
CH4 87 45
H2 - 7
(2 μM)
CH4 10 32 Ir(ppy)2
(0.2 mM)
(0.05 M)
λ>420 nm CO2-saturated ACN solution 80
CO 57 178
H2 33 103 TEOA
(0.05 M)
a CO2-saturated ACN/H2O (3∶7 v/v) solution
CH4 12 3 Ir(ppy)2
(0.2 mM)
CO 73 19 TEA
(0.05 M)
Under CO atmosphere + 0.5 M TFE
H2 15 4
CH4 84 100
H2 16 19 Ir(ppy)3
(0.2 mM)
iron polypyridine complex
(5 μM)
CO 85 3844 Ru(bpy ) 3 2 +
(0.2 mM)
BIH (0.1 M) blue LED centered at 460 nm CO2-saturated MeCN/TEOA (4∶1 v/v) solution 38
H2 3 118
formate 12 534 MeCN saturated with CO2
CO 92 1365 purpurin (0.02 mM)
(50 μM)
CO 99 2190 Ru(phen ) 3 2 +(0.2 mM) BIH (0.11 M) LED, centred at 460 nm CO2-saturated MeCN/H2O (1∶1, v/v) solution 71
H2 1 27
CO 98 14095
(5 μM)
H2 2 360
iron pentadentate complex
(20 μM)
HCOOH - 5 Ir(ppy)3 (0.2 mM) TEA
(0.05 M)
λ>420 nm MeCN saturated with CO2 39
图1 以铁卟啉为均相催化剂,在敏化和非敏化条件下光化学催化还原CO2为CO的机理[68]
Fig. 1 Mechanisms for the photochemical catalytic reduction of CO2 into CO with iron porphyrins as homogeneous catalysts,in both sensitized and non-sensitized conditions[68]
图2 多电子多质子还原CO2生成CO和CH4的机理示意图,体系中包含分子光敏剂、电子牺牲剂和铁卟啉催化剂[69]
Fig. 2 Schematic mechanism for the multi-electrons multi-protons reduction of CO2 to CO and then CH4 by tandem catalysis,implying a molecular sensitizer,a sacrificial electron donor and a Fe-porphyrin as catalyst[69]
图3 四联吡啶铁络合物在Ru(bpy ) 3 2 +/BIH/TEOA体系中还原CO2为CO的机理[38]
Fig. 3 Proposed mechanism for the photocatalytic reduction of CO2 to CO for the Ru(bpy ) 3 2 +/BIH/TEOA systems[38]
图4 利用 [FeIII(L)Cl2]+作为催化剂光还原CO2生成HCOOH的机理图[39]
Fig. 4 Proposed mechanisms for the reduction of CO2 with [FeIII(L)Cl2]+[39]
图5 g-C3N4/FeTCPP多相催化体系结构[75]
Fig. 5 Structure of g-C3N4/FeTCPP heterogeneous catalyst system[75]
图6 CdS/Bi2S3异质结构的形成及在可见光下,CdS/Bi2S3/FeTCPP催化剂在CO2还原过程中电荷转移机理,虚线表示被抑制的电子转移[77]
Fig. 6 Formation of CdS/Bi2S3 heterostructure and proposed charge transfer mechanism in CO2 photoreduction over CdS/Bi2S3/FeTCPP hybrid catalysts under visible-light illumination。The dashed line indicates the suppressed electron transfer[77]
图7 QD/FeTMA复合物亚单位的组装机制[79]
Fig. 7 Proposed assembly mechanism for a subunit of a QD/FeTMA complex[79]
Akhter P, Farkhondehfal M A, Hernández S, Hussain M, Fina A, Saracco G, Khan A U, Russo N. J. Environ. Chem. Eng., 2016,4(4): 3934.

doi: 10.1016/j.jece.2016.09.004     URL    
Roy S C, Varghese O K, Paulose M, Grimes C A. ACS Nano, 2010,4(3): 1259.

doi: 10.1021/nn9015423     URL    
Rakowski Dubois M, Dubois D L. Acc. Chem. Res., 2009,42(12): 1974.

doi: 10.1021/ar900110c     URL    
Liu M, Pang Y J, Zhang B, De Luna P, Voznyy O, Xu J X, Zheng X L, Dinh C T, Fan F J, Cao C H, de Arquer F P G, Safaei T S, Mepham A, Klinkova A, Kumacheva E, Filleter T, Sinton D, Kelley S O, Sargent E H. Nature, 2016,537(7620): 382.

doi: 10.1038/nature19060     URL    
Liu M Y, Wang Y S, Deng W, Wen Z H. Progress in Chemistry, 2018,30: 398.
( 刘孟岩, 王元双, 邓雯, 温珍海. 化学进展, 2018,30: 398.)

doi: 10.7536/PC170810    
Lu Q, Jiao F. Nano Energy, 2016,29: 439.

doi: 10.1016/j.nanoen.2016.04.009     URL    
Li K, Peng B S, Peng T Y. ACS Catal., 2016,6(11): 7485.

doi: 10.1021/acscatal.6b02089     URL    
Chen Z Y, Liu J W, Cui H, Zhang L, Su C Y. Acta Chimica Sin., 2019,77(3): 242.
( 陈之尧, 刘捷威, 崔浩, 张利, 苏成勇. 化学学报, 2019,77(3): 242.)

doi: 10.6023/A18100440    
Feng X, Ren X W, Jiang H F. Progress in Chemistry, 2020,32: 1697.
( 封啸, 任颜卫, 江焕峰. 化学进展, 2020,32: 1697.)

doi: 10.7536/PC200407    
Centi G, Quadrelli E A, Perathoner S. Energy Environ. Sci., 2013,6(6): 1711.

doi: 10.1039/c3ee00056g     URL    
Taheri Najafabadi A. Int. J. Energy Res., 2013,37(6): 485.

doi: 10.1002/er.v37.6     URL    
Yang Z Z, He L N, Gao J, Liu A H, Yu B. Energy Environ. Sci., 2012,5(5): 6602.

doi: 10.1039/c2ee02774g     URL    
Kumar B, Llorente M, Froehlich J, Dang T, Sathrum A, Kubiak C P. Annu. Rev. Phys. Chem., 2012,63(1): 541.

doi: 10.1146/physchem.2012.63.issue-1     URL    
Chen H K, Li H R, He L N. Chin. J. Org. Chem., 2020,40: 2195.

doi: 10.6023/cjoc202004030     URL    
( 陈凯宏, 李红茹, 何良年. 有机化学, 2020,40: 2195.)

doi: 10.6023/cjoc202004030    
Liu C, ColÓn B C, Ziesack M, Silver P A, Nocera D G. Science, 2016,352(6290): 1210.

doi: 10.1126/science.aaf5039     URL    
Liu C, Gallagher J J, Sakimoto K K, Nichols E M, Chang C J, Chang M C Y, Yang P D. Nano Lett., 2015,15(5): 3634.

doi: 10.1021/acs.nanolett.5b01254     URL    
Dhakshinamoorthy A, Navalon S, Corma A, Garcia H. Energy Environ. Sci., 2012,5(11): 9217.

doi: 10.1039/c2ee21948d     URL    
Habisreutinger S N, Schmidt-Mende L, Stolarczyk J K. Angew. Chem. Int. Ed., 2013,52(29): 7372.

doi: 10.1002/anie.201207199     URL    
Yu J G, Low J, Xiao W, Zhou P, Jaroniec M. J. Am. Chem. Soc., 2014,136(25): 8839.

doi: 10.1021/ja5044787     URL    
Xu Q L, Yu J G, Zhang J, Zhang J F, Liu G. Chem. Commun., 2015,51(37): 7950.

doi: 10.1039/C5CC01087J     URL    
Wang K, Li Q, Liu B S, Cheng B, Ho W, Yu J G. Appl. Catal. B: Environ., 2015,176/177: 44.

doi: 10.1016/j.apcatb.2015.03.045     URL    
Shi H F, Chen G Q, Zhang C L, Zou Z G. ACS Catal., 2014,4(10): 3637.

doi: 10.1021/cs500848f     URL    
Yu W L, Xu D F, Peng T Y. J. Mater. Chem. A, 2015,3(39): 19936.

doi: 10.1039/C5TA05503B     URL    
Fu J W, Zhu B C, Jiang C J, Cheng B, You W, Yu J G. Small, 2017,13(15): 1603938.

doi: 10.1002/smll.v13.15     URL    
Jiang Z F, Wan W M, Li H M, Yuan S Q, Zhao H J, Wong P K. Adv. Mater., 2018,30(10): 1706108.

doi: 10.1002/adma.v30.10     URL    
Lehn J M, Ziessel R P. Proc. Natl. Acad. Sci. U. S. A., 1982,79: 701.

pmid: 16593151
Hawecker J, Lehn J M, Ziessel R. J. Chem. Soc., Chem. Commun., 1983(9): 536.
Lehn J M, Ziessel R. J. Organomet. Chem., 1990,382(1/2): 157.

doi: 10.1016/0022-328X(90)85224-M     URL    
Kuriki R, Sekizawa K, Ishitani O, Maeda K. Angew. Chem. Int. Ed., 2015,54(8): 2406.

doi: 10.1002/anie.201411170     URL    
Maeda K, Kuriki R, Zhang M W, Wang X C, Ishitani O. J. Mater. Chem. A, 2014,2(36): 15146.

doi: 10.1039/C4TA03128H     URL    
Sato S, Morikawa T, Kajino T, Ishitani O. Angew. Chem. Int. Ed., 2013,52(3): 988.

doi: 10.1002/anie.201206137     URL    
Li L N, Zhang S Q, Xu L J, Wang J Y, Shi L X, Chen Z N, Hong M C, Luo J H. Chem. Sci., 2014,5(10): 3808.

doi: 10.1039/C4SC00940A     URL    
Reithmeier R O, Meister S, Siebel A, Rieger B. Dalton Trans., 2015,44(14): 6466.

doi: 10.1039/c5dt00370a     pmid: 25749307
Agarwal J, Fujita E, Schaefer H F III, Muckerman J T. J. Am. Chem. Soc., 2012,134(11): 5180.

doi: 10.1021/ja2105834     pmid: 22364649
Ettedgui J, Diskin-Posner Y, Weiner L, Neumann R. J. Am. Chem. Soc., 2011,133(2): 188.

doi: 10.1021/ja1078199     pmid: 21158388
Morris A J, Meyer G J, Fujita E. Acc. Chem. Res., 2009,42(12): 1983.

doi: 10.1021/ar9001679     URL    
Chan S L F, Lam T L, Yang C, Yan S C, Cheng N M. Chem. Commun., 2015,51(37): 7799.

doi: 10.1039/C5CC00566C     URL    
Guo Z G, Cheng S W, Cometto C, AnxolabÉhère-Mallart E, Ng S M, Ko C C, Liu G J, Chen L J, Robert M, Lau T C. J. Am. Chem. Soc., 2016,138(30): 9413.

doi: 10.1021/jacs.6b06002     URL    
Chen L J, Guo Z G, Wei X G, Gallenkamp C, Bonin J, AnxolabÉhère-Mallart E, Lau K C, Lau T C, Robert M. J. Am. Chem. Soc., 2015,137(34): 10918.

doi: 10.1021/jacs.5b06535     URL    
Behar D, Dhanasekaran T, Neta P, Hosten C M, Ejeh D, Hambright P, Fujita E. J. Phys. Chem. A, 1998,102(17): 2870.

doi: 10.1021/jp9807017     URL    
Bi Q Q, Wang J W, Lv J X, Wang J, Zhang W, Lu T B. ACS Catal., 2018,8(12): 11815.

doi: 10.1021/acscatal.8b03457     URL    
Zhao G X, Pang H, Liu G G, Li P, Liu H M, Zhang H B, Shi L, Ye J H. Appl. Catal. B: Environ., 2017,200: 141.

doi: 10.1016/j.apcatb.2016.06.074     URL    
Wang J W, Huang H H, Sun J K, Ouyang T, Zhong D C, Lu T B. ChemSusChem, 2018,11(6): 1025.

doi: 10.1002/cssc.v11.6     URL    
Herrero C, Quaranta A, El Ghachtouli S, Vauzeilles B, Leibl W, Aukauloo A. Phys. Chem. Chem. Phys., 2014,16(24): 12067.

doi: 10.1039/c3cp54946a     URL    
Thoi V S, Kornienko N, Margarit C G, Yang P D, Chang C J. J. Am. Chem. Soc., 2013,135(38): 14413.

doi: 10.1021/ja4074003     URL    
Hong D C, Tsukakoshi Y, Kotani H, Ishizuka T, Kojima T. J. Am. Chem. Soc., 2017,139(19): 6538.

doi: 10.1021/jacs.7b01956     URL    
Kuehnel M F, Orchard K L, Dalle K E, Reisner E. J. Am. Chem. Soc., 2017,139(21): 7217.

doi: 10.1021/jacs.7b00369     pmid: 28467076
Kuehnel M F, Sahm C D, Neri G, Lee J R, Orchard K L, Cowan A J, Reisner E. Chem. Sci., 2018,9(9): 2501.

doi: 10.1039/c7sc04429a     pmid: 29732127
Tinnemans A H A, Koster T P M, Thewissen D H M W, Mackor A. Recl. Trav. Chim. Pays-Bas, 2010,103(10): 288.

doi: 10.1002/recl.19841031004     URL    
Takeda H, Kamiyama H, Okamoto K, Irimajiri M, Mizutani T, Koike K, Sekine A, Ishitani O. J. Am. Chem. Soc., 2018,140(49): 17241.

doi: 10.1021/jacs.8b10619     URL    
Cheung P L, Machan C W, Malkhasian A Y S, Agarwal J, Kubiak C P. Inorg. Chem., 2016,55(6): 3192.

doi: 10.1021/acs.inorgchem.6b00379     pmid: 26996527
Fei H H, Sampson M D, Lee Y, Kubiak C P, Cohen S M. Inorg. Chem., 2015,54(14): 6821.

doi: 10.1021/acs.inorgchem.5b00752     URL    
Takeda H, Koizumi H, Okamoto K, Ishitani O. Chem. Commun., 2014,50(12): 1491.

doi: 10.1039/C3CC48122K     URL    
Grodkowski J, Behar D, Neta P, Hambright P. J. Phys. Chem. A, 1997,101(3): 248.

doi: 10.1021/jp9628139     URL    
Dhanasekaran T, Grodkowski J, Neta P, Hambright P, Fujita E. J. Phys. Chem. A, 1999,103(38): 7742.

doi: 10.1021/jp991423u     URL    
Grodkowski J, Dhanasekaran T, Neta P, Hambright P, Brunschwig B S, Shinozaki K, Fujita E. J. Phys. Chem. A, 2000,104(48): 11332.

doi: 10.1021/jp002709y     URL    
Grodkowski J, Neta P. J. Phys. Chem. A, 2000,104(19): 4475.

doi: 10.1021/jp993456f     URL    
Voyame P, Toghill K E, MÉndez M A, Girault H H. Inorg. Chem., 2013,52(19): 10949.

doi: 10.1021/ic401031j     URL    
Khalil M, Gunlazuardi J, Ivandini T A, Umar A. Renew. Sustain. Energy Rev., 2019,113: 109246.

doi: 10.1016/j.rser.2019.109246     URL    
Yuan Y J, Yu Z T, Chen X Y, Zhang J Y, Zou Z G. Chem. Eur. J., 2011,17(46): 12891.

doi: 10.1002/chem.v17.46     URL    
Rao H, Bonin J, Robert M. ChemSusChem, 2017,10(22): 4447.

doi: 10.1002/cssc.201701467     URL    
Eriksen J, Foote C S. J. Phys. Chem., 1978,82(25): 2659.

doi: 10.1021/j100514a005     URL    
Bonin J, Robert M, Routier M. J. Am. Chem. Soc., 2014,136(48): 16768.

doi: 10.1021/ja510290t     URL    
Pellegrin Y, Odobel Fabrice C R. Cr. Chimi., 2017,20: 283.

doi: 10.1016/j.crci.2015.11.026     URL    
Esswein A J, Nocera D G. Chem. Rev., 2007,107(10): 4022.

pmid: 17927155
Bonin J, Chaussemier M, Robert M, Routier M. ChemCatChem, 2014,6(11): 3200.

doi: 10.1002/cctc.201402515     URL    
Rao H, Bonin J, Robert M. Chem. Commun., 2017,53(19): 2830.

doi: 10.1039/C6CC09967J     URL    
Bonin J, Maurin A, Robert M. Coord. Chem. Rev., 2017,334: 184.

doi: 10.1016/j.ccr.2016.09.005     URL    
Rao H, Schmidt L C, Bonin J, Robert M. Nature, 2017,548(7665): 74.

doi: 10.1038/nature23016     URL    
Rao H, Lim C H, Bonin J, Miyake G M, Robert M. J. Am. Chem. Soc., 2018,140(51): 17830.

doi: 10.1021/jacs.8b09740     URL    
Qin Y F, Chen L J, Chen G, Guo Z G, Wang L, Fan H B, Robert M, Lau T C. Chem. Commun., 2020,56(46): 6249.

doi: 10.1039/D0CC01930E     URL    
Wong E L M, Fang G S, Che C M, Zhu N Y. Chem. Commun., 2005(36): 4578.
Sato S, Morikawa T, Saeki S, Kajino T, Motohiro T. Angewandte Chemie Int. Ed., 2010,49(30): 5101.

doi: 10.1002/anie.201000613     URL    
Li B, Sun L Q, Bian J, Sun N, Sun J W, Chen L Q, Li Z J, Jing L Q. Appl. Catal. B: Environ., 2020,270: 118849.

doi: 10.1016/j.apcatb.2020.118849     URL    
Lin L, Hou C C, Zhang X H, Wang Y J, Chen Y, He T. Appl. Catal. B: Environ., 2018,221: 312.

doi: 10.1016/j.apcatb.2017.09.033     URL    
Zhang X H, Lin L, Qu D, Yang J G, Weng Y X, Wang Z, Sun Z C, Chen Y, He T. Appl. Catal. B: Environ., 2020,265: 118595.

doi: 10.1016/j.apcatb.2020.118595     URL    
Li P, Zhang X H, Hou C C, Chen Y, He T. Appl. Catal. B: Environ., 2018,238: 656.

doi: 10.1016/j.apcatb.2018.07.066     URL    
Lian S C, Kodaimati M S, Dolzhnikov D S, Calzada R, Weiss E A. J. Am. Chem. Soc., 2017,139(26): 8931.

doi: 10.1021/jacs.7b03134     URL    
Lian S C, Kodaimati M S, Weiss E A. ACS Nano, 2018,12(1): 568.

doi: 10.1021/acsnano.7b07377     URL    
Rao H, Bonin J, Robert M. J. Phys. Chem. C, 2018,122(25): 13834.

doi: 10.1021/acs.jpcc.8b00950     URL    
[1] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[2] 胡安东, 周顺桂, 叶捷. 生物杂化体介导的半人工光合作用:机理、进展及展望[J]. 化学进展, 2021, 33(11): 2103-2115.
[3] 李晓慧, 范同祥. 人工光合作用[J]. 化学进展, 2011, 23(9): 1841-1853.
[4] 李凤英,刘晔,王霞,贺小双,丁侠. 金属卟啉催化的过氧化氢选择氧化烃类反应机理研究[J]. 化学进展, 2008, 20(11): 1635-1641.