English
新闻公告
More
化学进展 2022, Vol. 34 Issue (1): 142-154 DOI: 10.7536/PC201231 前一篇   后一篇

• 综述 •

金属铁络合物光催化二氧化碳还原

唐晨柳1,2, 邹云杰1,2, 徐明楷, 凌岚1,2,*()   

  1. 1 污染控制与资源化研究国家重点实验室 同济大学环境科学与工程学院 上海 200092
    2 福州大学 能源与环境光催化国家重点实验室 福州 350116
  • 收稿日期:2020-12-18 修回日期:2021-01-19 出版日期:2022-01-20 发布日期:2021-03-04
  • 通讯作者: 凌岚
  • 基金资助:
    国家自然科学基金优秀青年基金项目(21822607); 能源与环境光催化国家重点实验室开放课题(SKLPEE-KF201701)

Photocatalytic Reduction of Carbon Dioxide with Iron Complexes

Chenliu Tang1,2, Yunjie Zou1,2, Mingkai Xu, Lan Ling1,2()   

  1. 1 State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University,Shanghai 200092, China
    2 State Key Laboratory of Photocatalysis on Energy and Environment,Fuzhou University, Fuzhou 350116, China
  • Received:2020-12-18 Revised:2021-01-19 Online:2022-01-20 Published:2021-03-04
  • Contact: Lan Ling
  • Supported by:
    National Natural Science Foundation of China(21822607); State Key Laboratory of Photocatalysis on Energy and Environment(SKLPEE-KF201701)

二氧化碳(CO2)光催化还原技术因兼具解决能源和全球变暖问题的潜力而受到关注。金属铁络合物作为分子型催化剂,具有价格低廉、量子效率高、结构可调控和选择性好等优势,表现出优异的CO2光催化还原性能,成为CO2光催化还原领域的研究热点。本文综述了近年来基于金属铁络合物光催化二氧化碳还原研究进展。介绍了铁金属络合物(如:铁卟啉、铁多吡啶、五齿铁配合物)CO2均相光催化还原体系,总结了体系的构成以及作用机理等,着重关注了体系的催化效率和产物的选择性。此外,综述了以半导体纳米材料/量子点作为光敏剂,金属铁络合物作为催化剂的非均相催化体系的研究进展。最后,对该领域未来的研究方向和所面临的挑战做出展望。

Photocatalytic CO2 reduction for fuel production has attracted much attention due to its potential for simultaneously solving energy and global warming problems. As a molecular catalyst, earth-abundant and eco-friendly iron complexes take the advantages of adjustable structure, rich valence, and easy synthesis, exhibiting good CO2 photocatalytic reduction performance, and hence have attracted much attention in the field of CO2 photocatalytic reduction. This review focuses on the recent progress in photocatalytic reduction of CO2 based on iron complexes. First, the homogeneous photocatalytic CO2 reduction systems using iron complex as catalyst, including iron porphyrin, iron polypyridine and iron pentadentate complex, are summarized. Visible-light-driven CO2 reduction system is generally composed of three basic components: photosensitizer for absorption of visible light, catalyst for catalytic reduction of CO2, and sacrificial electron donors for providing electrons in reduction reaction. Beyond catalytic efficiency, CO2 photoreduction is a multi-electron transfer process boosted by the catalysts and inevitable competition with hydrogen evolution is a general issue for molecular catalysis of the CO2-to-CO conversion, therefore the selectivity of the products is an important indicator. The selectivity and efficiency could be tuned by changing the ligand of iron complex, photosensitizer and sacrificial electron donors. Moreover, the mechanisms for the homogeneous photocatalytic CO2 reduction, including catalyst activation and reduction process, are deciphered in detail. Second, the recent works of heterogeneous catalytic systems, which combine semiconductor nanomaterials/quantum dots with metal iron complexes as catalysts, are introduced. Considering the superior stability and fairly strong light absorption capacity of inorganic materials to the organic counterparts, the solid nanomaterials can be used as the photosensitizers to incorporate with the molecular catalysts. At the end, the current issues and perspectives on photocatalytic reduction of CO2 based on iron complexes are discussed. For examples, porphyrin metal organic frameworks become a new research interest, and the design and construction of iron porphyrin metal organic frameworks is a promising way for getting new photocatalytic systems functioning in aqueous conditions. Besides, further efforts could be made on the mechanistic studies, especially the 8e-/8H+ reduction to methane.

Contents

1 Introduction

2 Homogeneous photocatalytic CO2 reduction systems using iron complex as catalyst

2.1 Iron porphyrin as photocatalyst

2.2 Iron polypyridine as photocatalyst

2.3 Iron pentadentate complex as photocatalyst

3 Heterogeneous photocatalytic CO2 reduction systems using iron complex as catalyst

3.1 Semiconductor nanomaterials as photosensitizers

3.2 Quantum dots as photosensitizers

4 Conclusion and outlook

()
图式1 CO2光催化还原体系中主要的几种铁卟啉催化剂
Scheme 1 Main Fe porphyrin catalysts for the CO2 photostimulated conversion
图式2 CO2光催化还原体系中主要的无机和有机光敏剂
Scheme 2 Main organic and inorganic sensitizers employed for the CO2 photostimulated conversion
图式3 常见的电子牺牲剂
Scheme 3 Typically used sacrificial electron donors
表1 O2光催化还原体系中主要的还原产物以及产物的选择性、体系的催化效率
Table 1 The main reduction products, selectivity and catalytic efficiency in CO2 photocatalytic reduction system
catalyst product selectivity (%) TON photosensitizer sacrificial electron donor light source solvent ref
iron porphyrin complex
Fe-o-OH
(2 μM)
CO 93 140 Ir(ppy)3
(0.2 mM)
TEA
(0.36 M)
λ>420 nm CO2-saturated MeCN solution 63
CO 100 60 9CNA
(0.2 mM)
TEA
(0.05 M)
λ>400 nm CO2-saturated MeCN solution
FeTPP CO 8 17 - Triethylamine
(0.36 M)
λ>280 nm CO2-saturated ACN solution 66
Fe-o-OH H2 - 37 CO2-saturated ACN solution
(0.05 M trifluoroethanol (TFE))
Fe-o-OH-F CO 93 28
FeTPP H2 - 10
Fe-o-OH CO 76 23
Fe-o-OH-F H2 - 15
CO 8 7
H2 - 23
CO 93 30
H2 - 10
CO 76 23
H2 - 12
Fe-p-TMA
(2 μM)
CO 100 101 - TEA (0.05 M)/BIH (0.02 M) λ>420 nm CO2-saturated MeCN solution 67
Fe-p-TMA
(2 μM)
CO 95 60 purpurin
(0.02 mM)
TEA (0.05 M) λ>420 nm CO2-saturated MeCN/H2O (1∶9 v/v) solution 61
H2 5 3 TEOA (0.05 M)
CO 95 71 purpurin
(0.04 mM)
EDTA (0.05 M)
H2 5 4
CO 91 42 purpurin
(0.02 mM)
H2 9 4
CO 92 46 purpurin
(0.02 mM)
H2 8 4
Fe-p-TMA
(2 μM)
CO 78 367 Ir(ppy)3
(0.2 mM)
TEA
(0.05 M)
λ>420 nm CO2-saturated MeCN solution 69
CH4 17 79 λ>420 nm CO-saturated MeCN solution
Fe-p-TMA
(2 μM)
H2 5 26 Ir(ppy)3
(0.2 mM)
TEA
(0.05 M)
CO-saturated MeCN solution
( 0.1 M TFE)
CH4 87 140
H2 13 28
CH4 82 159
H2 18 34
FeTMA
(1 μM)
CO 99 450 CuInS2/ZnS quantum dot (QD) TEA λ=450 nm 5 mM KCl in CO2-
saturated water
79
catalyst product selectivity (%) TON photosensitizer sacrificial electron
donor
light source solvent ref
Fe-p-TMA
(10 μM)
CH4 15 29 Phen2
(1 mM)
TEA
(0.1 M)
λ>435 nm CO2-saturated DMF solution (0.1 M TFE) 70
CO - 140
H2 - 23 CO-saturated DMF solution (0.1 M TFE)
CH4 87 45
H2 - 7
Fe-p-TMA
(2 μM)
CH4 10 32 Ir(ppy)2
(bpy)
(0.2 mM)
TEA
(0.05 M)
λ>420 nm CO2-saturated ACN solution 80
CO 57 178
H2 33 103 TEOA
(0.05 M)
a CO2-saturated ACN/H2O (3∶7 v/v) solution
CH4 12 3 Ir(ppy)2
(bpy)
(0.2 mM)
CO 73 19 TEA
(0.05 M)
Under CO atmosphere + 0.5 M TFE
H2 15 4
CH4 84 100
H2 16 19 Ir(ppy)3
(0.2 mM)
iron polypyridine complex
[Fe(qpy)
(OH2)2]2+
(5 μM)
CO 85 3844 Ru(bpy ) 3 2 +
(0.2 mM)
BIH (0.1 M) blue LED centered at 460 nm CO2-saturated MeCN/TEOA (4∶1 v/v) solution 38
H2 3 118
formate 12 534 MeCN saturated with CO2
CO 92 1365 purpurin (0.02 mM)
[Fe(qnpy)
(H2O)2]2+
(50 μM)
CO 99 2190 Ru(phen ) 3 2 +(0.2 mM) BIH (0.11 M) LED, centred at 460 nm CO2-saturated MeCN/H2O (1∶1, v/v) solution 71
H2 1 27
CO 98 14095
[Fe(qnpy)
(H2O)2]2+
(5 μM)
H2 2 360
iron pentadentate complex
[FeIII(L)
(Cl)2]2+
(20 μM)
HCOOH - 5 Ir(ppy)3 (0.2 mM) TEA
(0.05 M)
λ>420 nm MeCN saturated with CO2 39
图1 以铁卟啉为均相催化剂,在敏化和非敏化条件下光化学催化还原CO2为CO的机理[68]
Fig. 1 Mechanisms for the photochemical catalytic reduction of CO2 into CO with iron porphyrins as homogeneous catalysts,in both sensitized and non-sensitized conditions[68]
图2 多电子多质子还原CO2生成CO和CH4的机理示意图,体系中包含分子光敏剂、电子牺牲剂和铁卟啉催化剂[69]
Fig. 2 Schematic mechanism for the multi-electrons multi-protons reduction of CO2 to CO and then CH4 by tandem catalysis,implying a molecular sensitizer,a sacrificial electron donor and a Fe-porphyrin as catalyst[69]
图3 四联吡啶铁络合物在Ru(bpy ) 3 2 +/BIH/TEOA体系中还原CO2为CO的机理[38]
Fig. 3 Proposed mechanism for the photocatalytic reduction of CO2 to CO for the Ru(bpy ) 3 2 +/BIH/TEOA systems[38]
图4 利用 [FeIII(L)Cl2]+作为催化剂光还原CO2生成HCOOH的机理图[39]
Fig. 4 Proposed mechanisms for the reduction of CO2 with [FeIII(L)Cl2]+[39]
图5 g-C3N4/FeTCPP多相催化体系结构[75]
Fig. 5 Structure of g-C3N4/FeTCPP heterogeneous catalyst system[75]
图6 CdS/Bi2S3异质结构的形成及在可见光下,CdS/Bi2S3/FeTCPP催化剂在CO2还原过程中电荷转移机理,虚线表示被抑制的电子转移[77]
Fig. 6 Formation of CdS/Bi2S3 heterostructure and proposed charge transfer mechanism in CO2 photoreduction over CdS/Bi2S3/FeTCPP hybrid catalysts under visible-light illumination。The dashed line indicates the suppressed electron transfer[77]
图7 QD/FeTMA复合物亚单位的组装机制[79]
Fig. 7 Proposed assembly mechanism for a subunit of a QD/FeTMA complex[79]
[1]
Akhter P, Farkhondehfal M A, Hernández S, Hussain M, Fina A, Saracco G, Khan A U, Russo N. J. Environ. Chem. Eng., 2016,4(4): 3934.

doi: 10.1016/j.jece.2016.09.004     URL    
[2]
Roy S C, Varghese O K, Paulose M, Grimes C A. ACS Nano, 2010,4(3): 1259.

doi: 10.1021/nn9015423     URL    
[3]
Rakowski Dubois M, Dubois D L. Acc. Chem. Res., 2009,42(12): 1974.

doi: 10.1021/ar900110c     URL    
[4]
Liu M, Pang Y J, Zhang B, De Luna P, Voznyy O, Xu J X, Zheng X L, Dinh C T, Fan F J, Cao C H, de Arquer F P G, Safaei T S, Mepham A, Klinkova A, Kumacheva E, Filleter T, Sinton D, Kelley S O, Sargent E H. Nature, 2016,537(7620): 382.

doi: 10.1038/nature19060     URL    
[5]
Liu M Y, Wang Y S, Deng W, Wen Z H. Progress in Chemistry, 2018,30: 398.
( 刘孟岩, 王元双, 邓雯, 温珍海. 化学进展, 2018,30: 398.)

doi: 10.7536/PC170810    
[6]
Lu Q, Jiao F. Nano Energy, 2016,29: 439.

doi: 10.1016/j.nanoen.2016.04.009     URL    
[7]
Li K, Peng B S, Peng T Y. ACS Catal., 2016,6(11): 7485.

doi: 10.1021/acscatal.6b02089     URL    
[8]
Chen Z Y, Liu J W, Cui H, Zhang L, Su C Y. Acta Chimica Sin., 2019,77(3): 242.
( 陈之尧, 刘捷威, 崔浩, 张利, 苏成勇. 化学学报, 2019,77(3): 242.)

doi: 10.6023/A18100440    
[9]
Feng X, Ren X W, Jiang H F. Progress in Chemistry, 2020,32: 1697.
( 封啸, 任颜卫, 江焕峰. 化学进展, 2020,32: 1697.)

doi: 10.7536/PC200407    
[10]
Centi G, Quadrelli E A, Perathoner S. Energy Environ. Sci., 2013,6(6): 1711.

doi: 10.1039/c3ee00056g     URL    
[11]
Taheri Najafabadi A. Int. J. Energy Res., 2013,37(6): 485.

doi: 10.1002/er.v37.6     URL    
[12]
Yang Z Z, He L N, Gao J, Liu A H, Yu B. Energy Environ. Sci., 2012,5(5): 6602.

doi: 10.1039/c2ee02774g     URL    
[13]
Kumar B, Llorente M, Froehlich J, Dang T, Sathrum A, Kubiak C P. Annu. Rev. Phys. Chem., 2012,63(1): 541.

doi: 10.1146/physchem.2012.63.issue-1     URL    
[14]
Chen H K, Li H R, He L N. Chin. J. Org. Chem., 2020,40: 2195.

doi: 10.6023/cjoc202004030     URL    
( 陈凯宏, 李红茹, 何良年. 有机化学, 2020,40: 2195.)

doi: 10.6023/cjoc202004030    
[15]
Liu C, ColÓn B C, Ziesack M, Silver P A, Nocera D G. Science, 2016,352(6290): 1210.

doi: 10.1126/science.aaf5039     URL    
[16]
Liu C, Gallagher J J, Sakimoto K K, Nichols E M, Chang C J, Chang M C Y, Yang P D. Nano Lett., 2015,15(5): 3634.

doi: 10.1021/acs.nanolett.5b01254     URL    
[17]
Dhakshinamoorthy A, Navalon S, Corma A, Garcia H. Energy Environ. Sci., 2012,5(11): 9217.

doi: 10.1039/c2ee21948d     URL    
[18]
Habisreutinger S N, Schmidt-Mende L, Stolarczyk J K. Angew. Chem. Int. Ed., 2013,52(29): 7372.

doi: 10.1002/anie.201207199     URL    
[19]
Yu J G, Low J, Xiao W, Zhou P, Jaroniec M. J. Am. Chem. Soc., 2014,136(25): 8839.

doi: 10.1021/ja5044787     URL    
[20]
Xu Q L, Yu J G, Zhang J, Zhang J F, Liu G. Chem. Commun., 2015,51(37): 7950.

doi: 10.1039/C5CC01087J     URL    
[21]
Wang K, Li Q, Liu B S, Cheng B, Ho W, Yu J G. Appl. Catal. B: Environ., 2015,176/177: 44.

doi: 10.1016/j.apcatb.2015.03.045     URL    
[22]
Shi H F, Chen G Q, Zhang C L, Zou Z G. ACS Catal., 2014,4(10): 3637.

doi: 10.1021/cs500848f     URL    
[23]
Yu W L, Xu D F, Peng T Y. J. Mater. Chem. A, 2015,3(39): 19936.

doi: 10.1039/C5TA05503B     URL    
[24]
Fu J W, Zhu B C, Jiang C J, Cheng B, You W, Yu J G. Small, 2017,13(15): 1603938.

doi: 10.1002/smll.v13.15     URL    
[25]
Jiang Z F, Wan W M, Li H M, Yuan S Q, Zhao H J, Wong P K. Adv. Mater., 2018,30(10): 1706108.

doi: 10.1002/adma.v30.10     URL    
[26]
Lehn J M, Ziessel R P. Proc. Natl. Acad. Sci. U. S. A., 1982,79: 701.

pmid: 16593151
[27]
Hawecker J, Lehn J M, Ziessel R. J. Chem. Soc., Chem. Commun., 1983(9): 536.
[28]
Lehn J M, Ziessel R. J. Organomet. Chem., 1990,382(1/2): 157.

doi: 10.1016/0022-328X(90)85224-M     URL    
[29]
Kuriki R, Sekizawa K, Ishitani O, Maeda K. Angew. Chem. Int. Ed., 2015,54(8): 2406.

doi: 10.1002/anie.201411170     URL    
[30]
Maeda K, Kuriki R, Zhang M W, Wang X C, Ishitani O. J. Mater. Chem. A, 2014,2(36): 15146.

doi: 10.1039/C4TA03128H     URL    
[31]
Sato S, Morikawa T, Kajino T, Ishitani O. Angew. Chem. Int. Ed., 2013,52(3): 988.

doi: 10.1002/anie.201206137     URL    
[32]
Li L N, Zhang S Q, Xu L J, Wang J Y, Shi L X, Chen Z N, Hong M C, Luo J H. Chem. Sci., 2014,5(10): 3808.

doi: 10.1039/C4SC00940A     URL    
[33]
Reithmeier R O, Meister S, Siebel A, Rieger B. Dalton Trans., 2015,44(14): 6466.

doi: 10.1039/c5dt00370a     pmid: 25749307
[34]
Agarwal J, Fujita E, Schaefer H F III, Muckerman J T. J. Am. Chem. Soc., 2012,134(11): 5180.

doi: 10.1021/ja2105834     pmid: 22364649
[35]
Ettedgui J, Diskin-Posner Y, Weiner L, Neumann R. J. Am. Chem. Soc., 2011,133(2): 188.

doi: 10.1021/ja1078199     pmid: 21158388
[36]
Morris A J, Meyer G J, Fujita E. Acc. Chem. Res., 2009,42(12): 1983.

doi: 10.1021/ar9001679     URL    
[37]
Chan S L F, Lam T L, Yang C, Yan S C, Cheng N M. Chem. Commun., 2015,51(37): 7799.

doi: 10.1039/C5CC00566C     URL    
[38]
Guo Z G, Cheng S W, Cometto C, AnxolabÉhère-Mallart E, Ng S M, Ko C C, Liu G J, Chen L J, Robert M, Lau T C. J. Am. Chem. Soc., 2016,138(30): 9413.

doi: 10.1021/jacs.6b06002     URL    
[39]
Chen L J, Guo Z G, Wei X G, Gallenkamp C, Bonin J, AnxolabÉhère-Mallart E, Lau K C, Lau T C, Robert M. J. Am. Chem. Soc., 2015,137(34): 10918.

doi: 10.1021/jacs.5b06535     URL    
[40]
Behar D, Dhanasekaran T, Neta P, Hosten C M, Ejeh D, Hambright P, Fujita E. J. Phys. Chem. A, 1998,102(17): 2870.

doi: 10.1021/jp9807017     URL    
[41]
Bi Q Q, Wang J W, Lv J X, Wang J, Zhang W, Lu T B. ACS Catal., 2018,8(12): 11815.

doi: 10.1021/acscatal.8b03457     URL    
[42]
Zhao G X, Pang H, Liu G G, Li P, Liu H M, Zhang H B, Shi L, Ye J H. Appl. Catal. B: Environ., 2017,200: 141.

doi: 10.1016/j.apcatb.2016.06.074     URL    
[43]
Wang J W, Huang H H, Sun J K, Ouyang T, Zhong D C, Lu T B. ChemSusChem, 2018,11(6): 1025.

doi: 10.1002/cssc.v11.6     URL    
[44]
Herrero C, Quaranta A, El Ghachtouli S, Vauzeilles B, Leibl W, Aukauloo A. Phys. Chem. Chem. Phys., 2014,16(24): 12067.

doi: 10.1039/c3cp54946a     URL    
[45]
Thoi V S, Kornienko N, Margarit C G, Yang P D, Chang C J. J. Am. Chem. Soc., 2013,135(38): 14413.

doi: 10.1021/ja4074003     URL    
[46]
Hong D C, Tsukakoshi Y, Kotani H, Ishizuka T, Kojima T. J. Am. Chem. Soc., 2017,139(19): 6538.

doi: 10.1021/jacs.7b01956     URL    
[47]
Kuehnel M F, Orchard K L, Dalle K E, Reisner E. J. Am. Chem. Soc., 2017,139(21): 7217.

doi: 10.1021/jacs.7b00369     pmid: 28467076
[48]
Kuehnel M F, Sahm C D, Neri G, Lee J R, Orchard K L, Cowan A J, Reisner E. Chem. Sci., 2018,9(9): 2501.

doi: 10.1039/c7sc04429a     pmid: 29732127
[49]
Tinnemans A H A, Koster T P M, Thewissen D H M W, Mackor A. Recl. Trav. Chim. Pays-Bas, 2010,103(10): 288.

doi: 10.1002/recl.19841031004     URL    
[50]
Takeda H, Kamiyama H, Okamoto K, Irimajiri M, Mizutani T, Koike K, Sekine A, Ishitani O. J. Am. Chem. Soc., 2018,140(49): 17241.

doi: 10.1021/jacs.8b10619     URL    
[51]
Cheung P L, Machan C W, Malkhasian A Y S, Agarwal J, Kubiak C P. Inorg. Chem., 2016,55(6): 3192.

doi: 10.1021/acs.inorgchem.6b00379     pmid: 26996527
[52]
Fei H H, Sampson M D, Lee Y, Kubiak C P, Cohen S M. Inorg. Chem., 2015,54(14): 6821.

doi: 10.1021/acs.inorgchem.5b00752     URL    
[53]
Takeda H, Koizumi H, Okamoto K, Ishitani O. Chem. Commun., 2014,50(12): 1491.

doi: 10.1039/C3CC48122K     URL    
[54]
Grodkowski J, Behar D, Neta P, Hambright P. J. Phys. Chem. A, 1997,101(3): 248.

doi: 10.1021/jp9628139     URL    
[55]
Dhanasekaran T, Grodkowski J, Neta P, Hambright P, Fujita E. J. Phys. Chem. A, 1999,103(38): 7742.

doi: 10.1021/jp991423u     URL    
[56]
Grodkowski J, Dhanasekaran T, Neta P, Hambright P, Brunschwig B S, Shinozaki K, Fujita E. J. Phys. Chem. A, 2000,104(48): 11332.

doi: 10.1021/jp002709y     URL    
[57]
Grodkowski J, Neta P. J. Phys. Chem. A, 2000,104(19): 4475.

doi: 10.1021/jp993456f     URL    
[58]
Voyame P, Toghill K E, MÉndez M A, Girault H H. Inorg. Chem., 2013,52(19): 10949.

doi: 10.1021/ic401031j     URL    
[59]
Khalil M, Gunlazuardi J, Ivandini T A, Umar A. Renew. Sustain. Energy Rev., 2019,113: 109246.

doi: 10.1016/j.rser.2019.109246     URL    
[60]
Yuan Y J, Yu Z T, Chen X Y, Zhang J Y, Zou Z G. Chem. Eur. J., 2011,17(46): 12891.

doi: 10.1002/chem.v17.46     URL    
[61]
Rao H, Bonin J, Robert M. ChemSusChem, 2017,10(22): 4447.

doi: 10.1002/cssc.201701467     URL    
[62]
Eriksen J, Foote C S. J. Phys. Chem., 1978,82(25): 2659.

doi: 10.1021/j100514a005     URL    
[63]
Bonin J, Robert M, Routier M. J. Am. Chem. Soc., 2014,136(48): 16768.

doi: 10.1021/ja510290t     URL    
[64]
Pellegrin Y, Odobel Fabrice C R. Cr. Chimi., 2017,20: 283.

doi: 10.1016/j.crci.2015.11.026     URL    
[65]
Esswein A J, Nocera D G. Chem. Rev., 2007,107(10): 4022.

pmid: 17927155
[66]
Bonin J, Chaussemier M, Robert M, Routier M. ChemCatChem, 2014,6(11): 3200.

doi: 10.1002/cctc.201402515     URL    
[67]
Rao H, Bonin J, Robert M. Chem. Commun., 2017,53(19): 2830.

doi: 10.1039/C6CC09967J     URL    
[68]
Bonin J, Maurin A, Robert M. Coord. Chem. Rev., 2017,334: 184.

doi: 10.1016/j.ccr.2016.09.005     URL    
[69]
Rao H, Schmidt L C, Bonin J, Robert M. Nature, 2017,548(7665): 74.

doi: 10.1038/nature23016     URL    
[70]
Rao H, Lim C H, Bonin J, Miyake G M, Robert M. J. Am. Chem. Soc., 2018,140(51): 17830.

doi: 10.1021/jacs.8b09740     URL    
[71]
Qin Y F, Chen L J, Chen G, Guo Z G, Wang L, Fan H B, Robert M, Lau T C. Chem. Commun., 2020,56(46): 6249.

doi: 10.1039/D0CC01930E     URL    
[72]
Wong E L M, Fang G S, Che C M, Zhu N Y. Chem. Commun., 2005(36): 4578.
[73]
Sato S, Morikawa T, Saeki S, Kajino T, Motohiro T. Angewandte Chemie Int. Ed., 2010,49(30): 5101.

doi: 10.1002/anie.201000613     URL    
[74]
Li B, Sun L Q, Bian J, Sun N, Sun J W, Chen L Q, Li Z J, Jing L Q. Appl. Catal. B: Environ., 2020,270: 118849.

doi: 10.1016/j.apcatb.2020.118849     URL    
[75]
Lin L, Hou C C, Zhang X H, Wang Y J, Chen Y, He T. Appl. Catal. B: Environ., 2018,221: 312.

doi: 10.1016/j.apcatb.2017.09.033     URL    
[76]
Zhang X H, Lin L, Qu D, Yang J G, Weng Y X, Wang Z, Sun Z C, Chen Y, He T. Appl. Catal. B: Environ., 2020,265: 118595.

doi: 10.1016/j.apcatb.2020.118595     URL    
[77]
Li P, Zhang X H, Hou C C, Chen Y, He T. Appl. Catal. B: Environ., 2018,238: 656.

doi: 10.1016/j.apcatb.2018.07.066     URL    
[78]
Lian S C, Kodaimati M S, Dolzhnikov D S, Calzada R, Weiss E A. J. Am. Chem. Soc., 2017,139(26): 8931.

doi: 10.1021/jacs.7b03134     URL    
[79]
Lian S C, Kodaimati M S, Weiss E A. ACS Nano, 2018,12(1): 568.

doi: 10.1021/acsnano.7b07377     URL    
[80]
Rao H, Bonin J, Robert M. J. Phys. Chem. C, 2018,122(25): 13834.

doi: 10.1021/acs.jpcc.8b00950     URL    
[1] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[2] 胡安东, 周顺桂, 叶捷. 生物杂化体介导的半人工光合作用:机理、进展及展望[J]. 化学进展, 2021, 33(11): 2103-2115.
[3] 李晓慧, 范同祥. 人工光合作用[J]. 化学进展, 2011, 23(9): 1841-1853.
[4] 李凤英,刘晔,王霞,贺小双,丁侠. 金属卟啉催化的过氧化氢选择氧化烃类反应机理研究[J]. 化学进展, 2008, 20(11): 1635-1641.