English
新闻公告
More
化学进展 2023, Vol. 35 Issue (1): 168-176 DOI: 10.7536/PC220615 前一篇   后一篇

• 综述 •

储能薄膜电容器介电高分子材料

王琦桐, 丁嘉乐, 赵丹莹, 张云鹤*(), 姜振华   

  1. 吉林大学化学学院 长春 130012
  • 收稿日期:2022-06-13 修回日期:2022-09-13 出版日期:2023-01-24 发布日期:2022-10-30
  • 作者简介:

    张云鹤 吉林大学化学学院教授,博士生导师,中国复合材料学会介电高分子复合材料与应用专业委员会常务委员。主要从事介电高分子的研究,先后主持国家重点研发计划、国家自然科学基金、军工配套等各类科研项目30多项,获得国家发明专利授权30余项,在国内外学术期刊上发表学术论文100余篇。

  • 基金资助:
    国家自然科学基金项目(51973080); 国家自然科学基金项目(92066104)

Dielectric Polymer Materials for Energy Storage Film Capacitors

Qitong Wang, Jiale Ding, Danying Zhao, Yunhe Zhang(), Zhenhua Jiang   

  1. College of Chemistry, Jilin University,Changchun 130012, China
  • Received:2022-06-13 Revised:2022-09-13 Online:2023-01-24 Published:2022-10-30
  • Contact: *e-mail: zhangyunhe@jlu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(51973080); National Natural Science Foundation of China(92066104)

高功率密度、高充放电效率以及超长使用寿命等特点是聚合物薄膜电容器能够广泛应用于电动汽车、智能电网等各类电子电气领域中的重要原因。其中,介电高分子材料因其质轻、击穿强度高、易大规模加工等优点赋予了薄膜电容器更多的可能性。但同时,介电高分子的介电常数普遍较低,导致所制备的电容器能量密度偏低因而不能更好地适应设备小型化轻型化的要求。本文概述了电介质以及薄膜电容器的基本原理以及性能参数,着重介绍了以储能为主要研究方向的介电高分子材料,主要包括聚合物基纳米复合介电高分子、偶极玻璃聚合物、交联型介电高分子以及多组分全有机介电高分子。最后对介电高分子在制备性能优异的储能电容器过程中面临的多重挑战和潜在机遇进行了总结。

High power density, high charge-discharge efficiency, and long service life are important reasons why polymer film capacitors can be widely used in electric vehicles, smart grids and other electrical and electronic fields. Among them, dielectric polymer materials endow film capacitors with more possibilities due to their light weight, high breakdown strength, and easy large-scale processing. However, the low dielectric constant of dielectric polymers which results in the low energy density of the prepared capacitors, fails the material meeting the requirements of miniaturization and lightening of equipment. This paper summarizes the basic principles and performance parameters of dielectrics and film capacitors, and focuses on the introduction of dielectric polymer materials with energy storage as the main research direction, mainly including polymer-based nanocomposite dielectric polymers, dipole glass polymer materials, cross-linked dielectric polymers and multi-component all-organic dielectric polymers. Finally, we summarize the multiple challenges and potential opportunities faced by dielectric polymers in the process of fabricating energy storage capacitors with excellent performance.

Contents

1 Introduction

2 Polymer-based nanocomposites

2.1 0D inorganic particle and its surface treatment

2.2 1D and 2D inorganic fillers and their orientations

3 Dipolar glass polymers

4 Cross-linked dielectric polymers

5 Multicomponent dielectric polymers

5.1 Multi-layered multicomponent dielectric polymers

5.2 Blends

6 Conclusion and outlook

()
图1 类草莓结构BT-PDA-Ag杂化纳米粒子制备示意图[30]
Fig. 1 Schematic illustration for the preparation of strawberry-like BT-PDA-Ag hybrid nanoparticles[30]
图2 (a)PI纳米复合材料的介电性能,(b)PI击穿强度威布尔分布,(c)储能密度及充放电效率,(d)能量密度及充放电效率对比,(e)150℃时,分别添加不同含量Al2O3、HfO2、TiO2粒子的PI纳米复合材料在施加电场下的电流密度分布模拟图对比[43]
Fig. 2 (a) Dielectric constant and loss of the PI nanocomposites, and (b) Weibull breakdown strength, (c) discharged energy density and charge-discharge efficiency, (d) comparison of the discharged energy density and charge-discharge efficiency, (e) simulated current density distribution as a function of Al2O3, HfO2, and TiO2 filler content and the applied electric field at 150℃[43]
图3 (a,b)添加10 vol% 纳米粒子(NPs)复合材料的击穿路径模拟,(c,d)添加10 vol%纳米纤维的复合材料的击穿路径模拟, (e) 击穿体积相分数的演化规律[50]
Fig. 3 The breakdown simulation results of nanocomposites filled with 10 vol% (a, b) NPs and (c, d) NFs, and (e) the evolution of breakdown phase volume fraction[50]
图4 (a)与纯聚合物相比不同排布纳米复合材料的能量密度增量,(b)不同排布下的纳米复合材料的能量密度与充放电效率[55]
Fig. 4 (a) The enhancement of energy density over pure polymer matrix in nanocomposites with different configurations, (b) discharged energy density and efficiency for nanocomposites with different configurations[55]
图5 (a)SO2-PPO化学结构,(b)放电能量密度,(c)放电效率[65]
Fig. 5 (a) Chemical Structure of SO2-PPO. Bipolar D-E loops at varied temperatures of (b) discharge energy densities, (c) discharge efficiencies as a function of the poling field[65]
图6 联苯结构对聚合物的介电性能的影响示意图[68]
Fig. 6 Schematic illustration of the effect of biphenyl groups on the dielectric properties of polymers[68]
图7 (a)苯乙炔基封端PEI单体合成路线,10%PEPA-PEI在O2-320℃-2 h条件下(b)交联前及(c)交联后图片[74]
Fig. 7 (a) Synthetic route of the phenylethynyl-terminated PEI oligomers, The digital photos of (b) 10%PEPA-PEI and (c) c-10%PEPA-PEI films cured under O2-320℃-2 h[74]
图8 (a)不对称LTN结构以及其对介电储能参数的影响示意图,(b)双参数威布尔分布图,(c,d)施加电场下PEI、P(VDF-HFP)、PEI-P(VDF-HFP)双层膜结构以及不对称三层膜结构的放电能量密度Ud及(e)充放电效率η对比[81]
Fig. 8 (a) Schematic illustration of the dielectric energy-storage characteristics of the asymmetric LTN structure, (b) Two-parameter Weibull distribution plots, (c, d) discharged energy density Ud and (e) efficiency η of pure PEI, pure P(VDF-HFP), PEI-P(VDF-HFP) bilayer composite and asymmetric trilayer composites under varied electric fields[81]
图9 PNB-DxTy化学合成路线及偶极子形成机理示意图[85]
Fig. 9 Chemical synthetic route and dipole formation mechanism of PNB-DxTy[85]
[1]
Chu B J, Zhou X, Ren K L, Neese B, Lin M R, Wang Q, Bauer F, Zhang Q M. Science, 2006, 313(5785): 334.

doi: 10.1126/science.1127798     URL    
[2]
Zhou Y, Li Q, Dang B, Yang Y, Shao T, Li H, Hu J, Zeng R, He J L, Wang Q. Adv. Mater., 2018, 30(49): 1870378.

doi: 10.1002/adma.201870378     URL    
[3]
Tan D Q. Adv. Funct. Mater., 2020, 30(18): 1808567.

doi: 10.1002/adfm.201808567     URL    
[4]
Zhang T, Chen X, Thakur Y, Lu B, Zhang Q Y, Runt J, Zhang Q M. Sci. Adv., 2020, 6(4): eaax6622.

doi: 10.1126/sciadv.aax6622     URL    
[5]
Dang Z M, Yuan J K, Zha J W, Zhou T, Li S T, Hu G H. Prog. Mater. Sci., 2012, 57(4): 660.

doi: 10.1016/j.pmatsci.2011.08.001     URL    
[6]
Huang X Y, Jiang P K. Adv. Mater., 2015, 27(3): 546.

doi: 10.1002/adma.201401310     URL    
[7]
Prateek, Thakur V K, Gupta R K. Chem. Rev., 2016, 116(7): 4260.

doi: 10.1021/acs.chemrev.5b00495     pmid: 27040315
[8]
Pan H, Kursumovic A, Lin Y H, Nan C W, Macmanus-Driscoll J L. Nanoscale, 2020, 12(38): 19582.

doi: 10.1039/D0NR05709F     URL    
[9]
Meng N, Ren X T, Santagiuliana G, Ventura L, Zhang H, Wu J Y, Yan H X, Reece M J, Bilotti E. Nat. Commun., 2019, 10: 4535.

doi: 10.1038/s41467-019-12391-3     pmid: 31628311
[10]
Yao Z H, Song Z, Hao H, Yu Z Y, Cao M H, Zhang S J, Lanagan M T, Liu H X. Adv. Mater., 2017, 29(20): 1601727.

doi: 10.1002/adma.201601727     URL    
[11]
Qiao Y L, Yin X D, Zhu T Y, Li H, Tang C B. Prog. Polym. Sci., 2018, 80: 153.

doi: 10.1016/j.progpolymsci.2018.01.003     URL    
[12]
Chen S, Meng G D, Kong B, Xiao B, Wang Z D, Jing Z, Gao Y S, Wu G L, Wang H, Cheng Y H. Chem. Eng. J., 2020, 387: 123662.

doi: 10.1016/j.cej.2019.123662     URL    
[13]
Augustine D, Mathew D, Nair C P R. Polymer, 2015, 60: 308.

doi: 10.1016/j.polymer.2015.01.055     URL    
[14]
Wu S, Li W P, Lin M R, Burlingame Q, Chen Q, Payzant A, Xiao K, Zhang Q M. Adv. Mater., 2013, 25(12): 1734.

doi: 10.1002/adma.201204072     URL    
[15]
Zhu Y, Ma C H, Han H J, Sun R Y, Liao X J, Xie M R. Polym. Chem., 2019, 10(19): 2447.

doi: 10.1039/C9PY00151D     URL    
[16]
Gür T M. Energy Environ. Sci., 2018, 11(10): 2696.

doi: 10.1039/C8EE01419A     URL    
[17]
Shen Y, Lin Y, Li M, Nan C W. Adv. Mater., 2007, 19(10): 1418.

doi: 10.1002/adma.200602097     URL    
[18]
Mao Y P, Mao S Y, Ye Z G, Xie Z X, Zheng L S. J. Appl. Phys., 2010, 108(1): 014102.

doi: 10.1063/1.3443582     URL    
[19]
Jylhä L, Sihvola A. J. Phys. D: Appl. Phys., 2007, 40(16): 4966.

doi: 10.1088/0022-3727/40/16/032     URL    
[20]
Yang Y Y, Zhao Y S, Liu J, Nie Z K, Ma J, Hua M T, Zhang Y C, Cai X F, He X M. ACS Mater. Lett., 2020, 2(5): 453.
[21]
Xie L Y, Huang X Y, Wu C, Jiang P K. J. Mater. Chem., 2011, 21(16): 5897.

doi: 10.1039/c0jm04574h     URL    
[22]
Yang K, Huang X Y, Xie L Y, Wu C, Jiang P K, Tanaka T. Macromol. Rapid Commun., 2012, 33(22): 1921.

doi: 10.1002/marc.201200361     URL    
[23]
Yang K, Huang X Y, Huang Y H, Xie L Y, Jiang P K. Chem. Mater., 2013, 25(11): 2327.

doi: 10.1021/cm4010486     URL    
[24]
Zhu M, Huang X Y, Yang K, Zhai X, Zhang J, He J L, Jiang P K. ACS Appl. Mater. Interfaces, 2014, 6(22): 19644.

doi: 10.1021/am504428u     URL    
[25]
Li J J, Claude J, Norena-Franco L E, Seok S I, Wang Q. Chem. Mater., 2008, 20(20): 6304.

doi: 10.1021/cm8021648     URL    
[26]
Xie L Y, Huang X Y, Huang Y H, Yang K, Jiang P K. ACS Appl. Mater. Interfaces, 2013, 5(5): 1747.

doi: 10.1021/am302959n     URL    
[27]
Kim P, Jones S C, Hotchkiss P J, Haddock J N, Kippelen B, Marder S R, Perry J W. Adv. Mater., 2007, 19(7): 1001.

doi: 10.1002/adma.200602422     URL    
[28]
Xie L Y, Huang X Y, Huang Y H, Yang K, Jiang P K. J. Phys. Chem. C, 2013, 117(44): 22525.

doi: 10.1021/jp407340n     URL    
[29]
Huang Y H, Huang X Y, Schadler L S, He J L, Jiang P K. ACS Appl. Mater. Interfaces, 2016, 8(38): 25496.

doi: 10.1021/acsami.6b06650     URL    
[30]
Yang K, Huang X Y, He J L, Jiang P K. Adv. Mater. Interfaces, 2015, 2(17): 1500361.

doi: 10.1002/admi.201500361     URL    
[31]
Wang L W, Huang X Y, Zhu Y K, Jiang P K. Phys. Chem. Chem. Phys., 2018, 20(7): 5001.

doi: 10.1039/C7CP07990G     URL    
[32]
Ho J, Jow T R. IEEE, 2012, 19(3): 990.
[33]
Min Y S, Cho Y J, Hwang C S. Chem. Mater., 2005, 17(3): 626.

doi: 10.1021/cm048649g     URL    
[34]
Smith R, Liang C, Landry M, Nelson J, Schadler L. IEEE Trans. Dielect. Electr. Insul., 2008, 15(1): 187.

doi: 10.1109/T-DEI.2008.4446750     URL    
[35]
Huan T D, Boggs S, Teyssedre G, Laurent C, Cakmak M, Kumar S, Ramprasad R. Prog. Mater. Sci., 2016, 83: 236.

doi: 10.1016/j.pmatsci.2016.05.001     URL    
[36]
Xu J W, Wong C P. Appl. Phys. Lett., 2005, 87(8): 082907.

doi: 10.1063/1.2032597     URL    
[37]
Li Z, Fredin L A, Tewari P, DiBenedetto S A, Lanagan M T, Ratner M A, Marks T J. Chem. Mater., 2010, 22(18): 5154.

doi: 10.1021/cm1009493     URL    
[38]
Fredin L A, Li Z, Ratner M A, Lanagan M T, Marks T J. Adv. Mater., 2012, 24(44): 5946.

doi: 10.1002/adma.201202183    
[39]
Rahimabady M, Mirshekarloo M S, Yao K, Lu L. Phys. Chem. Chem. Phys., 2013, 15(38): 16242.

doi: 10.1039/c3cp52267a     pmid: 23999532
[40]
Ren W B, Pan J Y, Dan Z K, Zhang T, Jiang J Y, Fan M Z, Hu P H, Li M, Lin Y H, Nan C W, Shen Y. Chem. Eng. J., 2021, 420: 127614.

doi: 10.1016/j.cej.2020.127614     URL    
[41]
Tchoul M N, Fillery S P, Koerner H, Drummy L F, Oyerokun F T, Mirau P A, Durstock M F, Vaia R A. Chem. Mater., 2010, 22(5): 1749.

doi: 10.1021/cm903182n     URL    
[42]
Guo N, DiBenedetto S A, Tewari P, Lanagan M T, Ratner M A, Marks T J. Chem. Mater., 2010, 22(4): 1567.

doi: 10.1021/cm902852h     URL    
[43]
Ai D, Li H, Zhou Y, Ren L L, Han Z B, Yao B, Zhou W, Zhao L, Xu J M, Wang Q. Adv. Energy Mater., 2020, 10(16): 1903881.

doi: 10.1002/aenm.201903881     URL    
[44]
Song Y, Shen Y, Liu H Y, Lin Y H, Li M, Nan C W. J. Mater. Chem., 2012, 22(32): 16491.

doi: 10.1039/c2jm32579a     URL    
[45]
Tang H X, Lin Y R, Sodano H A. Adv. Energy Mater., 2012, 2(4): 469.

doi: 10.1002/aenm.201100543     URL    
[46]
Tang H X, Sodano H A. Nano Lett., 2013, 13(4): 1373.

doi: 10.1021/nl3037273     URL    
[47]
Liu Y, Zhang C, Huang B Y, Wang X, Li Y L, Wang Z M, Lai W C, Zhang X J, Liu X Y. J. Mater. Chem. C, 2018, 6(9): 2370.

doi: 10.1039/C7TC05434C     URL    
[48]
Li Q, Han K, Gadinski M R, Zhang G Z, Wang Q. Adv. Mater., 2014, 26(36): 6244.

doi: 10.1002/adma.201402106     URL    
[49]
Li Q, Zhang G Z, Liu F H, Han K, Gadinski M R, Xiong C X, Wang Q. Energy Environ. Sci., 2015, 8(3): 922.

doi: 10.1039/C4EE02962C     URL    
[50]
Shen Z H, Wang J J, Lin Y H, Nan C W, Chen L Q, Shen Y. Adv. Mater., 2018, 30(2): 1704380.

doi: 10.1002/adma.201704380     URL    
[51]
Zhang X, Chen W W, Wang J J, Shen Y, Gu L, Lin Y H, Nan C W. Nanoscale, 2014, 6(12): 6701.

doi: 10.1039/c4nr00703d     pmid: 24816573
[52]
Zhang X, Shen Y, Zhang Q H, Gu L, Hu Y H, Du J W, Lin Y H, Nan C W. Adv. Mater., 2015, 27(5): 819.

doi: 10.1002/adma.201404101     URL    
[53]
Pan Z B, Yao L M, Zhai J W, Shen B, Liu S H, Wang H T, Liu J H. J. Mater. Chem. A, 2016, 4(34): 13259.

doi: 10.1039/C6TA05233A     URL    
[54]
Xie B, Zhang H B, Zhang Q, Zang J D, Yang C, Wang Q P, Li M Y, Jiang S L. J. Mater. Chem. A, 2017, 5(13): 6070.

doi: 10.1039/C7TA00513J     URL    
[55]
Zhang X, Jiang J Y, Shen Z H, Dan Z K, Li M, Lin Y H, Nan C W, Chen L Q, Shen Y. Adv. Mater., 2018, 30(16): 1707269.

doi: 10.1002/adma.201707269     URL    
[56]
Li H, Ai D, Ren L L, Yao B, Han Z B, Shen Z H, Wang J J, Chen L Q, Wang Q. Adv. Mater., 2019, 31(23): 1900875.

doi: 10.1002/adma.201900875     URL    
[57]
Wei J J, Zhang Z B, Tseng J K, Treufeld I, Liu X B, Litt M H, Zhu L. ACS Appl. Mater. Interfaces, 2015, 7(9): 5248.

doi: 10.1021/am508488w     URL    
[58]
Thakur Y, Dong R, Lin M R, Wu S, Cheng Z X, Hou Y, Bernholc J, Zhang Q M. Nano Energy, 2015, 16: 227.

doi: 10.1016/j.nanoen.2015.06.021     URL    
[59]
Ma R, Sharma V, Baldwin A F, Tefferi M, Offenbach I, Cakmak M, Weiss R, Cao Y, Ramprasad R, Sotzing G A. J. Mater. Chem. A, 2015, 3(28): 14845.

doi: 10.1039/C5TA01252J     URL    
[60]
Treufeld I, Wang D H, Kurish B A, Tan L S, Zhu L. J. Mater. Chem. A, 2014, 2(48): 20683.

doi: 10.1039/C4TA03260H     URL    
[61]
Wang D H, Kurish B A, Treufeld I, Zhu L, Tan L S. J. Polym. Sci. A Polym. Chem., 2015, 53(3): 422.

doi: 10.1002/pola.27445     URL    
[62]
Wang Y X, Huang X Y, Li T, Wang Z W, Li L Q, Guo X J, Jiang P K. J. Mater. Chem. A, 2017, 5(39): 20737.

doi: 10.1039/C7TA06005J     URL    
[63]
Wei J J, Ju T X, Huang W, Song J L, Yan N, Wang F Y, Shen A Q, Li Z P, Zhu L. Polymer, 2019, 178: 121688.

doi: 10.1016/j.polymer.2019.121688     URL    
[64]
Bendler J T, Boyles D A, Edmondson C A, Filipova T, Fontanella J J, Westgate M A, Wintersgill M C. Macromolecules, 2013, 46(10): 4024.

doi: 10.1021/ma4002269     URL    
[65]
Zhang Z B, Wang D H, Litt M H, Tan L S, Zhu L. Angew. Chem. Int. Ed., 2018, 57(6): 1528.

doi: 10.1002/anie.201710474     URL    
[66]
Zhu Y F, Zhang Z B, Litt M H, Zhu L. Macromolecules, 2018, 51(16): 6257.

doi: 10.1021/acs.macromol.8b00923     URL    
[67]
Bonardd S, Alegría Á, Saldías C, Leiva Á, Kortaberria G. Polymer, 2020, 203: 122765.

doi: 10.1016/j.polymer.2020.122765     URL    
[68]
Xu H R, He G H, Chen S, Chen S N, Qiao R, Luo H, Zhang D. Macromolecules, 2021, 54(17): 8195.

doi: 10.1021/acs.macromol.1c00778     URL    
[69]
Xu H R, Chen S, Chen S N, Qiao R, Li H, Luo H, Zhang D. ACS Appl. Energy Mater., 2021, 4(3): 2451.

doi: 10.1021/acsaem.0c02962     URL    
[70]
Li Q, Chen L, Gadinski M R, Zhang S, Zhang G, Li H U, Iagodkine E, Haque A, Chen L Q, Jackson T N, Wang Q. Nature, 2015, 523(7562): 576.

doi: 10.1038/nature14647     URL    
[71]
Xu W H, Liu J, Chen T W, Jiang X Y, Qian X S, Zhang Y, Jiang Z H, Zhang Y H. Small, 2019, 15(28): 1970148.

doi: 10.1002/smll.201970148     URL    
[72]
Li H, Gadinski M R, Huang Y Q, Ren L L, Zhou Y, Ai D, Han Z B, Yao B, Wang Q. Energy Environ. Sci., 2020, 13(4): 1279.

doi: 10.1039/C9EE03603B     URL    
[73]
Liu Y N, Chen J, Jiang X S, Jiang P K, Huang X Y. ACS Appl. Energy Mater., 2020, 3(6): 5198.

doi: 10.1021/acsaem.9b02521     URL    
[74]
Zhang Y, Liu Z, Zhu L X, Liu J, Zhang Y H, Jiang Z H. CCS Chem., 2020, 2(5): 1169.

doi: 10.31635/ccschem.020.201900111     URL    
[75]
MacKey M, Schuele D E, Zhu L, Flandin L, Wolak M A, Shirk J S, Hiltner A, Baer E. Macromolecules, 2012, 45(4): 1954.

doi: 10.1021/ma202267r     URL    
[76]
Tseng J K, Yin K Z, Zhang Z B, Mackey M, Baer E, Zhu L. Polymer, 2019, 172: 221.

doi: 10.1016/j.polymer.2019.03.076     URL    
[77]
Hu P H, Shen Y, Guan Y H, Zhang X H, Lin Y H, Zhang Q M, Nan C W. Adv. Funct. Mater., 2014, 24(21): 3172.

doi: 10.1002/adfm.201303684     URL    
[78]
Wang Y F, Chen J, Li Y, Niu Y J, Wang Q, Wang H. J. Mater. Chem. A, 2019, 7(7): 2965.

doi: 10.1039/C8TA11392K     URL    
[79]
Wang Y F, Cui J, Yuan Q B, Niu Y J, Bai Y Y, Wang H. Adv. Mater., 2015, 27(42): 6658.

doi: 10.1002/adma.201503186     URL    
[80]
Pan Z B, Liu B H, Zhai J W, Yao L M, Yang K, Shen B. Nano Energy, 2017, 40: 587.

doi: 10.1016/j.nanoen.2017.09.004     URL    
[81]
Sun L, Shi Z C, He B L, Wang H L, Liu S, Huang M H, Shi J, Dastan D, Wang H. Adv. Funct. Mater., 2021, 31(35): 2100280.

doi: 10.1002/adfm.202100280     URL    
[82]
Thakur Y, Zhang B, Dong R, Lu W C, Iacob C, Runt J, Bernholc J, Zhang Q M. Nano Energy, 2017, 32: 73.

doi: 10.1016/j.nanoen.2016.12.021     URL    
[83]
Yuan C, Zhou Y, Zhu Y J, Liang J J, Wang S J, Peng S M, Li Y S, Cheng S, Yang M C, Hu J, Zhang B, Zeng R, He J L, Li Q. Nat. Commun., 2020, 11: 3919.

doi: 10.1038/s41467-020-17760-x     URL    
[84]
He G H, Liu Z J, Wang C, Chen S, Luo H, Zhang D. ACS Sustainable Chem. Eng., 2021, 9(24): 8156.

doi: 10.1021/acssuschemeng.1c01392     URL    
[85]
Ma L, Zhang Q, Cui C H, Zhong Q Y, Chen X X, Li Z, Mariappan A, Cheng Y L, Zhang Z C, Zhang Y F. Chem. Mater., 2020, 32(21): 9355.

doi: 10.1021/acs.chemmater.0c03295     URL    
[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[3] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[4] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[5] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[6] 黄帅, 陶钰, 黄银亮. 基于液晶聚合物的光致形变复合材料[J]. 化学进展, 2022, 34(9): 2012-2023.
[7] 戚琦, 徐佩珠, 田志东, 孙伟, 刘杨杰, 胡翔. 钠离子混合电容器电极材料的研究进展[J]. 化学进展, 2022, 34(9): 2051-2062.
[8] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[9] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[10] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[11] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[12] 付素芊, 汪英, 刘凯, 贺军辉. 微纳多孔聚合物薄膜的制备与应用[J]. 化学进展, 2022, 34(2): 241-258.
[13] 李庚, 李洁, 姜泓宇, 梁效中, 郭鹍鹏. 力刺激响应发光聚合物[J]. 化学进展, 2022, 34(10): 2222-2238.
[14] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[15] 李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺纤维在超级电容器中的应用[J]. 化学进展, 2021, 33(7): 1159-1174.
阅读次数
全文


摘要

储能薄膜电容器介电高分子材料