English
新闻公告
More
化学进展 2020, Vol. 32 Issue (12): 2064-2074 DOI: 10.7536/PC200119 前一篇   

所属专题: 锂离子电池

• 综述 •

废旧锂离子电池正极材料资源化回收与再生

王官格1, 张华宁2, 吴彤1, 刘博睿4, 黄擎1,3,**(), 苏岳锋1,3   

  1. 1 北京理工大学材料学院 北京 100081
    2 辽宁省朝阳市第二高级中学 朝阳 122000
    3 北京理工大学重庆创新中心 重庆 401120
    4 北京理工大学资产与实验室管理处 北京 100081
  • 收稿日期:2020-01-18 修回日期:2020-09-03 出版日期:2020-10-15 发布日期:2020-06-30
  • 通讯作者: 黄擎
  • 作者简介:
    ** Corresponding author e-mail:
  • 基金资助:
    国家重点研究发展项目(No. 2016YFB0100301); 国家自然科学基金项目(No.21875022, 51802020, U1664255)

Recycling and Regeneration of Spent Lithium-Ion Battery Cathode Materials

Guange Wang1, Huaning Zhang2, Tong Wu1, Borui Liu4, Qing Huang1,3,**(), Yuefeng Su1,3   

  1. 1 School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
    2 Chaoyang No.2 High School, Chaoyang 122000, China
    3 Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
    4 Office of National Assets & Laboratory Management, Beijing Institute of Technology, Beijing 100081, China
  • Received:2020-01-18 Revised:2020-09-03 Online:2020-10-15 Published:2020-06-30
  • Contact: Qing Huang
  • Supported by:
    the National Key R&D Program of China(No. 2016YFB0100301); the National Natural Science Foundation of China(No.21875022, 51802020, U1664255)

随着电子设备的普及和电动汽车行业的迅速崛起,作为提供能量来源的锂离子电池发挥着重要的作用。以钴酸锂、磷酸铁锂以及三元正极材料为代表的锂离子电池产销量不断增加;与此同时,为了提供更长的续航时间以及续航稳定性,新型锂离子电池材料的研究工作也在不断推进。在此背景下,锂离子电池正极材料的失效、废弃以及资源化回收再生的过程就显得愈发重要,如何在下游解决报废锂离子电池处理的问题也逐渐提上日程。基于此,本文分别从湿法和火法再生两个角度对废旧锂离子电池正极材料的回收和再生过程进行了介绍,包括回收条件优化的方法、较为新颖的回收再生方法以及再生材料的性能等,并总结了回收再生过程的杂质元素,包括铝、铜等元素对再生材料结构和性能的影响以及工业上常用的回收废旧锂离子电池的方法和环境影响。最后对锂离子电池回收的方法进行总结并进行展望。

With the popularity of electronic equipment and the rapid rise of electric vehicle industry, lithium-ion battery, as a source of energy, plays an important role. The production and sales of lithium-ion batteries represented by lithium cobalt oxide, lithium iron phosphate and ternary cathode materials are increasing. At the same time, in order to provide longer life and stability, the research of novel lithium-ion battery cathode materials is also advancing. In this context, the failure mechanism, and recycling of lithium-ion battery cathode materials becomes more and more important. How to solve the problem of waste lithium-ion battery treatment in the downstream is gradually put on the agenda. Based on this, this paper introduces the recycling and regeneration process of spent lithium-ion battery cathode materials from the perspectives of hydrometallurgy and pyrometallurgy, including the optimization of recycling conditions, novel recycling methods and the performance of recycled materials, and summarizes the influence of impurity elements in the recycling process, including aluminum, copper and other elements on the structure and performance of recycled materials Finally, the methods of lithium-ion battery recycling are summarized and prospected.

Contents

1 Introduction

2 Lithium-ion battery pretreatments

3 Hydrometallurgy of spent cathode material

4 Recycling process of lithium ion battery cathode material

4.1 Hydrometallurgy regeneration

4.2 Solid phase regeneration

4.3 Other methods

5 Elimination and the effects of heterogeneous elements on the properties of recycled cathode materials during recycling

6 Industrial recycling methods and environmental impact

7 Conclusion

()
图1 锂离子电池报废的市场规模[13]
Fig.1 Market size of spent lithium ion batteries[13]
图2 废旧锂离子电池前处理过程[23]
Fig.2 Pretreatment of spent lithium ion battery[23]. Copyright 2018, Elsevier
图3 废旧锂离子电池湿法回收流程
Fig.3 Hydrometallurgy recycling process of spent lithium ion battery
图4 再生正极材料的形貌[56]
Fig.4 Morphology of regenerated cathode material[56]. Copyright 2015, Elsevier
图5 低共熔溶剂回收流程图[69]
Fig.5 Flow chart of recovery by deep eutectic solvent[69]. Copyright 2015, Wiley
[1]
Zou H, Gratz E, Apelian D, Wang Y. Green Chemistry, 2013, 15:1183.
[2]
Winslow K M, Laux S J, Townsend T G. Resources, Conservation and Recycling, 2018, 129:263.
[3]
Asari M, Sakai S I. Resources, Conservation and Recycling, 2013, 81:52.
[4]
Boyden A, Soo V K, Doolan M. Procedia Cirp, 2016, 48:188.
[5]
辛森( Xin S), 郭玉国( Guo Y G), 万立骏(Wan L J). 中国科学:化学(SCIENCE CHINA Chemistry), 2011, 41: 1229.
[6]
Yamada A, Chung S C, Hinokuma K. Cheminform, 2010, 32:17.
[7]
Xu K. Chemical Reviews, 2004, 104:4303.
[8]
李智敏( Li Z M), 罗发( Luo F), 苏晓磊(Su X L), 朱冬梅(Zhu D M), 周万城(Zhou W C). 稀有金属材料与工程(Rare Metal Materials and Engineering), 2007, 36: 1382.
[9]
Vanitha M, Balasubramanian N. Environmental Technology Reviews, 2013, 2:101.
[10]
Jung C H, Kim K H, Hong S H. ACS Applied Material & Interfaces, 2019, 11(30): 26753.
[11]
Park J K, 张治安( Zhang ZA). 锂二次电池原理与应用(Principles and Applications of Lithium Secondary batteries), 北京:机械工业出版社(Beijing: China Machine Press), 2014.
[12]
Shi Y, Tan D, Li M, Chen Z. Nanotechnology, 2019, 30:302002.
[13]
黄孝振( Huang X Z). 北京有色金属研究总院硕士论文(Master Dissertation of General Research Institute for Nonferrous Metals), 2019.
[14]
Xin B, Zhang D, Zhang X, Xia Y, Wu F, Chen S. Bioresource Technology, 2009, 100:6163.
[15]
Zhu N, Zhang L, Li C, Cai C. Waste Management, 2003, 23:703.
[16]
Martin G, Rentsch L, Höck M. Energy Storage Materials, 2017, 6:171.
[17]
Wang X, Gaustad G, Babbitt CW. Waste Management, 2016, 51:204.
[18]
Hanisch C, Kara S. Sustainable Production, Life Cycle Engineering and Management. Switzerland: Springer International Publishing AG, 2018.
[19]
Li Z, Wang K, Song J, Xu Q, Kobayashi N. Journal of Material Cycles and Waste Management, 2014, 16:359.
[20]
Sun C, Xu L, Chen X, Qiu T, Zhou T. Waste Management & Research, 2017, 36:113.
[21]
Yao L, Feng Y, Xi G. RSC Advances, 2015, 5:44107.
[22]
杨海波( Yang H B), 梁辉( Liang H), 黄继承(Huang J C). 天津大学学报(Journal of Tianjin University), 2007, 39:341.
[23]
Wang M, Tan Q, Liu L, Li J H. Jounal of Hazardous Materials, 2019, 380:120846.
[24]
Pranolo Y, Zhang W, Cheng C Y. Hydrometallurgy, 2010, 102(1/4):37.
[25]
Ahmadi L, Young S B, Fowler M, Fraser R A, Achachlouei M A. The International Journal of Life Cycle Assessment, 2015, 22:1.
[26]
Zhang X, Li L, Fan E S. Chemical Society Reviews, 2018, 47:7239.
[27]
Shin S M, Kim N H, Sohn J S, Yang D H, Kim Y H. Hydrometallurgy, 2005, 79,172.
[28]
Song D, Wang X, Zhou E, Hou P, Guo F, Zhang L. Journal of Power Sources, 2013, 232:348.
[29]
Takacova Z, Havlik T, Kukurugya F, Orac D. Hydrometallurgy, 2016, 163:9.
[30]
Yang Y, Meng X, Cao H. Green Chemistry, 2018, 20:3121.
[31]
陆修远( Lu X Y), 张贵清( Zhang G Q), 曹佐英(Cao Z Y), 李青刚(Li Q G),曾理(Zeng L), 关文娟(Guan W J),晋可达(Jin K D). 稀有金属与硬质合金(Rare Metau and Cemented Carbides), 2017, 6:18.
[32]
Mantuano D P, Dorella G, Elias R C A, Mansur M B. Journal of Power Sources, 2006, 159:1510.
[33]
屈莉莉( Qu L L), 何亚群( He Y Q), 付元鹏(Fu Y P), 李金龙(Li J L), 谢卫宁(Xie W N). 湿法冶金(Hydrometallurgy of China). 2019, 38: 182.
[34]
清华大学. CN201310541240. 8. 2014.
[35]
贺欣( He X). 上海第二工业大学硕士论文(Master Dissertation of Shanghai Polytechnic University), 2018.
[36]
Liu B, Huang Q, Su Y, Wu T, Wang, G. Royal Society Open Science, 2019, 6:191061.
[37]
Li L, Qu W, Zhang X, Lu J, Chen R, Wu F. Journal of Power Sources, 2015, 282:544.
[38]
Lu Y, Yao H, Xi G, Feng Y. RSC Advances, 2016, 6:1833.
[39]
Li L, Fan E, Guan Y. ACS Sustainable Chemistry & Engineering, 2017, 5:5224.
[40]
Li L, Lu J, Ren Y. Journal of Power Sources, 2012, 218:21.
[41]
Nayaka G P, Manjanna J, Pai K V, Vadavi R, Keny S J, Tripathi V S. Hydrometallurgy, 2015, 151:73.
[42]
Li L, Bian Y, Zhang X, Xue Q, Fan E, Wu F. Journal of Power Sources, 2018, 377:70.
[43]
Zheng Y, Song W, Mo W T, Zhou L, Liu J. W. RSC Advances, 2018, 8:8990.
[44]
郭春秀( Guo C X). 陕西科技大学硕士论文(Master Dissertation of Shaanxi University of Science & Technology), 2018.
[45]
Lu Y, Yao H, Xi G. RSC Advances, 2016, 6(22): 1833.
[46]
Ku H, Jung Y, Jo M. Journal of Hazardous Materials, 2016, 313:138.
[47]
Zheng X, Gao W, Zhang X, He M, Sun Z. Waste Management, 2016, 60:680.
[48]
Xu J, Thomas H R, Francis R W, Lum K R, Wang J, Liang B. Journal of Power Sources, 2008, 177:512.
[49]
Zhang P, Yokoyama T, Itabashi O, Wakui Y, Inoue K. Hydrometallurgy, 1998, 50:61.
[50]
Lee S W, Kim M S, Jeong J H, Kim D H, Chung K Y, Roh K C. Journal of Power Sources, 2017, 360:206.
[51]
Li L, Chen R J, Zhang X X. Chinese Science Bulletin, 2012, 57:4188.
[52]
Yao L, Feng Y, Xi G. RSC Advances, 2015, 5:44107.
[53]
Li L, Bian Y, Zhang X. Waste Management, 2017, 71:362.
[54]
Kim S, Yang D, Rhee K, Sohn J. Research on Chemical Intermediates, 2014, 40:2447.
[55]
Weng Y, Xu S, Huang G, Jiang C. Journal of Hazardous Materials, 2013, 246:163.
[56]
Sa Q, Gratz E, He M. Journal of Power Sources, 2015, 282:140.
[57]
David P, Salomon J, Jean-François C. Journal of Power Sources, 2018, 396:527.
[58]
Li L, Chen R J, Zhang X X. Chinese Science Bulletin, 2012, 57(32): 4188.
[59]
Weng Y, Xu S, Huang G, Jiang C. Journal of Hazardous Materials, 2013, 246:163.
[60]
Senćanski J, Bajuk-Bogdanović D, Majstorović D. Journal of Power Sources. 2017, 342:690.
[61]
文丽华( Wen L H). 轻合金加工技术(Light Alloy Fabrication Technology), 2017, 12:9.
[62]
李丽( Li L), 吴锋( Wu F), 陈人杰(Chen R J), 张静(Zhang J). 北京理工大学学报(Transaction of Beijing Institute of Technology). 2011, 31:741.
[63]
Li J, Hu L, Zhou, H, Wang L, Zhai B, Yang S. Journal of Materials Science: Materials in Electronics, 2018, 29:17661.
[64]
Zhou H, Zhao X, Yin C, Li J. Electrochimica Acta, 2018, 291:142.
[65]
Song X, Hu T, Liang C, Long H L, Zhou L, Song W. RSC Advances, 2017, 7:4783.
[66]
Wang L, Li J, Zhou H, Huang Z, Tao S, Zhai B. Journal of Materials Science: Materials in Electronics, 2018, 29:9283.
Shi Y, Zhang M, Meng Y S, Zheng C. Advanced Energy Materials, 2019, 9:1900454.
[67]
Zhang B L, Xie H W, Lu B H. Acs Sustainable Chemistry & Engineering, 2019, 7(15):13391.
[68]
李丽( Li L), 范二莎( Fan E S), 刘剑锐(Liu J R), 吴锋(Wu F). 新材料产业 (Advanced Materials Industry), 2016, 9:30.
[69]
Shi Y, Zhang M, Meng Y S, Zheng C. Advanced Energy Materials, 2019, 9:1900454.
[70]
Lv W, Wang Z, Cao H, Sun Y, Zhang Y, Sun Z. ACS Sustainable Chemistry & Engineering, 2018, 6:1504.
[71]
Tang Y, Xie H, Zhang B. Waste Management, 2019, 97:140.
[72]
Duan J, Hu G, Cao Y, Tan C, Wu C, Du K. Journal of Power Sources, 2016, 326:322.
[73]
朱曙光( Zhu S G), 贺文智( He W Z), 李光明(Li G M), 黄菊文(Huang J W). 中国有色金属学报(Transactions of Nonferrous Metals Society of China),2014, 10: 2525.
[74]
Liu Q, Zhao Y, Liu W. Nanoscale, 2019, 11:13007.
[75]
Ren J, Li R, Liu Y, Cheng Y, Mu D, Zheng R. New J. Chem., 2017, 41:10959.
[76]
Sa Q, Heelan J A, Lu Y, Apelian D, Wang Y. ACS Applied Materials & Interfaces, 2015, 7:20585.
[77]
Wu Z J, Wang D, Gao Z F, Yue H F, Liu W M. Dalton Transactions, 2015, 44:18624.
[78]
Li L, Lu J, Ren Y, Zhang X X, Chen R J, Wu F, Amine K. Journal of Power Sources, 2012, 218:21.
[79]
Zeng X, Li J, Shen B. Journal of Hazardous Materials, 2015, 295:112.
[80]
Joo S H, Shin S M, Shin D, Oh C, Wang J P. Hydrometallurgy, 2015, 156:136.
[81]
Umicore Recycling Division Home Page.[2020-01-01].
[82]
Tadanaga K, Morinaga J, Matsuda A, Minami T. Chemistry of Materials, 2000,12.
[1] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[2] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[3] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[4] 周世昊, 吴贤文, 向延鸿, 朱岭, 刘志雄, 赵才贤. 水系锌离子电池锰基正极材料[J]. 化学进展, 2021, 33(4): 649-669.
[5] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[6] 刘建文, 姜贺阳, 孙驰航, 骆文彬, 毛景, 代克化. P2结构层状复合金属氧化物钠离子电池正极材料[J]. 化学进展, 2020, 32(6): 803-816.
[7] 鲁志远, 刘燕妮, 廖世军. 锂离子电池富锂锰基层状正极材料的稳定性[J]. 化学进展, 2020, 32(10): 1504-1514.
[8] 刘燕晨, 黄斌, 邵奕嘉, 沈牧原, 杜丽, 廖世军. 钾离子电池及其最新研究进展[J]. 化学进展, 2019, 31(9): 1329-1340.
[9] 邵奕嘉, 黄斌, 刘全兵, 廖世军. 三元镍钴锰正极材料的制备及改性[J]. 化学进展, 2018, 30(4): 410-419.
[10] 杨蓉, 李兰, 任冰, 陈丹, 陈利萍, 燕映霖. 锂硫电池中的石墨烯掺杂[J]. 化学进展, 2018, 30(11): 1681-1691.
[11] 张松涛, 郑明波, 曹洁明, 庞欢. 锂硫电池用多孔碳/硫复合正极材料的研究[J]. 化学进展, 2016, 28(8): 1148-1155.
[12] 易罗财, 次素琴, 孙成丽, 温珍海. 非水系锂氧气电池正极材料研究现状[J]. 化学进展, 2016, 28(8): 1251-1264.
[13] 陈军, 丁能文, 李之峰, 张骞, 钟盛文. 锂离子电池有机正极材料[J]. 化学进展, 2015, 27(9): 1291-1301.
[14] 蔡克迪, 赵雪, 仝钰进, 肖尧, 高勇, 王诚. 锂氧电池关键技术研究[J]. 化学进展, 2015, 27(12): 1722-1731.
[15] 刘渝萍, 谢剑, 李婷婷, 邓玲, 陈昌国, 张丁非. 镁-过渡金属复合物正极材料[J]. 化学进展, 2014, 26(09): 1596-1608.