English
新闻公告
More
化学进展 2015, Vol. 27 Issue (4): 424-435 DOI: 10.7536/PC140807 前一篇   后一篇

• 综述与评价 •

车用燃料电池耐久性研究

王诚*1, 王树博1, 张剑波2, 李建秋2, 王建龙1, 欧阳明高2   

  1. 1. 清华大学核能与新能源技术研究院 北京 100084;
    2. 清华大学汽车工程系 汽车安全与节能国家重点实验室 北京 100084
  • 收稿日期:2014-08-01 修回日期:2014-12-01 出版日期:2015-04-15 发布日期:2015-02-04
  • 通讯作者: 王诚 E-mail:wangcheng@tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.U1462112),科技部国际合作项目(No.2013DFG41460,2013DFG60080),国家重点基础研究发展计划(973)项目(No.2012CB215401)和国家高技术发展计划(863)项目(No.2013AA110202)资助

The Durability Research on the Proton Exchange Membrane Fuel Cell for Automobile Application

Wang Cheng*1, Wang Shubo1, Zhang Jianbo2, Li Jianqiu2, Wang Jianlong1, Yang Minggao2   

  1. 1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;
    2. State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering, Tsinghua University, Beijing 100084, China
  • Received:2014-08-01 Revised:2014-12-01 Online:2015-04-15 Published:2015-02-04
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.U1462112),the Program of International S&T Cooperation(No.2013DFG41460,2013DFG60080),the State Key Basic Science Research Project of China(No.2012CB215401),and the National High Technology Research and Development Program of China(No.2013AA110202).
经过世界范围内近十年的持续研发,车用燃料电池在能量效率、体积与质量功率密度、低温启动等功能特性方面已经取得了突破性进展,新一轮的燃料电池汽车产业化浪潮正在迫近。然而,燃料电池的耐久性仍没达到商业化目标,且耐久性问题涉及面广、挑战大,成为当前燃料电池汽车产业化的主要棘手问题,构成了车用燃料电池在车辆技术方面产业化的最后障碍。车用燃料电池的耐久性已经引起了世界各国研究人员的广泛关注,本文归纳分析了车用燃料电池催化剂及其载体、质子交换膜及电极离子导体、气体扩散层、金属双极板等关键材料及部件的性能衰减机制,以及梳理了应对性能衰减的新材料、新技术与系统控制策略等耐久性最新研究进展,最后对车用燃料电池失效机制及其缓解研究提出了新的方向,以期对认识和提升燃料电池耐久性具有指导和借鉴意义。
Through over a decade continuous research and development all over the world, the performances of proton exchange membrane fuel cell (PEMFC) for automobile application, such as energy efficiency, power density and specific power of the stack, and the system with low-temperature startup, have achieved breakthrough progress. A new round of fuel cell automobile commercialization now has been approaching. However, the durability of the automobile PEMFC systems, which include massive scale of problems, hasnt met the commercialization target. The durability is the primary problem of vehicle fuel cell commercialization and become the ultimate obstacle of the fuel cell industrialization in the field of automobile application. The problem of durability for automobile PEMFC application has attracted lots of attention worldwide. In this paper, the degradation mechanics of key materials and components in the PEMFC, including catalyst, support material, proton exchange membrane, ionomer in catalyst layer, gas diffusion layer and metal bipolar plate, have been summarized and analyzed in detail. Meanwhile the mitigation strategies for the degradations are also summarized and some novel strategies for durability mitigation are proposed. This paper is instructive for the understanding and promotion of the durability for the PEMFC.

Contents
1 Introduction
2 The degradation of proton exchange membrane fuel cell
2.1 The degradation mechanism of Pt catalyst
2.2 The degradation mechanism of carbon support for catalyst
2.3 The degradation of proton exchange membrane and electrode ionomer
2.4 The degradation of gas diffusion layer
2.5 The degradation of metal bipolar plate
3 The mitigation strategy for degradation
3.1 The mitigation of Pt degradation
3.2 The mitigation of carbon degradation
3.3 The mitigation of proton exchange membrane degradation
3.4 The mitigation of gas diffusion layer degradation
3.5 The mitigation of bipolar plate degradation
4 Conclusion

中图分类号: 

()
[1] (a)欧阳明高(OuYang M G). 内燃机学报(Transactions of CSICE), 2008, 26:107.;(b)Sung W, Song Y, Yu K, Lim T.SAE Int.J.Engines,2010,3(1): 768.; (c)Yokoyama T.California Air Resources Board ZEV Symposium, Sacramento C A, Sep., 2009.21.;(d)李建秋(Li J Q),方川(Fang C),徐梁飞(Xu L F).汽车安全与节能学报(Journal of Automotive Safety and Energy),2014,5(1):17.;(e)Jones D J. Global Change,Energy Issues and Regulation Policies.Netherlands:Springer,2013:161.;(f)The Fuel Cell Technical Team.Fuel Cell Technical Team Roadmap,Washington:DOE,June 2013.;(g)Matthew M.Polymer Electrolyte Fuel Cell Degradation.Dutch:Elsevier,2011.112.
[2] Pei P C, Chen H C. Applied Energy, 2014, 125: 60.
[3] Wilson M S, Garzon F H, Sickafus K E, Gottesfeld S. J. Electrochem. Soc., 1993, 140: 2872.
[4] Ferreira P J, la O’ G J, Shao-Horn Y, Morgan D, Makharia R, Kocha S, Gasteiger H A. J. Electrochem. Soc., 2005, 152: A2256.
[5] Shao Y, Yin G, Gao Y. J. Power Sources, 2007, 171: 558.
[6] Zhu W, Zheng J P, Liang R, Wang B, Zhang C, Au G, Plichta E J. J. Electrochem. Soc., 2009, 156 (9): B1099.
[7] Darling R M, Meyers J P. J. Electrochem. Soc., 2003, 150 (11): A1523.
[8] Darling R M, Meyers J P. J. Electrochem. Soc., 2005, 152 (1): A242.
[9] Pourbaix M. National Association of Corrosion Engineers, 1979. 453.
[10] Maass S, Finsterwalder F, Frank G, Hartmann R, Merten C. J. Power Sources, 2008, 176: 444.
[11] Makharia R, Kocha S S, Yu P T, Sweikart M A, Gu W, Wagner F T, Gasteiger H A. ECS Transactions, 2006, 1(8): 3.
[12] Liu Z Y, Zhang J L, Yu P T, Zhang J X, Makharia R, More K L, Stachc E A. J. Electrochem. Soc., 2010, 157 (6): B906.
[13] Kinoshita K, Bett J. Carbon, 1973, 11: 237.
[14] Roen L M, Paik C H, Jarvi T D. Electrochem. Solid-State Lett., 2004, 7 (1): A19.
[15] Li W, Lane A M. Electrochim. Acta, 2010, 55: 6926.
[16] Taniguchi A, Akita T, Yasuda K, Miyazaki Y. J. Power Sources, 2004, 130: 42.
[17] 王丽娜(Wang L N), 刘向(Liu X), 张伟(Zhang W), 张新荣(Zhang X R), 孙毅(Sun Y), 蒋永伟(Jiang Y W), 朱荣杰(Zhu R J). 第30届全国化学与物理电源学术年会论文集(Proceeding of 30th Annual Meeting on Power Sources). 上海(Shanghai), 2013. 467.
[18] Chen J, Siegel J B, Matsuura T, Stefanopoulou A G. J. Electrochem. Soc., 2011,158 (9): B1164.
[19] Reiser C A, Bregoli L, Patterson T W, Yi J S, Yang J D, Perry M L, Jarvi T D. Electrochem. Solid-State Lett., 2005, 8 (6): A273.
[20] Dross R, Maynard B. ECS Trans., 2007, 11 (1): 1059.
[21] Tang H, Qi Z, Ramani M, Elter J F. J. Power Sources, 2006, 158: 1306.
[22] Carter R N, Brady B K, Subramanian K, Tighe T, Gasteiger H A. ECS Trans., 2007, 11 (1): 423.
[23] Young A P, Stumper J, Gyenge E. J. Electrochem. Soc., 2009, 156 (8): B913.
[24] Borup R, Meyers J, Pivovar B, Kim Y S, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath J E, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K, Iwashita N. Chem. Rev., 2007, 107: 3904.
[25] Jo Y Y, Cho E, Kim J H, Lim T H, Oh I H, Kim S K, Kim H J, Jang J H. J. Power Sources, 2011, 196: 9906.
[26] Fairweather J D, Spernjak D, Weber A Z, Harvey D, Wessel S, Hussey D S, Jacobson D L, Artyushkova K, Mukundan R, Borup R L. J. Electrochem. Soc., 2013, 160(9): F980.
[27] De Bruijn F A, Dam V A T, Janssen G J M. Fuel Cells, 2008, 8(2): 3.
[28] Huang C, Tan K S, Lin J, Tan K L. Chem. Phys. Lett., 2003, 371: 80.
[29] Healy J, Hayden C, Xie T, Olson K, Waldo R, Brundage R, Gasteiger H. J. Abbott. Fuel Cells, 2005, 5: 302.
[30] Collier A, Wang H, Yuan X Z, Zhang J, Wilkinson D P. Int. J. Hydrogen Energy, 2006, 31: 1838.
[31] Inaba M, Kinumoto T, Kiriake M, Umebayashi R, Tasaka A, Ogumi Z. Electrochim. Acta, 2006, 51: 5746.
[32] Curtin D E, Lousenberg R D, Henry T J, Tangeman P C, Tisack M E. J. Power Sources, 2004, 131: 41.
[33] 王芳(Wang F). 武汉理工大学硕士论文(Master Dissertation of Wuhan University of Technology), 2008.
[34] Escobedo G, Raiford K, Nagarajan G S, Schwiebert K E. ECS Trans., 2006, 1: 303.
[35] Tang H, Peikang S, Jiang S P, Wang F, Pan M. J. Power Sources, 2007, 170: 85.
[36] Kreitmeier S, Schuler G A, Wokaun A, Büchi F N. J. Power Sources, 2012, 212: 139.
[37] Endoh E, Terazono S, Widjaja H, Takimoto Y. Electrochem. Solid-State Lett., 2004, 7(7): A209.
[38] Le Canut J, Abouatallah R M, Harrington D A. J. Electrochem. Soc., 2006, 153(5): A857.
[39] Kadyk T, Hanke-Rauschenbach R, Sundmacher K. Int. J. Hydrogen Energy, 2012, 37(9): 7689.
[40] Laconti A B, Hamdan M, McDonald R C. Handbook of Fuel Cells: Fundamentals, Technology, and Applications. NY: Wiley, 2003. 647.
[41] Ralph T R, Hogarth M P. Platinum Metals Rev., 2002, 46: 117.
[42] Xie J, Wood D L, Wayne D M, Zawodzinski T A, Atanassov P, Borup R L. J. Electrochem. Soc., 2005, 152 (1): A104.
[43] Zhang F Y, Advani S G, Prasad A K, Boggs M E, Sullivan S P, Beebe T P. Electrochim. Acta, 2009, 54: 4025.
[44] Wood D L, Chlistunoff J, Majewski J, Borup R L. J. Am. Chem. Soc., 2009, 131: 18096.
[45] St-Pierre J, Jia N. J. New Mater. Electrochem. Syst., 2002, 5: 263.
[46] Oszcipok M, Riemann D, Kronenwett U, Kreideweis M, Zedda M. J. Power Sources, 2005, 145: 407.
[47] Cindrella L, Kannan A M, Lin J F, Saminathan K, Ho Y, Lin C W, Wertz J. J. Power Sources, 2009, 194: 146.
[48] Seidenberge K, Wilhelm F, Schmitt T, Lehnert W, Scholta J. J. Power Sources, 2011, 196: 5317.
[49] Schulze M, Wagner N, Kaz T, Friedrich K A. Electrochim. Acta, 2007, 52: 2328.
[50] Frisk J W, Hicks M T, Atanasoski R T, Boand W M, Schmoeckel A K, Kurkowski M J. Fuel Cell Seminar. San Antonio: Elsevier, 2004. 10.
[51] Owejan J E, Yu P T, Makharia R. ECS Trans., 2007, 11 (1): 1049.
[52] Frisk J, Boand W, Hicks M, Kurkowski M, Atanasoski R, Schmoeckel A. Fuel Cell Seminar. San Antonio: Elsevier, 2004. 1.
[53] Aoki T, Matsunaga A, Ogami Y, Maekawa A, Mitsushima S, Ota K, Nishikawa H. J. Power Sources, 2010, 195: 2182.
[54] Mehta V, Cooper J S. J. Power Sources, 2003, 114: 32.
[55] De Bruijn F. Green Chem., 2005, 7: 132.
[56] Brett D J L, Brandon N P. J. Fuel Cell Sci. Technol., 2007, 4: 29.
[57] Wind J, Späh R, Kaiser W, Böhm G. J. Power Sources, 2002, 105: 256.
[58] Pozio A, Silva R F, de Francesco M, Giorgi L. Electrochim. Acta, 2003, 48: 154.
[59] Makkus R C, Janssen A H H, de Bruijn F A, Mallant R K A M. J. Power Sources, 2000, 86: 274.
[60] Eom K, Cho E, Nam S W, Lim T H, Jang J H, Kim H J, Hong B K, Yang Y C. Electrochim. Acta, 2012, 78: 324.
[61] Wu J, Yuan X Z, Martin J J, Wang H, Zhang J, Shen J, Wu S, Merida W. J. Power Sources, 2008, 184: 104.
[62] Stassi A, Gatto I, Monforte G, Baglio V, Passalacqua E, Antonucci V, Aricò A S. J. Power Sources, 2012, 208: 35.
[63] Travitsky N, Ripenbein T, Golodnitsky D, Rosenberg Y, Burshtein L, Peled E. J. Power Sources, 2006, 161(2): 782.
[64] Colón-Mercado H R, Popov B N. J. Power Sources, 2006, 155: 253.
[65] Wan L J, Moriyama T, Ito M, Uchida H, Watanabe M. Chem. Commun., 2002, 1: 58.
[66] Gasteiger H A, Kocha S S, Sompalli B, Wagner F T. Appl. Catal. B, 2005, 56: 9.
[67] Yu P, Pemberton M, Plasse P. J. Power Sources, 2005, 144: 11.
[68] Zhang J, Sasaki K, Sutter E, Adzic R R. Science, 2007, 315: 200.
[69] Antolini E, Salgado J R C, Gonzalez E R. J. Power Sources, 2006, 160: 957.
[70] Debe M K, Schmoeckel A K, Vernstrom G D, Atanasoski R. J. Power Sources, 2006, 161: 1002.
[71] Roy S C, Harding A W, Russell A E, Thomas K M. J. Electrochem. Soc., 1997, 144: 2323.
[72] Shao Y Y, Yin G P, Gao Y Z, Shi P F. J. Electrochem. Soc., 2006, 153: A1093.
[73] Pollet B G, Staffell I, Shang J L. Electrochim. Acta, 2012, 84: 235.
[74] Mathias M F, Makharia R, Gasteiger H A, Conley J J, Fuller T J, Gittleman G J, Kocha S S, Miller D P, Mittelsteadt C K, Xie T, Yan S G, Yu P T. Electrochem. Soc. Inter., 2005, 14: 24.
[75] Borup R L, Davey J R, Garzon F H, Wood D L, Inbody M A. J. Power Sources, 2006, 163: 76.
[76] Wheat W S, Meltser M A, Masten D A. US 8288049-B2, 2004.
[77] Makino S. Japanese Patent 2004111243, 2004.
[78] Knights S D, Colbow K M, St-Pierre J, Wilkinson D P. J. Power Sources, 2004, 127: 127.
[79] Cho E A, Ko J J, Ha H Y, Hong S A, Lee K Y, Lim T W, Oh I H. J. Electrochem. Soc., 2004, 151: A661.
[80] Sun X, Saha M S. London: Springer, 2008. 655.
[81] Sharma S, Pollet B G. J. Power Sources, 2012, 208: 96.
[82] Shrestha S, Liu Y, Mustain W E. Catal. Rev., 2011, 53(3): 256.
[83] Rajalakshmi N, Lakshmi N, Dhathathreyan K S. International Journal of Hydrogen energy, 2008, 33: 7521.
[84] Kakinuma K, Chino Y, Senoo Y, Uchida M, Kamino T, Uchida H, Deki S, Watanabe M. Electrochimica Acta, 2013, 110: 316.
[85] Yin S B, Mu S C, Lv H F, Cheng N C, Pan M, Fu Z Y. Applied Catalysis B: Environmental, 2010, 93: 233.
[86] Kimmel Y, Yang L, Kelly T G, Rykov S A, Chen J G. Journal of Catalysis, 2014, 312: 216.
[87] Ou Y W, Cui X L, Zhang X Y, Jiang Z Y. J. Power Sources, 2010, 195: 1365.
[88] Atanasoski R T, Atanasoska L L, Cullen D A, Haugen G M, More K L, Vernstrom G D. Electrocatal., 2012, 284.
[89] Genorio B, Strmcnik D, Subbaraman R, Tripkovic D, Karapetrov G, Stamenkovic V R, Pejovnik S, Markovic N M. Nat. Mater., 2010, 9.
[90] Kim J H, Cho E A, Jang J H, Kim H J, Lim T H, Oh I H, Ko J J, Oh S C. J. Electrochem. Soc., 2010, 157: B104.
[91] Ofstad A B, Davey J R, Sunde S, Borup R L. ECS Trans., 2008, 16 (2): 1301.
[92] Reiser C A, Yang D, Sawyer R D. US 2005147855-A1, 2005.
[93] Yu P T, Wagner F T. US 2006046106-A1, 2006.
[94] Kim J H, Cho E A, Jang J H, Kim H J, Lim T H, Oh I H, Ko J J, Oh S C. J. Electrochem. Soc., 2010, 157 (1): B118.
[95] Perry M L, Patterson T W, Reiser C. ECS Trans., 2006, 3 (1): 783.
[96] Yu Y, Wanga G, Tu Z, Zhan Z, Pan M. Electrochim. Acta, 2012, 71: 181.
[97] Taniguchi A, Akita T, Yasuda K, Miyazaki Y. Int. J. Hydrogen Energy, 2008, 33: 2323.
[98] Gerard M, Poirot-Crouvezier J P, Hissel D, Pera M C. Int. J. Hydrogen Energy, 2010, 35: 12295.
[99] Gubler L, Kuhn H, Schmidt T J, Scherer G G, Brack H P, Simbeck K. Fuel Cells, 2004, 4: 196.
[100] Gubler L, Gürsel S A, Scherer G G. Fuel Cells, 2005, 5: 317.
[101] Yu J R, Yi B L, Xing D M, Liu F Q, Shao Z G, Fu Y Z, Zhang H M. Phys. Chem. Chem. Phys, 2003, 5: 611.
[102] Trogadas P, Parrondo J, Ramani V. Electrochemical and Solid State Letters, 2008, 11: B113.
[103] Ramani V, Kunz H R, Fenton J M. J. Power Sources, 2005, 152: 182.
[104] Haugen G M, Meng F, Aieta N, Horan J L, Kuo M C, Frey M H, Hamrock S J, Herring A M. ECS Trans., 2006, 3: 551.
[105] Liu Y H, Yi B L, Shao Z G. Electrochemical and Solid State Letters, 2006, (9): A356.
[106] Pan M, Yang X S, Shen C H. Composite Materials, 2003, (iii): 385.
[107] Hommura S, Kawahara K, Shimohira T. Journal of the Electrochemical Society, 2008, 155: A29.
[108] Liu W, Ruth K, Rusch G. J. New Mater. Electrochem. Syst., 2001, 4: 227.
[109] Xu H, Wu M, Liu Y, Mittal V, Vieth R, Kunz H R, Bonville L J, Fenton J M. ECS Trans., 2006, 3: 561.
[110] Jung G, Chuang K, Jao T, Yeh C, Lin C. Appl Energy, 2012, 100: 81.
[111] Bose A, Babburi P, Kumar R, Myers D, Mawdsley J, Milhuff J. J. Power Sources, 2013, 243: 964.
[112] Liu D, Case S. J. Power Sources, 2006, 162(1): 521.
[113] Borup R L. Fuel Cell Durability Conference, Washington DC: Elsevier, 2005. 8.
[114] Tawfik H, Hung Y, Mahajan D. J. Power Sources, 2007, 163: 755.
[115] Lee S J, Huang C H, Lai J J, Chen Y P. J. Power Sources, 2004, 131: 162.
[1] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[4] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[5] 张旸, 张敏, 赵海雷. 双钙钛矿型固体氧化物燃料电池阳极材料[J]. 化学进展, 2022, 34(2): 272-284.
[6] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[7] 谢尹, 张立阳, 应佩晋, 王佳程, 孙宽, 李猛. 外场强化电解水析氢[J]. 化学进展, 2021, 33(9): 1571-1585.
[8] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[9] 唐向春, 陈家祥, 刘利娜, 廖世军. 具有三维特殊形貌/纳米结构的Pt基电催化剂[J]. 化学进展, 2021, 33(7): 1238-1248.
[10] 白钰, 王拴紧, 肖敏, 孟跃中, 王成新. 燃料电池用高温质子交换膜[J]. 化学进展, 2021, 33(3): 426-441.
[11] 黄振宇, 涂正凯. 质子交换膜燃料电池电流密度分布特性和研究展望[J]. 化学进展, 2020, 32(7): 943-949.
[12] 张瑞, 吴云, 王鲁天, 吴强, 张宏伟. 微生物燃料电池阴极脱氮[J]. 化学进展, 2020, 32(12): 2013-2021.
[13] 姚东梅, 张玮琦, 徐谦, 徐丽, 李华明, 苏华能. 磷酸掺杂聚苯并咪唑高温膜燃料电池膜电极[J]. 化学进展, 2019, 31(2/3): 455-463.
[14] 叶跃坤, 池滨, 江世杰, 廖世军. 质子交换膜燃料电池膜电极耐久性的提升[J]. 化学进展, 2019, 31(12): 1637-1652.
[15] 邵建文, 杨付超, 郭志光. 仿生超疏油材料在苛刻工况条件下的应用[J]. 化学进展, 2018, 30(12): 2003-2011.
阅读次数
全文


摘要

车用燃料电池耐久性研究