English
新闻公告
More
化学进展 2022, Vol. 34 Issue (3): 630-642 DOI: 10.7536/PC210318 前一篇   后一篇

• 综述 •

二维黑磷基纳米材料在光催化中的应用

庞欣1, 薛世翔1, 周彤1, 袁蝴蝶1, 刘冲2, 雷琬莹1,*()   

  1. 1 西安建筑科技大学材料科学与工程学院 西安 710055
    2 西安热工研究院有限公司 西安 710054
  • 收稿日期:2021-03-11 修回日期:2021-05-18 出版日期:2021-07-29 发布日期:2021-07-29
  • 通讯作者: 雷琬莹
  • 基金资助:
    国家自然科学基金项目(51902243)

Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications

Xin Pang1, Shixiang Xue1, Tong Zhou1, Hudie Yuan1, Chong Liu2, Wanying Lei1()   

  1. 1 College of Materials Science and Engineering, Xi'an University of Architecture and Technology,Xi'an 710055, China
    2 Xi'an Thermal Power Research Institute Co., Ltd, Xi'an 710054, China
  • Received:2021-03-11 Revised:2021-05-18 Online:2021-07-29 Published:2021-07-29
  • Contact: Wanying Lei
  • Supported by:
    National Natural Science Foundation of China(51902243)

黑磷是继石墨烯之后又一种新型的单元素二维材料。具有独特的层状结构、超高的载流子迁移率和由层厚调控的禁带宽度,在光催化领域具有广阔的应用前景。然而,单一黑磷材料的禁带宽度较窄( ≤ 1.5 eV),光生载流子极易复合,导致其光催化性能较低。另外,黑磷表面的磷原子易与环境中的氧气发生反应形成PxOy,降低了黑磷材料的稳定性。因此,较低的催化性能和不稳定性极大地限制了黑磷材料的实际应用。针对上述问题,可以通过将黑磷材料与其他材料复合形成一系列的等离子体复合材料和多维异质结的方式,来提高光催化剂的活性和循环稳定性。本文综述了近年来二维黑磷纳米片与金属、半导体和碳材料等复合后形成的复合材料在光催化裂解水产氢、降解有机污染物、CO2还原和固氮等方面的研究进展。最后,对未来二维黑磷基光催化材料的研究方向进行了分析和展望。

As a new two-dimensional (2D) monoelement material in post-graphene era, black phosphorus (BP) has gained broad prospects in photocatalysis due to its extraordinary physicochemical characteristics including unique anisotropic structures, high carrier mobility and thickness-controlled bandgap. Nevertheless, the extremely narrow bandgap of BP (≤ 1.5 eV) is detrimental for the efficient separation of photogenerated electron-hole pairs that limits the photoreactivity. And the isolated BP suffers from the severe degradation upon long-term exposure due to PxOy species formed by the reaction between the lone pair electrons onto the BP surfaces and oxygen in ambient environment, then BP will gradually corrode in water through the formation of phosphoric acid. Therefore, the lower photoreactivity and instability of BP material restrict its industrial implementation. To overcome these obstacles, various effective strategies like creating a wide range of plasmonic hybrid nanostructures and mixed-dimensional heterojunctions have been developed. Herein, the recent progress on BP-based nanostructures through hybridization with dissimilar components like metals, semiconductors, carbon materials, etc. has been summarized and its applications in photocatalytic reactions such as water splitting for hydrogen evolution, organic pollutant removal, CO2 photoreduction and N2 fixation have also been reviewed, together with the insights into the photocatalytic mechanism for the boosted photoreactivity and good recyclability. Lastly, the challenges and potential directions of BP-based nanostructures toward high-efficiency photocatalytic reactions are analyzed and provided.

Contents

1 Introduction

2 BP-based nanostructures for hydrogen evolution

2.1 Metal/BP hybrid

2.2 Semiconductor/BP hybrid

2.3 Carbon/BP hybrid

3 BP-based nanostructures for organic pollutant removal

3.1 Metal/BP hybrid

3.2 Semiconductor/BP hybrid

3.3 Carbon/BP hybrid

4 BP-based nanostructures for CO2 photoreduction and N2 fixation

5 Conclusions and perspectives

()
图1 (a) BP晶体的结构示意图[15];(b) 不同层厚的BP的能带位置[17]
Fig.1 (a) Schematic structure of BP crystal[15]. Copyright 2017 The Royal Society of Chemistry Publisher. (b) The band positions for BP with different layers[17]. Copyright 2014 Springer Nature Publisher
图2 BP/Au/La2Ti2O7分别在可见光和近红外光下裂解水产氢的机理图[41]
Fig.2 The proposed mechanism for photocatalytic hydrogen production on BP/Au/La2Ti2O7 under visible light and near-infrared light illumination[41]. Copyright 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图3 (a) BP/TMC[51]; (b) BP/Bi2WO6的产氢机理图[60]
Fig.3 (a) The proposed mechanism for photocatalytic hydrogen production on BP/TMC under visible light and near-infrared light illumination[51]. Copyright 2019 American Chemical Society. (b) The proposed mechanism for photocatalytic hydrogen production on BP/Bi2WO6 under visible light illumination[60].Copyright 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图4 (a) 通过P—N共价键结合的 BP/g-C3N4在可见光下的光裂解水产氢机理图[63];借助范德华力结合的BP/g-C3N4的 (b) 差分电荷图和 (c) 光裂解水产氢机理图[64]
Fig.4 (a) The proposed mechanism for photocatalytic hydrogen production of BP/g-C3N4 that fabricated by P-N bond[63]. Copyright 2017 American Chemical Society. (b) Charge difference and (c) the proposed mechanism for photocatalytic hydrogen production of BP/g-C3N4 bonded through vdW interactions[64]. Copyright 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图5 (a) 在500 nm光子激发下,直径为40 nm的Ag单原子负载在BP纳米片上的局域场强增强空间分布[40];(b) RP/BP在可见光下降解RhB的机理图[72];(c) BP/TiO2的TEM图[73];(d) BP/TiO2/Mxene在可见光下降解RhB的机理图[74];(e) ZIF-8/BP合成示意图[75]
Fig.5 (a) Simulated spatial distribution of electric field enhancement for Ag/BP nanohybrids under 500 nm photon excitation: Ag monomer with a size of 40 nm supported on BP nanosheets[40]. Copyright 2016 American Chemical Society. (b) The proposed mechanism for RhB photodegradation of RP/BP under visible light[72]. Copyright 2015 Royal Society of Chemistry. (c) TEM image of BP/TiO2[73]. Copyright 2019 Royal Society of Chemistry. (d) The proposed mechanism for RhB photodegradation of BP/TiO2/MXene under visible light[74]. Copyright 2020 Royal Society of Chemistry. (e) Schematic illustration of the synthesis procedure of ZIF-8/BP[75].Copyright 2016 Royal Society of Chemistry
图6 (a) BP/RGO的TEM图;(b) BP的循环稳定性测试;(c) BP/RGO的循环稳定性测试[78];(d) BP-C60的合成示意图;(e) BP-C60可见光下降解RhB的机理图[79]
Fig.6 (a) TEM image of BP/RGO[78]. Photocatalytic stability of (b) BP and (c) BP/RGO[78]. Copyright 2020 American Chemical Society. (d) Schematic illustration of synthesis process of BP-C60; (e) RhB photodegradation mechanism in the presence of BP-C60 under visible light illumination[79].Copyright 2018 Springer Nature
图7 (a) BP/g-C3N4复合材料的CO2还原机理图[83];(b) eBP纳米片的TEM图及P元素分布图[87];(c) eBP纳米片的固氮机理图[87];(d) BP/CdS的固氮机理图[89]
Fig.7 (a) The proposed mechanism for photocatalytic CO2 reduction on BP/g-C3N4 hybrid[83]. Copyright 2020 Acta Phys. -Chim. Sin. (b) TEM image and the corresponding element mapping of P for eBP[87]. Copyright 2020 American Chemical Society. (c) The possible mechanism for photocatalytic nitrogen fixation over eBP[87]. (d) The possible mechanism for photocatalytic nitrogen fixation over BP/CdS[89].Copyright 2020 American Chemical Society
[1]
Wang Z, Li C, Domen K. Chem. Soc. Rev., 2019, 48(7): 2109.

doi: 10.1039/C8CS00542G     URL    
[2]
Huang W, Luo W, Li Y G. Mater. Today, 2020, 40: 160.

doi: 10.1016/j.mattod.2020.07.003     URL    
[3]
Liu Y N, Chen C S, Valdez J, Motta Meira D, He W T, Wang Y, Harnagea C, Lu Q Q, Guner T, Wang H, Liu C H, Zhang Q Z, Huang S Y, Yurtsever A, Chaker M, Ma D L. Nat. Commun., 2021, 12(1): 1231.

doi: 10.1038/s41467-021-21401-2     URL    
[4]
Shiraishi Y, Ueda Y, Soramoto A, Hinokuma S, Hirai T. Nat. Commun., 2020, 11(1): 3386.

doi: 10.1038/s41467-020-17216-2     pmid: 32636382
[5]
Wang S L, Zhu Y, Luo X, Huang Y, Chai J W, Wong T I, Xu G Q. Adv. Funct. Mater., 2018, 28(11): 1705357.

doi: 10.1002/adfm.201705357     URL    
[6]
Shang L, Tong B, Yu H J, Waterhouse G I N, Zhou C, Zhao Y F, Tahir M, Wu L Z, Tung C H, Zhang T R. Adv. Energy Mater., 2016, 6(3):1501241.

doi: 10.1002/aenm.201501241     URL    
[7]
Ryder C R, Wood J D, Wells S A, Hersam M C. ACS Nano, 2016, 10(4): 3900.

doi: 10.1021/acsnano.6b01091     URL    
[8]
Liao G F, Gong Y, Zhang L, Gao H Y, Yang G J, Fang B Z. Energy Environ. Sci., 2019, 12(7): 2080.

doi: 10.1039/C9EE00717B     URL    
[9]
Al-Mamun M R, Kader S, Islam M S, Khan M Z H. J. Environ. Chem. Eng., 2019, 7(5): 103248.

doi: 10.1016/j.jece.2019.103248     URL    
[10]
Yue S Y, Li L Y, McGuire S C, Hurley N, Wong S S. Energy Environ. Sci., 2019, 12(5): 1454.

doi: 10.1039/C8EE02143K     URL    
[11]
Su T M, Hood Z D, Naguib M, Bai L, Luo S, Rouleau C M, Ivanov I N, Ji H B, Qin Z Z, Wu Z L. Nanoscale, 2019, 11(17): 8138.

doi: 10.1039/C9NR00168A     URL    
[12]
Zhang L, Wang B, Zhou Y H, Wang C, Chen X L, Zhang H. Adv. Opt. Mater., 2020, 8(15): 2000045.

doi: 10.1002/adom.202000045     URL    
[13]
Xia F N, Wang H, Jia Y C. Nat. Commun., 2014, 5(1): 1.
[14]
Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B. Nat. Nanotechnol., 2014, 9(5): 372.

doi: 10.1038/nnano.2014.35     URL    
[15]
Lei W Y, Liu G, Zhang J, Liu M H. Chem. Soc. Rev., 2017, 46(12): 3492.

doi: 10.1039/C7CS00021A     URL    
[16]
Tian Y, Wang H D, Li H N, Guo Z N, Tian B N, Cui Y X, Li Z F, Li G H, Zhang H, Wu Y C. J. Mater. Chem. A, 2020, 8(9): 4647.

doi: 10.1039/C9TA13487E     URL    
[17]
Cai Y Q, Zhang G, Zhang Y W. Sci. Rep., 2015, 4: 6677.

doi: 10.1038/srep06677     URL    
[18]
Reddy D A, Kim E H, Gopannagari M, Kim Y, Kumar D P, Kim T K. Appl. Catal. B: Environ., 2019, 241: 491.

doi: 10.1016/j.apcatb.2018.09.055     URL    
[19]
Wen M, Wang J H, Tong R F, Liu D N, Huang H, Yu Y, Zhou Z K, Chu P K, Yu X F. Adv. Sci., 2019, 6(1): 1801321.

doi: 10.1002/advs.201801321     URL    
[20]
Xue Y, Min S X, Wang F. Int. J. Hydrog. Energy, 2019, 44(39): 21873.

doi: 10.1016/j.ijhydene.2019.06.087     URL    
[21]
Hu H G, Shi Z, Karim K, Cao R, Liang W Y, Tareen A K, Luo X L, Zhang H, Zhang Y, Huang W C, Guo Z N. J. Mater. Chem. A, 2020, 8: 5421.

doi: 10.1039/D0TA00416B     URL    
[22]
Zhang T M, Wan Y Y, Xie H Y, Mu Y, Du P W, Wang D, Wu X J, Ji H X, Wan L J. J. Am. Chem. Soc., 2018, 140(24): 7561.

doi: 10.1021/jacs.8b02156     URL    
[23]
Li B S, Lai C, Zeng G M, Huang D L, Qin L, Zhang M M, Cheng M, Liu X G, Yi H, Zhou C Y, Huang F L, Liu S Y, Fu Y K. Small, 2019, 15(8): 1804565.

doi: 10.1002/smll.201804565     URL    
[24]
Sakthivel T, Huang X Y, Wu Y C, Rtimi S. Chem. Eng. J., 2020, 379: 122297.

doi: 10.1016/j.cej.2019.122297     URL    
[25]
Gao R R, Cheng B, Fan J J, Yu J G, Ho W. Chin. J. Catal., 2021, 42(1): 15.

doi: 10.1016/S1872-2067(20)63614-2     URL    
[26]
Ding Y S, Wang H Y, Ding Y. Dalton Trans., 2020, 49(11): 3457.

doi: 10.1039/C9DT04233D     URL    
[27]
Bi W T, Li X G, Zhang L, Jin T, Zhang L D, Zhang Q, Luo Y, Wu C Z, Xie Y. Nat. Commun., 2015, 6(1): 1.
[28]
Wen F Y, Yang J H, Zong X, Ma Y, Xu Q, Ma B J, Li C. Prog. Chem., 2009, 21(11): 2285.
(温福宇, 杨金辉, 宗旭, 马艺, 徐倩, 马保军, 李灿. 化学进展, 2009, 21(11): 2285.).
[29]
Cao S, Piao L Y. Angew. Chem. Int. Ed., 2020, 59(42): 18312.

doi: 10.1002/anie.202009633     URL    
[30]
Zhu Y P, Liu Y P, Ren T Z, Yuan Z Y. Adv. Funct. Mater., 2015, 25(47): 7337.

doi: 10.1002/adfm.201503666     URL    
[31]
Feng R J, Wan K W, Sui X Y, Zhao N, Li H X, Lei W Y, Yu J G, Liu X F, Shi X H, Zhai M L, Liu G, Wang H, Zheng L R, Liu M H. Nano Today, 2021, 37: 101080.

doi: 10.1016/j.nantod.2021.101080     URL    
[32]
Zhu M S, Osakada Y, Kim S, Fujitsuka M, Majima T. Appl. Catal. B: Environ., 2017, 217: 285.

doi: 10.1016/j.apcatb.2017.06.002     URL    
[33]
Muduli S K, Varrla E, Xu Y, Kulkarni S A, Katre A, Chakraborty S, Chen S, Sum T C, Xu R, Mathews N. J. Mater. Chem. A, 2017, 5(47): 24874.

doi: 10.1039/C7TA04889K     URL    
[34]
Yan J Q, Verma P, Kuwahara Y, Mori K, Yamashita H. Small Methods, 2018, 2(12): 1800212.

doi: 10.1002/smtd.201800212     URL    
[35]
Zhu X J, Zhang T M, Sun Z J, Chen H L, Guan J, Chen X, Ji H X, Du P W, Yang S F. Adv. Mater., 2017, 29(17): 1605776.

doi: 10.1002/adma.201605776     URL    
[36]
Lu B C, Zheng X Y, Li Z S. Nanoscale, 2020, 12(12): 6617.

doi: 10.1039/C9NR09942E     URL    
[37]
Vishnoi P, Gupta U, Pandey R, Rao C N R. J. Mater. Chem. A, 2019, 7(12): 6631.

doi: 10.1039/c8ta08497a    
[38]
Tian B, Tian B N, Smith B, Scott M C, Hua R N, Lei Q, Tian Y. Nat. Commun., 2018, 9(1): 1397.

doi: 10.1038/s41467-018-03737-4     pmid: 29643347
[39]
Yuan Y J, Shen Z K, Song S X, Guan J, Bao L, Pei L, Su Y B, Wu S T, Bai W F, Yu Z T, Ji Z G, Zou Z G. ACS Catal., 2019, 9(9): 7801.

doi: 10.1021/acscatal.9b02274     URL    
[40]
Lei W Y, Zhang T T, Liu P, Rodriguez J A, Liu G, Liu M H. ACS Catal., 2016, 6(12): 8009.

doi: 10.1021/acscatal.6b02520     URL    
[41]
Zhu M S, Cai X Y, Fujitsuka M, Zhang J Y, Majima T. Angew. Chem., 2017, 129(8): 2096.

doi: 10.1002/ange.201612315     URL    
[42]
Tian B, Tian B N, Smith B, Scott M C, Lei Q, Hua R N, Tian Y, Liu Y. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(17): 4345.

doi: 10.1073/pnas.1800069115     pmid: 29563225
[43]
Xu S, Gong S Q, Jiang H, Shi P H, Fan J C, Xu Q J, Min Y L. Appl. Catal. B: Environ., 2020, 267: 118661.

doi: 10.1016/j.apcatb.2020.118661     URL    
[44]
Dutta S K, Mehetor S K, Pradhan N. J. Phys. Chem. Lett., 2015, 6(6): 936.

doi: 10.1021/acs.jpclett.5b00113     URL    
[45]
Shen Z K, Yuan Y J, Pei L, Yu Z T, Zou Z G. Chem. Eng. J., 2020, 386: 123997.

doi: 10.1016/j.cej.2019.123997     URL    
[46]
Liu F L, Huang C, Liu C X, Shi R, Chen Y. Chem. Eur. J., 2020, 26(20): 4449.

doi: 10.1002/chem.201904594     URL    
[47]
Xu Q L, Zhang L Y, Cheng B, Fan J J, Yu J G. Chem, 2020, 6(7): 1543.

doi: 10.1016/j.chempr.2020.06.010     URL    
[48]
Zhang L, Su Y, Wang W Z. Progress in Chemistry, 2016, 28 (4): 415.

doi: 10.7536/PC150927    
(张玲, 苏扬, 王文中. 化学进展, 2016, 28 (4): 415.).

doi: 10.7536/PC150927    
[49]
Zhang Y Z, Xie L L, Zhou Y J, Yin L F. Progress in Chemistry, 2016, 28 (10): 1528.
(张圆正, 谢利利, 周怡静, 殷立峰. 化学进展, 2016, 28 (10): 1528.).

doi: 10.7536/PC160617    
[50]
Zhang L F, Hu Z P, Liu X Y, Yuan Z Y. Prog. Chem., 2016, 28(10): 1474.
(张凌峰, 胡忠攀, 刘歆颖, 袁忠勇. 化学进展, 2016, 28(10): 1474.).

doi: 10.7536/PC160614    
[51]
Elbanna O, Zhu M S, Fujitsuka M, Majima T. ACS Catal., 2019, 9(4): 3618.

doi: 10.1021/acscatal.8b05081    
[52]
Ran J R, Zhu B C, Qiao S Z. Angew. Chem. Int. Ed., 2017, 56(35): 10373.

doi: 10.1002/anie.201703827     URL    
[53]
Ran J R, Wang X L, Zhu B C, Qiao S Z. Chem. Commun., 2017, 53(71): 9882.

doi: 10.1039/C7CC05466A     URL    
[54]
Zhang Q, Zhang J H, Zhang L, Cao M T, Yang F L, Dai W L. Appl. Surf. Sci., 2020, 504: 144366.

doi: 10.1016/j.apsusc.2019.144366     URL    
[55]
Yuan Y J, Wang P, Li Z J, Wu Y Z, Bai W F, Su Y B, Guan J, Wu S T, Zhong J S, Yu Z T, Zou Z G. Appl. Catal. B: Environ., 2019, 242: 1.
[56]
Zhu M S, Zhai C Y, Fujitsuka M, Majima T. Appl. Catal. B: Environ., 2018, 221: 645.

doi: 10.1016/j.apcatb.2017.09.063     URL    
[57]
Pan J B, Wang B H, Wang J B, Ding H Z, Zhou W, Liu X, Zhang J R, Shen S, Guo J K, Chen L, Au C T, Jiang L L, Yin S F. Angew. Chem. Int. Ed., 2021, 60(3): 1433.

doi: 10.1002/anie.202012550     URL    
[58]
Sun S M, Wang W Z, Li D Z, Zhang L, Jiang D. ACS Catal., 2014, 4(10): 3498.

doi: 10.1021/cs501076a     URL    
[59]
Li R G, Zhang F X, Wang D, Yang J X, Li M R, Zhu J, Zhou X, Han H X, Li C. Nat. Commun., 2013, 4(1): 1.
[60]
Hu J D, Chen D Y, Mo Z, Li N J, Xu Q F, Li H, He J H, Xu H, Lu J M. Angew. Chem. Int. Ed., 2019, 58(7): 2073.

doi: 10.1002/anie.201813417     URL    
[61]
Zhu M S, Sun Z C, Fujitsuka M, Majima T. Angew. Chem. Int. Ed., 2018, 57(8): 2008.

doi: 10.1002/anie.201800579     URL    
[62]
Liu F L, Shi R, Wang Z, Weng Y X, Che C M, Chen Y. Angew. Chem. Int. Ed., 2019, 58(34): 11791.

doi: 10.1002/anie.201906416     URL    
[63]
Zhu M S, Kim S, Mao L, Fujitsuka M, Zhang J Y, Wang X C, Majima T. J. Am. Chem. Soc., 2017, 139(37): 13234.

doi: 10.1021/jacs.7b08416     URL    
[64]
Ran J R, Guo W W, Wang H L, Zhu B C, Yu J G, Qiao S Z. Adv. Mater., 2018, 30(25): 1800128.

doi: 10.1002/adma.201800128     URL    
[65]
Zhang Q Z, Huang S Y, Deng J J, Gangadharan D T, Yang F, Xu Z H, Giorgi G, Palummo M, Chaker M, Ma D L. Adv. Funct. Mater., 2019, 29(28): 1902486.

doi: 10.1002/adfm.201902486     URL    
[66]
Boppella R, Yang W, Tan J, Kwon H C, Park J, Moon J. Appl. Catal. B: Environ., 2019, 242: 422.

doi: 10.1016/j.apcatb.2018.10.018     URL    
[67]
Zhu M S, Fujitsuka M, Zeng L X, Liu M H, Majima T. Appl. Catal. B: Environ., 2019, 256: 117864.

doi: 10.1016/j.apcatb.2019.117864     URL    
[68]
Hu J D, Ji Y J, Mo Z, Li N J, Xu Q F, Li Y Y, Xu H, Chen D Y, Lu J M. J. Mater. Chem. A, 2019, 7(9): 4408.

doi: 10.1039/C8TA12309H     URL    
[69]
Wang H, Jiang S L, Shao W, Zhang X D, Chen S C, Sun X S, Zhang Q, Luo Y, Xie Y. J. Am. Chem. Soc., 2018, 140(9): 3474.

doi: 10.1021/jacs.8b00719     pmid: 29451386
[70]
Wang X, Xiang Y R, Zhou B Q, Zhang Y M, Wu J T, Hu R, Liu L W, Song J, Qu J L. J. Colloid Interface Sci., 2019, 534: 1.

doi: 10.1016/j.jcis.2018.09.013     URL    
[71]
Wang X, Zhou B Q, Zhang Y M, Liu L W, Song J, Hu R, Qu J L. J. Alloy. Compd., 2018, 769: 316.

doi: 10.1016/j.jallcom.2018.08.008     URL    
[72]
Shen Z R, Sun S T, Wang W J, Liu J W, Liu Z F, Yu J C. J. Mater. Chem. A, 2015, 3(7): 3285.

doi: 10.1039/C4TA06871H     URL    
[73]
Liu Y L, Zhou M, Zhang W C, Chen K Q, Mei A H, Zhang Y Y, Chen W. Nanoscale, 2019, 11(12): 5674.

doi: 10.1039/C8NR10476J     URL    
[74]
Shao B B, Wang J J, Liu Z F, Zeng G M, Tang L, Liang Q H, He Q Y, Wu T, Liu Y, Yuan X Z. J. Mater. Chem. A, 2020, 8(10): 5171.

doi: 10.1039/C9TA13610J     URL    
[75]
Wang L, Xu Q C, Xu J, Weng J. RSC Adv., 2016, 6(73): 69033.

doi: 10.1039/C6RA13646J     URL    
[76]
Li X B, Xiong J, Gao X M, Ma J, Chen Z, Kang B B, Liu J Y, Li H, Feng Z J, Huang J T. J. Hazard. Mater., 2020, 387: 121690.

doi: 10.1016/j.jhazmat.2019.121690     URL    
[77]
Wen M, Wang J H, Tong R F, Liu D N, Huang H, Yu Y, Zhou Z K, Chu P K, Yu X F. Adv Sci, 2019, 6(1): 1801321.

doi: 10.1002/advs.201801321     URL    
[78]
Ge K, Zhang Y, Wang D, Li Z X, He J H, Fu C C, Yang Y F, Pan M W, Zhu L. ACS Appl. Mater. Interfaces, 2020, 12(17): 20035.

doi: 10.1021/acsami.0c00602     URL    
[79]
Zhu X J, Zhang T M, Jiang D C, Duan H L, Sun Z J, Zhang M M, Jin H C, Guan R N, Liu Y J, Chen M Q, Ji H X, Du P W, Yan W S, Wei S Q, Lu Y L, Yang S F. Nat. Commun., 2018, 9(1): 1.

doi: 10.1038/s41467-017-02088-w     URL    
[80]
Zheng Y, Chen Y L, Wang L, Tan M Y, Xiao Y Y, Gao B F, Lin B Z. Sustain. Energy Fuels, 2020, 4(7): 3739.

doi: 10.1039/D0SE00394H     URL    
[81]
Zhu X W, Huang S Q, Yu Q, She Y B, Yang J M, Zhou G L, Li Q D, She X J, Deng J J, Li H M, Xu H. Appl. Catal. B: Environ., 2020, 269: 118760.

doi: 10.1016/j.apcatb.2020.118760     URL    
[82]
Talapaneni S N, Singh G, Kim I Y, AlBahily K, Al-Muhtaseb A H, Karakoti A S, Tavakkoli E, Vinu A. Adv. Mater., 2020, 32(18): 1904635.

doi: 10.1002/adma.201904635     URL    
[83]
Fei X G, Tan H Y, Cheng B, Zhu B C, Zhang L Y. Acta Phys. Chim. Sin., 2020: 2010027.
[84]
Wang X D, He J, Li J Y, Lu G, Dong F, Majima T, Zhu M S. Appl. Catal. B: Environ., 2020, 277: 119230.

doi: 10.1016/j.apcatb.2020.119230     URL    
[85]
Zhang Y Z, Chen X, Zhang S Y, Yin L F, Yang Y. Chem. Eng. J., 2020, 401: 126033.

doi: 10.1016/j.cej.2020.126033     URL    
[86]
Zhang L L, Ding L X, Chen G F, Yang X F, Wang H H. Angew. Chem. Int. Ed., 2019, 58(9): 2612.

doi: 10.1002/anie.201813174     pmid: 30560583
[87]
Bian S, Wen M, Wang J H, Yang N, Chu P K, Yu X F. J. Phys. Chem. Lett., 2020, 11(3): 1052.

doi: 10.1021/acs.jpclett.9b03507     pmid: 31952439
[88]
Qiu P X, Xu C M, Zhou N, Chen H, Jiang F. Appl. Catal. B: Environ., 2018, 221: 27.

doi: 10.1016/j.apcatb.2017.09.010     URL    
[89]
Shen Z K, Yuan Y J, Wang P, Bai W F, Pei L, Wu S T, Yu Z T, Zou Z G. ACS Appl. Mater. Interfaces, 2020, 12(15): 17343.

doi: 10.1021/acsami.9b21167     URL    
[90]
He D Y, Zhang Z C, Xing Y, Zhou Y J, Yang H, Liu H Y, Qu J, Yuan X, Guan J N, Zhang Y N. Chem. Eng. J., 2020, 384: 123258.

doi: 10.1016/j.cej.2019.123258     URL    
[91]
Zhang Z C, He D Y, Liu H Y, Ren M, Zhang Y N, Qu J, Lu N, Guan J N, Yuan X. Environ. Pollut., 2019, 245: 950.

doi: 10.1016/j.envpol.2018.11.090     URL    
[92]
Yuan Y H, Niu B Y, Yu Q H, Guo X, Guo Z H, Wen J, Liu T, Zhang H Q, Wang N. Angew. Chem. Int. Ed., 2020, 59(3): 1220.

doi: 10.1002/anie.201913644     URL    
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[4] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[5] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[6] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[7] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[8] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[9] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[10] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[11] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[12] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[13] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.
[14] 郭俊兰, 梁英华, 王欢, 刘利, 崔文权. 光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114.
[15] 毕洪飞, 刘劲松, 吴正颖, 索赫, 吕学良, 付云龙. 硫化铟锌的改性合成及光催化特性[J]. 化学进展, 2021, 33(12): 2334-2347.