English
新闻公告
More
化学进展 2016, Vol. 28 Issue (2/3): 219-231 DOI: 10.7536/PC150311 前一篇   后一篇

• 综述与评论 •

有机卤化铅钙钛矿太阳能电池

琚成功1,2, 张宝1, 冯亚青1,2*   

  1. 1. 天津大学化工学院 天津 300072;
    2. 天津化学化工协同创新中心 天津 300072
  • 收稿日期:2015-03-01 修回日期:2015-09-01 出版日期:2016-03-15 发布日期:2016-01-07
  • 通讯作者: 冯亚青 E-mail:yqfeng@tju.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21476162)和国家国际科技合作项目(No.2012DFG41980)资助

Organolead Halide Perovskite Solar Cells

Ju Chenggong1,2, Zhang Bao1, Feng Yaqing1,2*   

  1. 1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
    2. Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
  • Received:2015-03-01 Revised:2015-09-01 Online:2016-03-15 Published:2016-01-07
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21476162) and the National International S & T Cooperation Foundation of China (No. 2012DFG41980).
有机卤化铅钙钛矿太阳能电池因其低成本、高效率而受到了全世界的广泛关注。本文回顾了有机卤化铅钙钛矿太阳能电池的发展历史, 介绍了有机卤化铅钙钛矿太阳能电池的研究进展,重点分析了有机卤化铅钙钛矿太阳能电池中有机卤化铅的组成,如一价阳离子A、二价阳离子B、卤素离子X的结构对光电性质的影响。对三种类型有机卤化铅钙钛矿太阳能电池即敏化类钙钛矿太阳能电池、介观超级结构钙钛矿太阳能电池、平面异质结钙钛矿太阳能电池的研究进展进行了评述,并指出有机卤化铅钙钛矿太阳能电池的研究趋势和今后的发展方向。
Organohalide lead perovskite solar cell is highly efficient and low cost in the fabrication process. It has attracted much attention and been widely investigated all around the world. This review looks back into the history of the organohalide lead perovskite solar cells (PSCs) and gives a brief introduction of the research progress of the PSCs. It emphatically points out the relationship between the components of the perovskite ( A cation,B cation and X anion ) and its photoelectrical properties. We classify the PSCs into three types, namely sensitized PSCs, meso-superstructure PSCs and planar heterojunction PSCs. What's more, we point out the issues concerned the developments of PSCs. The future directions are also indicated. Finally, as a high-efficiency new comer to the solar cell family, the potential benefits on the human society are expected.

Contents
1 Introduction
2 The history of organohalide perovskite solar cells
3 The relationship between the components of the organometal halide and its photoelectrical properties
4 Organolead halide
4.1 Organolead iodide
4.2 Organolead bromide
4.3 Mixture of different organolead halides
5 Hole transporting material layer
6 Different kinds of organolead halide perovskite solar cells
6.1 Non-planar perovskite solar cells
6.2 Planar heterojunction perovskite solar cells
7 Future direction and interests of organolead halide perovskite solar cells
7.1 Organolead halide perovskite material
7.2 Different production process of perovskite solar cells
7.3 HTM layer and counter electrode
7.4 Planar heterojunction perovskite solar cells
7.5 Large-area solar cells
7.6 The mechanism research of the perovskite solar cells
8 Conclusion and outlook

中图分类号: 

()
[1] (a)李晓慧(Li X H), 范同祥(Fan T X). 化学进展(Progress in Chemistry), 2011, 23(9):1841. (b)杨正龙(Yang Z L), 卜弋龙(Bu Y L), 陈秋云(Chen Q Y). 化学进展(Progress in Chemistry), 2011, 23(12):2607. (c)李承辉(Li C H), 王锴(Wang K), 郑玮(Zheng W), 王致祥(Wang Z X), 刘建(Liu J), 游效曾(You X Z). 化学进展(Progress in Chemistry), 2012, 24(1):8. (d)张会京(Zhang H J), 侯信(Hou X). 化学进展(Progress in Chemistry), 2012, 24(11):2106.
[2] Dale M, Benson S M. Environ. Sci. Technol., 2013, 47:3482.
[3] (a)汤雅芸(Tang Y Y), 梅群波(Mei Q B), 徐志杰(Xu Z J), 凌启淡(Ling Q D). 化学进展(Progress in Chemistry), 2011, 23(9):1915. (b)汤雅芸(Tang Y Y), 梅群波(Mei Q B), 徐志杰(Xu Z J), 凌启淡(Ling Q D). 化学进展(Progress in Chemistry), 2011, 23(9):1915. (c)王桂强(Wang G Q), 段彦栋(Duan Y D), 张娟(Zhang J), 林原(Lin Y), 禚淑萍(Zhuo S P). 化学进展(Progress in Chemistry), 2014, 26(7):1255. (d) Oregan B, Grätzel M. Nature, 1991, 353:737. (e) Xue X, Zhang W, Zhang N, Ju C, Peng X, Yang Y, Liang Y, Feng Y, Zhang B. RSC Adv., 2014, 4:8894. (f) Zeng Z, Zhang B, Li C, Peng X, Liu X, Meng S, Feng Y. Dyes Pigments, 2014, 100:278.
[4] Kazim S, Nazeeruddin M K, Grätzel M, Ahmad S. Angew. Chem. Int. Ed., 2014, 53:2812.
[5] (a) Kang M G, Park H J, Ahn S H. Xu T, Guo L J. IEEE J. Sel. Top. Quant., 2010, 16:1807. (b) Paul A L. Organic Thin Films for Photonic Applications. Washington DC:Kent, 2010. 185. (c) Lane P A. Self-Organized Organic Semiconductors. NJ:New York, 2011. 225. (d) Zhou H, Yang L, You W. Macromolecules, 2012, 45:607. (e) Scharber M C, Sariciftci N S. Prog. Polym. Sci., 2013, 38:1929. (f) Heeger A J. Adv. Mater., 2014, 26:10. (g) Yang X, Uddin A. Renew. Sust. Energ. Rev., 2014, 30:324.
[6] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G. Sci. Rep., 2012, 2:591.
[7] Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J. Science, 2012, 338:643.
[8] Noh J H, Im S H, Heo J H, Mandal T N, Seok S I. Nano Lett., 2013, 13:1764.
[9] (a) Wang J T, Ball J M, Barea E M, Abate A, Alexander-Webber J A, Huang J, Saliba M, Mora-Sero I, Bisquert J, Snaith H J, Nicholas R J. Nano Lett., 2014, 14:724. (b) Wojciechowski K, Saliba M, Leijtens T, Abate A, Snaith H J. Energ. Environ. Sci., 2014, 7:1142.
[10] Jeon N J, Lee H G, Kim Y C, Seo J, Noh J H, Lee J, Seok S I. J. Am. Chem. Soc., 2014, 136:7837.
[11] Zhou H, Chen Q, Li G, Luo S, Song T, Duan H S, Hong Z, You J, Liu Y, Yang Y. Science, 2014, 345:542.
[12] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K. Grätzel M. Nature, 2013, 499:316.
[13] .http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
[14] 2013 Runners-Up. Newcomer Juices up the Race to Harness Sunlight. Science, 2013, 342:1438.
[15] (a) Moller C K. Nature, 1957, 180:981. (b) Moller C K. Nature, 1958, 182:1436.
[16] Kagan C R, Mitzi D B, Dimitrakopoulos C D. Science, 1999, 286:945.
[17] Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B. Nature, 1990, 347:539.
[18] Kojima A, Teshima K, Shirai Y, Miyasaka T. J. Am. Chem. Soc., 2009, 131:6050.
[19] Park N G. J. Phys. Chem. Lett., 2013, 4:2423.
[20] Im J H, Lee C R, Lee J W, Park S W, Park N G. Nanoscale, 2011, 3:4088.
[21] Liu M, Johnston M B, Snaith H J. Nature, 2013, 501:395.
[22] Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H. Science, 2014, 345:295.
[23] Wei Z, Chen H, Yan K, Yang S. Angew. Chem. Int. Ed., 2014, 53:13239.
[24] Liu D, Kelly T L. Nat. Photonics, 2014, 8:133.
[25] Zhou H, Chen Q, Li G, Luo S, Song T, Duan H S, Hong Z, You J, Liu Y, Yang Y. Science, 2014, 345:542.
[26] Tress W, Marinova N, Moehl T, Zakeeruddin S M, Nazeeruddin M K, Grätzel M. Energ. Environ. Sci., 2015, 8:995.
[27] Xiao Z, Yuan Y, Shao Y, Wang Q, Dong Q, Bi C, Sharma P, Gruverman A, Huang J. Nat. Mater., 2015, 14:193.
[28] Eames C, Frost J M, Barnes P R, O'Regan B C, Walsh A, Islam M S. Nat. Commun., 2015, 6:7497.
[29] Abate A, Saliba M, Hollman D J, Stranks S D, Wojciechowski K, Avolio R, Grancini G, Petrozza A, Snaith H J. Nano Lett., 2014, 14:3247.
[30] Yin W J, Shi T, Yan Y. Appl. Phys. Lett., 2014, 104:063903.
[31] Kim J, Lee S H, Lee J H, Hong K H. J. Phys. Chem. Lett., 2014, 5:1312.
[32] Shao Y, Xiao Z, Bi C, Yuan Y, Huang J. Nat. Commun., 2014, 5:DOI:10.1038/ncomms6784.
[33] Heo J H, Song D H, Han H J, Kim S Y, Kim J H, Kim D, Shin H W, Ahn T K, Wolf C, Lee T W, Im S H. Adv. Mater., 2015, 27:3424.
[34] Dualeh A, Moehl T, Tétreault N, Teuscher J, Gao P, Nazeeruddin M K, Grätzel M. ACS Nano, 2013, 8:362.
[35] Kim H S, Park N G. J. Phys. Chem. Lett., 2014, 5:2927.
[36] Zimmermann E, Ehrenreich P, Pfadler T, Dorman J A, Weickert J, Schmidt-Mende L. Nat. Photonics, 2014, 8:669.
[37] Green M A, Bein T. Nat. Mater., 2015, 14:559.
[38] Helen M. Nature, 1945, 155:484.
[39] Gao P, Grätzel M, Nazeeruddin M K. Energ. Environ. Sci., 2014, 7:2448.
[40] Bhalla A S, Guo R, Roy R. Mater. Res. Innov., 2000, 4:3. \
[41] Koka S, Shrivastava K N. Solid State Commun., 1991, 80:933.
[42] Mitzi D B. Chem. Mater., 1996, 8:791.
[43] Papavassiliou G C, Koutselas I B. Synthetic Met., 1995, 71:1713.
[44] Calabrese J, Jones N L, Harlow R L, Herron N, Thorn D L, Wang Y. J. Am. Chem. Soc., 1991, 113:2328.
[45] Billing D G, Lemmerer A. CrystEngComm, 2007, 9:236.
[46] Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N. Solid State Commun., 2003, 127:619.
[47] Im J H, Chung J, Kim S J, Park N G. Nanoscale Res. Lett., 2012, 7:353.
[48] Shockley W, Queisser H J. J. Appl. Phys., 1961, 32:510.
[49] Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S. J. Phys. Chem. Lett., 2014, 5:1004.
[50] Knutson J L, Martin J D, Mitzi D B. Inorg. Chem., 2005, 44:4699.
[51] Eng H W, Barnes P W, Auer B M, Woodward P M. J. Solid State Chem., 2003, 175:94.
[52] Etourneau J, Portier J, Ménil F. J. Alloy Compd., 1992, 188:1.
[53] Jansen M, Letschert H P. Nature, 2000, 404:980.
[54] Attfield J P. Int. J. Inorg. Mater., 2001, 3:1147.
[55] Kulkarni S A, Baikie T, Boix P P, Yantara N, Mathews N, Mhaisalkar S. J. Mater. Chem. A, 2014, 2:9221.
[56] Mitzi D B. Progress in Organic Chemistry.NJ:New York. 2007. 1.
[57] Pellet N, Gao P, Gregori G, Yang T Y, Nazeeruddin M K, Maier J, Grätzel M. Angew. Chem. Int. Ed., 2014, 53:3151.
[58] Thiele G, Rotter H W, Schmidt K D Z. Anorg. Allg. Chem. 1987, 545:148.
[59] Mosconi E, Amat A, Nazeeruddin M K, Grätzel M, de Angelis F. J. Phys. Chem. C, 2013, 117:13902.
[60] Onoda Y N, Matsuo T, Suga H. J. Phys. Chem. Solids, 1992, 53:935.
[61] Huang L Y, Lambrecht W R L. Phys. Rev. B, 2013, 88:165203.
[62] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J. Energ. Environ. Sci., 2014, 7:982.
[63] Kitazawa N, Watanabe Y, Nakamura Y. J. Mater. Sci., 2002, 37:3585.
[64] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J. Energ. Environ. Sci., 2014, 7:982.
[65] Kim H S, Lee J W, Yantara N, Boix P P, Kulkarni S A, Mhaisalkar S, Grätzel M, Park N G. Nano Lett., 2013, 13:2412.
[66] Stoumpos C C, Malliakas C D, Kanatzidis M G. Inorg. Chem., 2013, 52:9019.
[67] Pang S, Hu H, Zhang J, Lv S, Yu Y, Wei F, Qin T, Xu H, Liu Z, Cui G. Chem. Mater., 2014, 26:1485.
[68] Lee J W, Seol D J, Cho A N, Park N G. Adv. Mater., 2014, 26:4991.
[69] Edri E, Kirmayer S, Cahen D, Hodes G. J. Phys. Chem. Lett., 2013, 4:897.
[70] Noh J H, Im S H, Heo J H, Mandal T N, Seok S I. Nano Lett., 2013, 13:1764.
[71] Cai B, Xing Y, Yang Z, Zhang W H, Qi J. Energ. Environ. Sci., 2013, 6:1480.
[72] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J. Science, 2013, 342:341.
[73] Colella S, Mosconi E, Fedeli P, Listorti A, Gazza F, Orlandi F, Ferro P, Besagni T, Rizzo A, Calestani G, Gigli G, de Angelis F, Mosca R. Chem. Mater., 2013, 25:4613.
[74] Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M. Adv. Mater., 2014, 26:1584.
[75] Colella S, Mosconi E, Pellegrino G, Alberti A, Guerra V L P, Masi S, Listorti A, Rizzo A, Condorelli G G, de Angelis F, Gigli G. J. Phys. Chem. Lett., 2014, 5:3532.
[76] Grancini G, Marras S, Prato M, Giannini C, Quarti C, de Angelis F, de Bastiani M, Eperon G E, Snaith H J, Manna L, Petrozza A. J. Phys. Chem. Lett., 2014, 5:3836.
[77] Qiu J, Qiu Y, Yan K, Zhong M, Mu C, Yan H, Yang S. Nanoscale, 2013, 5:3245.
[78] Yella A, Lee H W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W G, Yeh C Y, Zakeeruddin S M, Grätzel M. Science, 2011, 334:629.
[79] Wang J, Wang S, Li X, Zhu L, Meng Q B, Xiao Y, Li D. Chem. Commun., 2014, 50:5829.
[80] Li H, Fu K, Hagfeldt A, Grätzel M, Mhaisalkar S G, Grimsdale A C. Angew. Chem. Int. Ed., 2014, 53:4085.
[81] Liu J, Wang Y Z, Qin C, Yang X, Yasuda T, Islam A, Zhang K, Peng W, Han L, Chen W. Energ. Environ. Sci., 2014, 7:2963.
[82] Qin P, Paek S, Dar M I, Pellet N, Ko J, Grätzel M, Nazeeruddin M K. J. Am. Chem. Soc., 2014, 136:8516.
[83] Christians J A, Fung R C, Kamat P V. J. Am. Chem. Soc., 2014, 136:758.
[84] Qin P, Tanaka S, Ito S, Tetreault N, Manabe K, Nishino H, Nazeeruddin M K, Grätzel M. Nat. Commun., 2014, 5:3834.
[85] Bi D, Moon S J, Haggman L, Boschloo G, Yang L, Johansson E M J, Nazeeruddin M K, Grätzel M, Hagfeldt A. RSC Adv., 2013, 3:18762.
[86] Dar M I, Ramos F J, Xue Z, Liu B, Ahmad S, Shivashankar S A, Nazeeruddin M K, Grätzel M. Chem. Mater., 2014, 26:4675.
[87] Zhang W, Saliba M, Stranks S D, Sun Y, Shi X, Wiesner U, Snaith H J. Nano Lett., 2013, 13:4505.
[88] Ball J M, Lee M M. Hey A, Snaith H J. Energ. Environ. Sci., 2013, 6:1739.
[89] Kim H S, Mora-Sero I, Gonzalez-Pedro V, Fabregat-Santiago F, Juarez-Perez E J, Park N G, Bisquert J. Nat. Commun., 2013, 4:2242.
[90] Hwang S H, Roh J, Lee J, Ryu J, Yun J, Jang J. J. Mater. Chem. A, 2014, 2:16429.
[91] Docampo P, Ball J M, Darwich M, Eperon G E, Snaith H J. Nat.Commun., 2013, 4:2761.
[92] Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C. Adv. Mater., 2013, 25:3727.
[93] Bai S, Wu Z, Wu X, Jin Y, Zhao N, Chen Z, Mei Q, Wang X, Ye Z, Song T, Liu R, Lee S T, Sun B. Nano Res., 2014, 7:1749.
[94] Chiang C H, Tseng Z L, Wu C G. J. Mater. Chem. A, 2014, 2:15897.
[95] Chen C, Li C, Li F, Wu F, Tan F, Zhai Y, Zhang W. Nanoscale Res. Lett., 2014, 9:457.
[96] Ku Z, Rong Y, Xu M, Liu T, Han H. Sci. Rep., 2013, 3:3132.
[97] Liang P W, Liao C Y, Chueh C C, Zuo F, Williams S T, Xin X K, Lin J, Jen A K Y. Adv. Mater., 2014, 26:3748.
[98] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J. Science, 2013, 342:341.
[99] Chen Q, Zhou H, Hong Z, Luo S, Duan H S, Wang H H, Liu Y, Li G, Yang Y. J. Am. Chem. Soc., 2014, 136:622.
[100] Jeon Y J, Lee S, Kang R, Kim J E, Yeo J S, Lee S H, Kim S S, Yun J M, Kim D Y. Sci. Rep., 2014, 4:1.
[101] Hu Q, Wu J, Jiang C, Liu T, Que X, Zhu R, Gong Q. ACS Nano, 2014, 8:10161.
[102] Zhang H, Azimi H, Hou Y, Ameri T, Przybilla T, Spiecker E, Kraft M, Scherf U, Brabec C. J. Chem. Mater., 2014, 26:5190.
[103] Hau S K, Yip H L, Jen A K Y. Polym. Rev., 2010, 50:474.
[104] Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y, Huang J. Energ. Environ. Sci., 2014, 7:2619.
[105] Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C. Adv. Mater., 2013, 25:3727.
[106] Chiang Y F, Jeng J Y, Lee M H, Peng S R, Chen P, Guo T F, Wen T C, Hsu Y J, Hsu C M. Phys. Chem. Chem. Phys., 2014, 16:6033.
[107] Jeng J Y, Chen K C, Chiang T Y, Lin P Y, Tsai T D, Chang Y C, Guo T F, Chen P, Wen T C, Hsu Y J. Adv. Mater., 2014, 26:4107.
[108] Chiang Y F, Jeng J Y, Lee M H, Peng S R, Chen P, Guo T F, Wen T C, Hsu Y J, Hsu C M. Phys. Chem. Chem. Phys., 2014, 16:6033.
[109] Giorgi G, Fujisawa J I, Segawa H, Yamashita K. J. Phys. Chem. Lett., 2013, 4:4213.
[110] Pang S, Hu H, Zhang J, Lv S, Yu Y, Wei F, Qin T, Xu H, Liu Z, Cui G. Chem. Mater., 2014, 26:1485.
[111] Ku Z, Rong Y, Xu M, Liu T, Han H. Sci. Rep., 2013, 3:3132.
[112] Carnie M J, Charbonneau C, Davies M L, Troughton J, Watson T M, Wojciechowski K, Snaith H, Worsley D A. Chem. Commun. (Camb)., 2013, 49:7893.
[113] Subbiah A S, Halder A, Ghosh S, Mahuli N, Hodes G, Sarkar S K. J. Phys. Chem. Lett., 2014, 5:1748.
[114] Shi J J, Dong J, Lv S T, Xu Y Z, Zhu L F, Xiao J Y, Xu X, Wu H J, Li D M, Luo Y H, Meng Q B. Appl. Phys. Lett., 2014, 104:063901.
[115] Aharon S, Gamliel S, Cohen B E, Etgar L. Phys. Chem. Chem. Phys., 2014, 16:10512.
[146] Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Grätzel M. J. Am. Chem. Soc., 2012, 134:17396.
[117] Chen Q, Zhou H, Hong Z, Luo S, Duan H S, Wang H H, Liu Y, Li G, Yang Y. J. Am. Chem. Soc., 2014, 136:622.
[118] He M, Zheng D, Wang M, Lin C, Lin Z. J. Mater. Chem. A, 2014, 2:5994.
[119] 范斌(Fan B),白华(Bai H),蔡玉龙(Cai Y L),陈凯武(Chen K W),寇旭(Kou X),梁禄生(Liang L S),王保增(Wang B Z).中国化学年会第29届学术年会:有机光伏(The 25th CCS Congress:Organic photovoltaics).北京(Beijing), 2014.
[120] Li W, Li J, Wang L, Niu G, Gao R, Qiu Y. J. Mater. Chem. A, 2013, 1:11735.
[121] Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J. Nat. Commun., 2013, 4:2885.
[122] Matteocci F, Razza S, di Giacomo F, Casaluci S, Mincuzzi G, Brown T M, D'Epifanio A, Licoccia S, di Carlo A. Phys. Chem. Chem. Phys., 2014, 16:3918.
[123] Kwon Y S, Lim J, Yun H J, Kim Y H, Park T. Energ. Environ. Sci., 2014, 7:1454.
[124] Kang S M, Ahn N, Lee J W, Choi M, Park N G. J. Mater. Chem. A, 2014, 2:20017.
[125] Roiati V, Colella S, Lerario G, de Marco L, Rizzo A, Listorti A, Gigli G. Energ. Environ. Sci., 2014, 7:1889.
[126] Grätzel M. Nat. Mater., 2014, 13:838.
[127] Gamliel S, Etgar L. RSC Adv., 2014, 4:29012.
[128] Sanchez R S, Gonzalez-Pedro V, Lee J W, Park N G, Kang Y S, Mora-Sero I, Bisquert J. J. Phys. Chem. Lett., 2014, 5:2357.
[129] Kutes Y, Ye L, Zhou Y, Pang S, Huey B D, Padture N P. J. Phys. Chem. Lett., 2014, 5:3335.
[130] Gottesman R, Haltzi E, Gouda L, Tirosh S, Bouhadana Y, Zaban A, Mosconi E, de Angelis F. J. Phys. Chem. Lett., 2014, 5:2662.
[131] Li W, Li J, Wang L, Niu G, Gao R, Qiu Y. J. Mater. Chem. A, 2013, 1:11735.
[132] Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Grätzel M, Mhaisalkar S, Sum T C. Nat. Mater., 2014, 13:476.
[133] Green M A, Emery K, Hishikawa Y, Warta W D, Ewan D. Prog Photovolt.Res.Appl., 2014, 22:1.
[134] Habisreutinger S N, Leijtens T, Eperon G E, Stranks S D,Nicholas R J, Snaith H J. Nano Lett., 2014. 14:5561.
[135] Dong X, Fang X, Lv M, Lin B, Zhang S, Ding J, Yuan N.J. Mater. Chem. A, 2015, 3:5360.
[136] Han Y, Meyer S, Dkhissi Y, Weber K, Pringle J M, Bach U, Spiccia L, Cheng Y B. J. Mater. Chem. A, 2015, 3:8139.
[137] Hailegnaw B, Kirmayer S, Edri E, Hodes G, Cahen D. J. Phys. Chem. Lett., 2015, 6:1543.
[138] Hao F, Stoumpos C C, Chang R P H, Kanatzidis M G. J. Am. Chem. Soc., 2014, 136:8094.
[139] Hao F, Stoumpos C C, Cao D H, Chang R P H, Kanatzidis M G. Nat. Photonics, 2014, 8:489.
[140] Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S. J. Phys. Chem. Lett., 2014, 5:1004.
[141] Kim B J, Kim D H, Lee Y Y, Shin H W, Han G S, Hong J S, Mahmood K, Ahn T K, Joo Y C, Hong K S, Park N G, Lee S, Jung H S. Energ. Environ. Sci., 2015, 8:916.
[1] 郭琪瑶, 段加龙, 赵媛媛, 周青伟, 唐群委. 混合能量采集太阳能电池―从原理到应用[J]. 化学进展, 2023, 35(2): 318-329.
[2] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[3] 陈琳, 陈捷锋, 刘一任, 刘玉玉, 凌海峰, 解令海. 有机张力半导体及其光电特性[J]. 化学进展, 2022, 34(8): 1772-1783.
[4] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[5] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[6] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[7] 张旸, 张敏, 赵海雷. 双钙钛矿型固体氧化物燃料电池阳极材料[J]. 化学进展, 2022, 34(2): 272-284.
[8] 杜宇轩, 江涛, 常美佳, 戎豪杰, 高欢欢, 尚玉. 基于非稠环电子受体的有机太阳能电池材料与器件[J]. 化学进展, 2022, 34(12): 2715-2728.
[9] 胡泽浩, 陈婷, 徐彦乔, 江伟辉, 谢志翔. 表面包覆策略:提高全无机铯铅卤钙钛矿纳米晶的稳定性及其在照明显示领域的应用[J]. 化学进展, 2021, 33(9): 1614-1626.
[10] 洪俊贤, 朱旬, 葛磊, 徐鸣川, 吕文珍, 陈润锋. CsPbX3(X = Cl, Br, I) 纳米晶的制备及其应用[J]. 化学进展, 2021, 33(8): 1362-1377.
[11] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[12] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[13] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[14] 李肖静, 李永红, 宇富航, 祁伟岩, 姜野, 鲁倩文. 催化氧化脱除二甲苯的催化剂[J]. 化学进展, 2021, 33(12): 2203-2214.
[15] 肖晶晶, 王牧, 张伟杰, 赵秀英, 冯岸超, 张立群. 铅卤钙钛矿-聚合物复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1731-1740.
阅读次数
全文


摘要

有机卤化铅钙钛矿太阳能电池