English
新闻公告
More
化学进展 2015, Vol. 27 Issue (4): 416-423 DOI: 10.7536/PC140824 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评价 •

过渡金属氮化物在锂离子电池中的应用

陈汝文, 涂新满*, 陈德志   

  1. 南昌航空大学环境与化学工程学院 南昌 330063
  • 收稿日期:2014-08-01 修回日期:2014-12-01 出版日期:2015-04-15 发布日期:2015-02-04
  • 通讯作者: 涂新满 E-mail:tuxinman@nchu.edu.cn
  • 基金资助:
    教育部新世纪优秀人才支持计划项目(No. NCET-10-0850)资助

Transition Metal Nitrides for Lithium-Ion Batteries

Chen Ruwen, Tu Xinman*, Chen Dezhi   

  1. College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
  • Received:2014-08-01 Revised:2014-12-01 Online:2015-04-15 Published:2015-02-04
  • Supported by:
    The work was supported by the Program for New Century Excellent Talents in University, Ministry of Education, China (No. NCET-10-0850).
锂离子电池因其卓越的性能已成为当前使用最广泛的二次电池。过渡金属氮化物因具有低而平的充放电电位平台、可逆性能好与容量大等特点,被广泛应用于锂离子电池负极材料。本文简要综述了过渡金属氮化物在锂离子电池中的应用现状和研究进展。重点介绍了过渡金属氮化物及其复合物的物理和化学制备方法及其在锂离子电池中的应用研究进展,并且指出过渡金属氮化物应用于锂离子电池中目前面临的问题以及相应解决方案。
Lithium-ion batteries are currently the most widely used rechargeable batteries due to the excellent properties. Transition metal nitrides are expected to be used as efficient anode materials for lithium-ion batteries benefiting from their low and flat charging-discharging plateau, good reversibility and high capacity. This paper aims to review the research progress on transition metal nitrides and their composites synthesized by physical and chemical methods for applications of lithium-ion batteries. The key issues existed in transition metal nitrides and the viable route to improve the performance of transition metal nitrides based lithium-ion batteries are also discussed.

Contents
1 Introduction
2 Transition metal nitrides for lithium-ion batteries
2.1 Physical method synthesis of transition metal nitrides
2.2 Chemical method synthesis of transition metal nitrides
2.3 Transition metal nitrides composite materials for lithium-ion batteries
3 Conclusion and outlook

中图分类号: 

()
[1] Ng S H, Wang J Z, Wexler D, Konstantinov K, Guo Z P, Liu H K. Angew. Chem. Int. Ed., 2006, 45: 6896.
[2] Holzapfel M, Buqa H, Scheifele W, Novák P, Petrat F M. Chem. Commun., 2005: 1566.
[3] Sorensen E M, Barry S J, Jung H K, Rondinelli J R, Vaughey J T, Poeppelmeier K R. Chem. Mater., 2006, 18: 482.
[4] Rowsell J L C, Pralong V, Nazar L F. J. Am. Chem. Soc., 2001, 123: 8598.
[5] Takeda Y, Nishijima M, Yamahata M, Takeda K, Imanishi N, Yamamoto O. Solid State Ionics, 2000, 130: 61.
[6] Fu Z W, Wang Y, Yue X L, Zhao S L, Qin Q Z. J. Phys. Chem. B, 2004, 108: 2236.
[7] Yin Y X, Wan L J, Guo Y G. Chin. Sci. Bull., 2012, 57: 4104.
[8] Reddy M V, Subba R G V, Chowdari B V R. Chem. Rev., 2013, 113: 5364.
[9] Hayner C M, Zhao X, Kung H H. Annu. Rev. Chem. Biomol. Eng., 2012, 3: 445.
[10] Takeshi A, Kunio N, Shichio K. Mater. Res. Bull., 1984, 19: 1377.
[11] Yang J, Takeda Y, Imanishi N, Yamamoto O. Electrochim. Acta, 2001, 46: 2659.
[12] Nishijima M, Tadokoro N, Takeda Y, Imanishi N, Yamamoto O. J. Electrochem. Soc., 1994, 141: 2966.
[13] Nishijima M, Kagohashi T, Takeda Y, Imanishi M, Yamamoto O. J. Power Sources, 1997, 68: 510.
[14] Shodai T, Okada S, Tobishima S, Yamaki J. J. Power Sources, 1997, 68: 515.
[15] Gregory D H. Chem. Rec., 2008, 8: 229.
[16] Shodai T, Okada S, Tobishima S, Yamaki J. Solid State Ionics, 1996, 86: 785.
[17] Giordano C, Antonietti M. Nano Today, 2011, 6: 366.
[18] Andrievski R A. J. Mater. Sci., 1997, 32: 4463.
[19] Komiyal S, Tsuruoka K J. Vac. Sci. Technol., 1976, 13: 520.
[20] Schaaf P, Kahle M, Carpene E. Appl. Surf. Sci., 2005, 247: 607.
[21] Vissokov G, Grancharov I, Tsvetanov T. Plasma Sci. Technol., 2003, 5: 2039.
[22] Pereira-Ramos J P, Panabiere E, Emery N, Bach S, Willmann P. Meeting Abstracts. Electrochem. Soc., 2013, 12: 884.
[23] Dong S M, Chen X, Gu Lin, Zhou X H, Li L F, Liu Z H, Han P X, Xu H X, Yao J H, Wang H B, Zhang X Y, Shang C Q, Cui G L, Chen L Q. Energy Environ. Sci., 2011, 4: 3502.
[24] Zhou X H, Shang C Q, Gu L, Dong S M, Chen X, Han P X, Li L F, Yao J H, Liu Z H, Xu H X, Zhu Y W, Cui G L. ACS Appl. Mater. Interfaces, 2011, 3: 3058.
[25] Dong S M, Chen X, Gu L, Zhang L X, Zhou X H, Lium Z H, Han P X, Xua H X, Yao J H, Zhang X Y, Li L F, Shang C Q, Cui G L. Biosens. Bioelectron., 2011, 26: 4088.
[26] Sun Q, Fu Z W. Electrochem. Solid-State Lett., 2007, 10: 189.
[27] Choi D, Kumta P N. J. Am. Ceram. Soc., 2007, 90: 3113.
[28] Yao W, Makowski P, Giordano C. Chem. Eur. J., 2009, 15: 11999.
[29] Choi D, Kumta P N. Electrochem. Solid-State Lett., 2005, 8: 418.
[30] Dong S M, Chen X, Zhang X Y, Cui G L. Coord. Chem. Rev., 2013, 257: 1946.
[31] Yue Y H, Han P X, Dong S M, Zhang K J, Zhang C J, Shang C Q, Cui G L. Chin. Sci. Bull., 2012, 57: 4111.
[32] Wang Y, Fu Z W, Yue X L, Qin Q Z. J. Electrochem. Soc., 2004, 157: 162.
[33] Sun Q, Fu Z W. Electrochim. Acta, 2008, 54: 403.
[34] 孙乾(Sun Q). 复旦大学硕士论文(Master Dissertation of Fudan University), 2009.
[35] Das B, Reddy M V, Malar P, Osipowicz T, Subba R G V, Chowdari B V R. Solid State Ionics, 2009, 180: 1061.
[36] Sun Q, Fu Z W. Electrochem. Solid-State Lett., 2008, 11: 233.
[37] Raman K H T, Penki T R, Munichandraiahb N, Rao G M. Electrochim. Acta, 2014, 125: 282.
[38] Liu Y, Matsumura T, Imanishi N, Ichikawa T, Hirano A, Takeda Y. Electrochem. Commun., 2004, 6: 632.
[39] Panabiere E, Emery N, Bach S, Pereira-Ramos J P, Willmann P. Electrochim. Acta, 2013, 97: 393.
[40] Pereira N, Dupont L, Tarascon J M, Klein L C, Amatucci G G. J. Electrochem. Soc., 2003, 150: 1273.
[41] Debart A, Dupont L, Poizot P, Leriche J B, Tarascon J M. J. Electrochem. Soc., 2001, 148: 1266.
[42] Grugeon S, Laruelle S, Herrera-Urbina R, Dupont L, Poizot P, Tarascon J M. J. Electrochem. Soc., 2001, 148: 285.
[43] Bach S, Pereira-Ramos J P, Ducros J B, Willmann P. Solid State Ionics, 2009, 180: 231.
[44] Pereira N, Klein L C, Amatucci G G. J. Electrochem. Soc., 2002, 149: 262.
[45] Das B, Reddy M V G, Rao V S, Chowdari B V R. J. Mater. Chem., 2012, 22: 17505.
[46] Gillot F, Oró-Solé J, Palacín M R. J. Mater. Chem., 2011, 21: 9997.
[47] Li X, Hasan M M, Hector A L. J. Mater. Chem. A, 2013, 1: 6441.
[48] Balogun M S, Yu M, Huang Y, Li C, Fang P, LiuY, Lu X, Tong Y. Nano Energy, 2015, 1: 34.
[49] Das B, Reddy M V, Chowdari B V R. Nanoscale, 2013, 5: 1961.
[50] Culligan S D, Langmi H W, Reddy V B, McGrady G S. Inorg. Chem. Commun., 2010, 13: 540.
[51] Stoeva Z, Gomez R, Gordon A G, Allan M, Gregory D H, Hix G B, Titman J J. J. Am. Chem. Soc., 2004, 126: 4066.
[52] 辛森(Xin S), 郭玉国(Guo Y G), 万立骏(Wan L J). 中国科学: 化学(Science China Chemistry), 2011, 41: 1229.
[53] Kim I, Kumta P N, Blomgren G E. Electrochem. Solid-State Lett., 2000, 3: 493.
[54] Xua G J, Zhang L X, Guo C W, Gu L, Wang X G, Han P X, Zhang K J, Zhang C J, Cui G L. Electrochim. Acta, 2012, 85: 345.
[55] Liu Y, Horikawa K, Fujiyoshi M, Matsumura T, Imanishi N, Takeda Y. Solid State Ionics, 2004, 172: 69.
[56] Rai A K, Lim J, Mathew V, Gim J, Kang J, Paul B J, Kim D, Ahn S, Kim S, Ahn K, Kim J. Electrochem. Commun., 2012, 19: 9.
[57] Kang Y M, Park S C, Kang Y S, Lee P S, Lee J Y. Solid State Ionics, 2003, 156: 263.
[58] Li Y B, Yan Y R, Ming H, Zheng J W. Appl. Surf. Sci., 2014, 305: 683.
[59] Wu Y, Liu M, Feng H, Li J. Nanoscale, 2014, 6: 14697.
[60] Zhang K J, Wang H B, He X Q, Liu Z H, Wang L, Gu L, Xu H X, Han P X, Dong S M, Zhang C J, Yao J H, Cui G L, Chen L Q. J. Mater. Chem., 2011, 21: 11916.
[61] Novoselov K S, Geim A K. Nat. Mater., 2007, 6: 183.
[62] Liu Y, Mastumura T, Ono Y, Imanishi N, Hirano A,Takeda Y. Solid State Ionics, 2008, 179: 2069.
[63] Yue Y H, Han P X, He X, Zhang K J, Liu Z H, Zhang C J, Dong S M, Gu L, Cui G L. J. Mater. Chem., 2012, 22: 4938.
[64] 庄全超(Zhuang Q C), 陈作锋(Chen Z F), 董全峰(Dong Q F), 姜艳霞(Jiang Y X), 黄令(Huang L), 孙世刚(Sun S G). 科学通报(Chin. Sci. Bull.), 2006, 51: 17.
[65] 田雷雷(Tian L L), 庄全超(Zhuang Q C), 李佳(Li J), 史月丽(Si Y L), 陈建鹏(Chen J P), 陆逢(Lu F), 孙世刚(Sun S G). 科学通报(Chin. Sci. Bull.), 2011, 56: 1431.
[66] Wang H B, Zhang C J, Liu Z H, Wang L, Han P X, Xu H X, Zhang K J, Dong S M, Yao J H, Cui G L. J. Mater. Chem., 2011, 21: 5430.
[67] Lai L F, Zhu J X, Li B S, Zhen Y D, Shen Z X, Yan Q Y, Lin J Y. Electrochim. Acta, 2014, 134: 28.
[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[3] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[4] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[5] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[6] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[7] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[8] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[9] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[10] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[11] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[12] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[13] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[14] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[15] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.