English
新闻公告
More
化学进展 2016, Vol. 28 Issue (2/3): 204-218 DOI: 10.7536/PC150816 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

基于非锂金属负极的锂离子全电池

明海1, 明军3, 邱景义1*, 余仲宝1, 李萌1, 郑军伟2*   

  1. 1. 防化研究院 北京 100191;
    2. 苏州大学物理光电·能源学部 苏州 215003;
    3. 阿卜杜拉国王科技大学 沙特阿拉伯王国
  • 收稿日期:2015-08-01 修回日期:2015-10-01 出版日期:2016-03-15 发布日期:2016-01-07
  • 通讯作者: 邱景义, 郑军伟 E-mail:qiujingyi1202@163.com;jwzheng@suda.edu.cn

Lithium-Ion Full Batteries Based on the Anode of Non-Metallic Lithium

Ming Hai1, Ming Jun3, Qiu Jingyi1*, Yu Zhongbao1, Li Meng1, ZhengJunwei2*   

  1. 1. Research Institute of Chemical Defense, Beijing 100191, China;
    2. College of Physical, Optoelectronics and Energy, Soochow University, Suzhou 215003, China;
    3. King Abdullah University of Science & Technology, Kingdom of Saudi Arabia
  • Received:2015-08-01 Revised:2015-10-01 Online:2016-03-15 Published:2016-01-07
可充电锂离子电池对于电子产品特别是手持设备的发展至关重要,其关键作用同样体现在飞速发展的电动汽车领域。此外,对电力系统的调配(削峰填谷)和新能源发电的并网也是很好的选择。但是传统锂离子电池较低的能量密度常被人诟病。传统石墨负极材料的替代物(如金属氧化物、钛基、锡基、硅基、合金等材料)能有效提高锂离子电池的容量和倍率性能,但目前缺乏充分的全电池实验数据予以证实,也鲜有新型负极材料成功用于商业化的锂离子全电池。由此可见,新型负极材料在锂离子全电池中的研究现状及其商业化应用前景等问题亟需面对和斟酌,也应受到锂离子电池研究者的广泛关注。因此,本文从负极材料首圈容量可逆/不可逆的特点着手,对基于非锂金属负极(如石墨、钛酸锂、二氧化钛、氧化锗、氧化铁、锡基、硅基等)的锂离子全电池的最新研究进行了论述。
Rechargeable lithium-ion batteries are vital for developing the electronic devices especially for the portable devices, as well as for the rapid development of plug-in hybrid-electric vehicle (PHEV)/electric vehicle (EV). And also, they are good choices for the deployment of power system (peak clipping and valley filling) and introducing the electric power into power system from the renewable energy sources. However, the disadvantages of low energy capacity are often reviled for the traditional lithium-ion batteries. In the past few decades, the researches of seeking substitutes for the traditional graphite anode material, including metal oxide, titanium-, tin- and silicon-based anode materials, have been widely investigated, and their positive effects on the high capacity and rate capability in the lithium half batteries have been demonstrated repeatedly. But to date, there is insufficient data to confirm these effects in lithium-ion full batteries, and very few kinds of anode materials were successfully utilized in commercialization. Thus, the questions of how the development of new anode-based lithium-ion full battery and whether it could be truly commercialized need to be well considered and discussed urgently, as many researchers concerned. At this stage, this review mainly discusses the development of lithium-ion full batteries starting from the irreversible capacity characteristics of anodes (graphite,Li4Ti5O12, TiO2, GeOx,FeOx,Sn- and Si-based,etc.) in initial cycles.

Contents
1 Introduction
2 Lithium-ion full batteries based on different anodes
2.1 Anode materials with initial revisable capacity
2.2 Anode materials with initial irrevisable capacity
3 Conclusion

中图分类号: 

()
[1] Scrosati B, Abraham K, van Schalkwijk W A, Hassoun J. Lithium Batteries:Advanced Technologies and Applications. John Wiley & Sons, 2013, 58.
[2] Tarascon J M, Armand M. Nature, 2001, 414:359.
[3] Dunn B, Kamath H, Tarascon J M. Science, 2011, 334:928.
[4] Winter M, Brodd R J. Chem. Rev., 2004, 104:4245.
[5] Armand M, Tarascon J M. Nature, 2008, 451:652.
[6] Ding F, Xu W, Choi D, Wang W, Li X, Engelhard M H, Chen X, Yang Z, Zhang J G. J. Mater. Chem., 2012, 22:12745.
[7] 张临超(Zhang L C), 陈春华(Chen C H). 化学进展(Progress in Chemistry), 2011, 23(2/3):276.
[8] Ren G, Ma G, Cong N. Renew. Sustain. Energy Rev., 2015, 41:225.
[9] Son B, Ryou M H, Choi J, Kim S H, Ko J M, Lee Y M. J. Power Sources, 2013, 243:641.
[10] Loeffler N, von Zamory J, Laszczynski N, Doberdo I, Kim G T, Passerini S. J. Power Sources, 2014, 248:915.
[11] Chong J, Xun S, Zheng H, Song X, Liu G, Ridgway P, Wang J Q, Battaglia V S. J. Power Sources, 2011, 196:7707.
[12] 刘欣(Liu X), 赵海雷(Zhao H L), 解晶莹(Xie J Y), 汤卫平(Tang W P), 潘延林(Pan Y L), 吕鹏鹏(Lv P P). 化学进展(Progress in Chemistry), 2013, 25(8):1402.
[13] Pei L, Wang T, Lu R, Zhu C. J. Power Sources, 2014, 253:412.
[14] Reimers J N, Shoesmith M, Lin Y S, Valøen L O. J. Electrochem. Soc., 2013, 160:A1870.
[15] 张玲玲(Zhang L L), 马玉林(Ma Y L), 杜春雨(Du C Y), 尹鸽平(Yin G P). 化学进展(Progress in Chemistry), 2014, 26(4):553.
[16] 尹成果(Yin C G),马玉林(Ma Y L),程新群(Chen X Q),尹鸽平(Yin G P). 化学进展(Progress in Chemistry), 2013, 25(1):55.
[17] Petibon R, Sinha N N, Burns J C, Aiken C P, Ye H, van Elzen C M, Jain G, Trussler S, Dahn J R. J. Power Sources, 2014, 251:187.
[18] Smith A J, Sinha N N, Dahn J R. J. Electrochem. Soc., 2013, 160:A235.
[19] Arbizzani C, de Giorgio F, Porcarelli L, Mastragostino M, Khomenko V, Barsukov V, Bresser D, Passerini S. J. Power Sources, 2013, 238:17.
[20] Ciosek H K, Lundgren H, Wilken S, Zavalis T G, Behm M, Edström K, Jacobsson P, Johansson P, Lindbergh G. J. Power Sources, 2014, 256:430.
[21] Yong T, Wang J, Mai Y, Zhao X, Luo H, Zhang L. J. Power Sources, 2014, 254:29.
[22] 秦雪英(Qin X Y), 汪靖伦(Wang J L), 张灵志(Zhang L Z). 化学进展(Progress in Chemistry), 2012, 24(5):811.
[23] Zhan C, Lu J, Jeremy Kropf A, Wu T, Jansen A N, Sun Y K, Qiu X, Amine K. Nat. Commun., 2013, 4:2437.
[24] Krueger S, Kloepsch R, Li J, Nowak S, Passerini S, Winter M. J. Electrochem. Soc., 2013, 160:A542.
[25] Yang H, Prakash J. J. Electrochem. Soc., 2004, 151:A1222.
[26] Lee B R, Noh H J, Myung S T, Amine K, Sun Y K. J. Electrochem. Soc., 2011, 158:A180.
[27] Zaghib K, Simoneau M, Armand M, Gauthier M. J. Power Sources, 1999, 81:300.
[28] 杨立(Yang L), 陈继章(Chen J Z), 唐宇峰(Tang Y F), 房少华(Fang S H). 化学进展(Progress in Chemistry), 2011, 23(2/3):311.
[29] Jung H G, Jang M W, Hassoun J, Sun Y K, Scrosati B. Nat. Commun., 2011, 2:516.
[30] Wu H, Belharouak I, Deng H, Abouimrane A, Sun Y K, Amine K. J. Electrochem. Soc., 2009, 156:A1047.
[31] Li S, Chen C, Xia X, Dahn J. J. Electrochem. Soc., 2013, 160:A1524.
[32] Xi L J, Wang H K, Yang S L, Ma R G, Lu Z G, Cao C W, Leung K L, Deng J Q, Rogach A L, Chung C Y. J. Power Sources, 2013, 242:222.
[33] Mahmoud A, Amarilla J M, Lasri K, Saadoune I. Electrochim. Acta, 2013, 93:163.
[34] Takami N, Inagaki H, Tatebayashi Y, Saruwatari H, Honda K, Egusa S. J. Power Sources, 2013, 244:469.
[35] Jaiswal A, Horne C, Chang O, Zhang W, Kong W, Wang E, Chern T, Doeff M. J. Electrochem. Soc., 2009, 156:A1041.
[36] Martha S K, Haik O, Borgel V, Zinigrad E, Exnar I, Drezen T, Miners J H, Aurbach D. J. Electrochem. Soc., 2011, 158:A790.
[37] Cheah Y L, Aravindan V, Madhavi S. ACS Appl. Mater. Interfaces, 2013, 5:3475.
[38] Mao W F, Zhang N N, Tang Z Y, Feng Y Q, Ma C X. J. Alloy Compd., 2014, 588:25.
[39] 王倩(Wang Q), 张竞择(Zhang J Z), 娄豫皖(Lou Y W), 夏保佳(Xia B J). 化学进展(Progress in Chemistry), 2014, 26(11):1772.
[40] 徐淑银(Xu S Y), 刘燕燕(Liu Y Y), 高飞(Gao F), 杨凯(Yang K), 王绥军(Wang S J), 胡勇胜(Hu Y S). 硅酸盐学报(Journal of the Chinese Ceramic Society), 2015, 43(5):657.
[41] He Y B, Li B, Liu M, Zhang C, Lv W, Yang C, Li J, Du H, Zhang B, Yang Q H, Kim J K, Kang F. Sci. Rep., 2012, 2:1.
[42] 张双虎(Zhang S H), 迟彩霞(Chi C X), 张盛武(Zhang S W). 电源技术(Chinese Journal of Power Sources), 2015, 39(7):1543.
[43] Weng Z, Guo H, Liu X, Wu S, Yeung K, Chu P K. RSC Adv., 2013, 3:24758.
[44] Zhu G N, Wang Y G, Xia Y Y. Energy Environ. Sci., 2012, 5:6652.
[45] Cheng J, Wang B, Xin H L, Kim C, Nie F, Li X, Yang G, Huang H. J. Mater. Chem. A, 2014, 2:2701.
[46] Cao F F, Wu X L, Xin S, Guo Y G, Wan L J. J. Phys. Chem. C, 2010, 114:10308.
[47] Aravindan V, Shubha N, Cheah Y L, Prasanth R, Chuiling W, Prabhakar R R, Madhavi S. J. Mater. Chem. A, 2013, 1:308.
[48] Moretti A, Kim G T, Bresser D, Renger K, Paillard E, Marassi R, Winter M, Passerini S. J. Power Sources, 2013, 221:419.
[49] Ming H, Ming J, Oh S, Lee E, Huang H, Zhou Q, Zheng J, Sun Y. J. Mater. Chem. A, 2014:2, 18938.
[50] Reddy M, Subba R G, Chowdari B. Chem. Rev., 2013, 113:5364.
[51] 张晶晶(Zhang J J),余爱水(Yu A S). 科学通报(英文版)(Chinese Science Bulletin), 2015, 60(9):823.
[52] Xiao J, Choi D, Cosimbescu L, Koech P, Liu J, Lemmon J P. Chem. Mater., 2010, 22:4522.
[53] 陈汝文(Chen R W), 涂新满(Tu X M), 陈德志(Chen D Z). 化学进展(Progress in Chemistry), 2015, 27(4):416.
[54] Goriparti S, Miele E, de Angelis F, di Fabrizio E, Zaccaria R P, Capiglia C. J. Power Sources, 2014, 257:421.
[55] Lv D, Gordin M L, Yi R, Xu T, Song J, Jiang Y B, Choi D, Wang D. Adv. Funct. Mater., 2014, 24:1059.
[56] Yuan F W, Tuan H Y. Chem. Mater., 2014, 26:2172.
[57] Hariharan S, Ramar V, Joshi S P, Balaya P. RSC Adv., 2013, 3:6386.
[58] Wang Y, Wang Y, Jia D, Peng Z, Xia Y, Zheng G. Nano Lett., 2014, 14:1080.
[59] Ming J, Kwak W J, Youn S J, Ming H, Hassoun J, Sun Y K. Energy Technol., 2014, 2:778.
[60] Verrelli R, Hassoun J, Farkas A, Jacob T, Scrosati B. J. Mater. Chem. A, 2013, 1:15329.
[61] Hwang H, Kim H, Cho J P. Nano Lett., 2011, 11:4826.
[62] Ming H, Ming J, Tian S, Zhou Q, Huang H, Sun Y, Zheng J, Oh S M. ACS Appl. Mater. Interfaces, 2014, 6:15499.
[63] Ming H, Ming J, Kwak W, Yang W, Zhou Q, Zheng J, Sun Y K. Electrochim. Acta, 2015, 169:291.
[64] Liang C, Gao M, Pan H, Liu Y, Yan M. J. Alloy Compd., 2013, 575:246.
[65] Kim H, Lee J T, Lee D C, Oschatz M, Cho W I, Kaskel S, Yushin G. Electrochem. Commun., 2013, 36:38.
[66] 褚道葆(Chu D B), 李建(Li J), 袁希梅(Yuan X M), 李自龙(Li Z L), 魏旭(Wei X), 万勇(Wan Y). 化学进展(Progress in Chemistry), 2012, 24(8):1467.
[67] Kataoka R, Mukai T, Yoshizawa A, Sakai T. J. Electrochem. Soc., 2013, 160:A1684.
[68] Liu B, Abouimrane A, Ren Y, Neuefeind J, Fang Z Z, Amine K. J. Electrochem. Soc., 2013, 160:A882.
[69] Brutti S, Hassoun J, Scrosati B, Lin C Y, Wu H, Hsieh H W. J. Power Sources, 2012, 217:72.
[70] Xia Y, Sakai T, Fujieda T, Wada M, Yoshinaga H. Electrochem. Solid-State Lett., 2001, 4:A9.
[71] 孟浩文(Meng H W), 马大千(Ma D Q), 俞晓辉(Yu X H), 杨红艳(Yang H Y), 孙艳丽(Sun Y L), 许鑫华(Xu X H). 化学进展(Progress in Chemistry), 2015, 27(8):1110.
[72] Wu H, Cui Y. Nano Today, 2012, 7(5):414.
[73] 牛津(Niu J), 张苏(Zhang S), 牛越(Niu Y), 宋怀河(Song H H), 陈晓红(Chen X H), 周继升(Zhou J X). 化学进展(Progress in Chemistry), 2015, 27(9):1275.
[74] Beaulieu L, Eberman K, Turner R, Krause L, Dahn J. Electrochem. Solid-State Lett., 2001, 4:A137.
[75] Park C M, Kim J H, Kim H, Sohn H J. Chem. Soc. Rev., 2010, 39:3115.
[76] Eom K, Joshi T, Bordes A, Do I, Fuller T F. J. Power Sources, 2014, 249:118.
[77] Markevich E, Fridman K, Sharabi R, Elazari R, Salitra G, Gottlieb H, Gershinsky G, Garsuch A, Semrau G, Schmidt M. J. Electrochem. Soc., 2013, 160:A1824.
[78] Yin J, Wada M, Yamamoto K, Kitano Y, Tanase S, Sakai T. J. Electrochem. Soc., 2006, 153:A472.
[79] Fridman K, Sharabi R, Markevich E, Elazari R, Salitra G, Gershinsky G, Aurbach D, Lampert J, Schulz-Dobrick M. ECS Electrochem. Lett., 2013, 2:A84.
[80] Chae C, Noh H J, Lee J K, Scrosati B, Sun Y K. Adv. Funct. Mater., 2014, 24:3036.
[81] Ming H, Zhou Q, Zheng J W. The 8th Asian Conference on Electrochemical Power Sources (ACEPS-8), 2015, Kunming, China.
[82] Kim C, Ko M, Yoo S, Chae S, Choi S, Lee E H, Ko S, Lee S Y, Cho J P, Park S. Nanoscale, 2014, 6:10604.
[83] Son I H, Park J H, Kwon S, Park S, Rümmeli M H, Bachmatiuk A, Song H J, Ku J, Choi J W, Choi J, Doo S G, Chang H. Nat. Commun., 2015, 6:1.
[84] 刘欣(Liu X), 赵海雷(Zhao H L), 解晶莹(Xie J Y), 吕鹏鹏(Lv P P), 王可(Wang K), 崔佳佳(Cui J J). 化学进展(Progress in Chemistry), 2015, 27(4):336.
[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[4] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[5] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[6] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[7] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[8] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[9] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[10] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[11] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[12] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[13] 张伟, 齐小鹏, 方升, 张健华, 史碧梦, 杨娟玉. 碳在锂离子电池硅碳复合材料中的作用[J]. 化学进展, 2020, 32(4): 454-466.
[14] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.
[15] 王官格, 张华宁, 吴彤, 刘博睿, 黄擎, 苏岳锋. 废旧锂离子电池正极材料资源化回收与再生[J]. 化学进展, 2020, 32(12): 2064-2074.