English
新闻公告
More
化学进展 2015, Vol. 27 Issue (4): 436-447 DOI: 10.7536/PC140946 前一篇   后一篇

• 综述与评论 •

钙钛矿型氧化物的制备及其在固体氧化物燃料电池和金属-空气电池中的应用

庄树新*, 吕建先, 路密, 刘翼民, 陈晓彬   

  1. 厦门理工学院材料科学与工程学院 厦门 361024
  • 收稿日期:2014-09-01 修回日期:2014-12-01 出版日期:2015-04-15 发布日期:2015-02-04
  • 通讯作者: 庄树新 E-mail:zsxtony@xmut.edu.cn
  • 基金资助:
    福建省自然科学基金项目(No.2014J05064)和福建省教育厅科研项目(No.JK2013034)资助

Preparation and Applications of Perovskite-Type Oxides as Electrode Materials for Solid Oxide Fuel Cell and Metal-Air Battery

Zhuang Shuxin*, Lv Jianxian, Lu Mi, Liu Yimin, Chen Xiaobin   

  1. School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
  • Received:2014-09-01 Revised:2014-12-01 Online:2015-04-15 Published:2015-02-04
  • Supported by:
    The work was supported by the Natural Science Foundation of Fujian Province, China(No. 2014J05064), and the Research Foundation of Education Bureau of Fujian Province, China(No. JK2013034).
本文对钙钛矿型氧化物的制备方法及其用于固体氧化物燃料电池(SOCFs)和金属-空气电池中的最新进展进行了较为全面的综述。制备钙钛矿型氧化物的方法有很多,包括盐分解法、固相法、共沉淀法、溶胶-凝胶法、水热法、反微乳法和模板法等。不同的制备方法可以得到各种形貌的钙钛矿型氧化物,如纳米立方体、纳米管、纳米棒、纳米片、纳米纤维和介孔结构。本文总结了这些制备方法的优点、缺点以及其适用的范围。作为一种重要的功能材料,钙钛矿型氧化物广泛应用于电极材料中。在SOCF中,重点介绍了阴极、阳极和电解质的研究现状,从电极材料的设计出发,比较了它们用于不同电极材料时的稳定性、电导率以及电催化活性,指出不足之处;在空气电极中,主要讨论了影响钙钛矿型氧化物氧的析出/还原催化活性和稳定性的因素。最后对钙钛矿型氧化物今后研究的方向和应用前景进行了预测。
This review presents current research activities concerning preparation and applications of perovskite-type oxides as electrode materials in the fields of solid-oxide fuel cells (SOFCs) and metal-air batteries. These oxides are synthesized by various methods, including thermal deposition, solid state method, co-precipitation, sol-gel method, hydrothermal method, reverse microemulsion method and template method. These methods result in various morphologies, such as nanaoplates, nanocubes,nanotubes, nanorods, nanofibers and mesoporous structures. The advantage and shortcoming of these methods are summarized, and their characters and proper ranges are listed. As a kind of important functional materials, perovskite-type oxides are extensively used as electrode materials. In the application of SOFCs, the advancement of the perovskite-based electrode materials is reviewed. In order to find a way to satisfy the strict requirements of SOFCs, this article is focused on their phase stability, electronic and/or ionic conductivity, and catalytic activity in different electrodes for SOCFs. The main problems of current perovskite-type oxides as electrode materials for practical application are pointed out and the possible future research directions are proposed. In the application of air electrodes, the parameters influencing catalytic performance and stability for oxygen reduction/evolution are mainly discussed. The possible development trend in investigations and applications of pervoskite-type oxides for electrocatalyst for oxygen reduction/evolution in the future is envisioned.

Contents
1 Introduction
2 Preparation of perovskite-type oxides
2.1 Metal salt deposition
2.2 Solid state method
2.3 Co-precipitation
2.4 Sol-gel method
2.5 Hydrothermal method
2.6 Reverse microemulsion method
2.7 Template methods
3 Applications of perovskite-electrode materials
3.1 Solid oxide fuel cells
3.2 Metal-air batteries
4 Conclusion and outlook

中图分类号: 

()
[1] Tanaka H, Misono M. Curr. Opin. Solid State Mater. Sci.,2001, 5: 381.
[2] Chen X, Hu J, Chen Z, Feng X, Li A. Biosens. Bioelectron., 2009, 24: 3448.
[3] Li S, Nechache R, Davalos I A V, Goupil G, Nikolova L, Nicklaus M, Laverdiere J, Ruediger A, Rosei F. J. Am. Ceram. Soc., 2013, 96: 3155.
[4] Leng J, Li S, Wang Z, Xue Y, Xu D. Mater. Lett., 2010, 64: 1912.
[5] Li S, Kato R, Wang Q, Yamanaka T, Takeguchi T, Ueda W. Appl. Catal. B: Environ., 2010, 93: 383.
[6] Zhu X, Liu Z, Ming N. J. Mater. Chem., 2010, 20: 4015.
[7] Wang J, Manivannan A, Wu N. Thin Solid Films, 2008, 517: 582.
[8] Chen X, Tang Y, Fang L, Zhang H, Hu C, Zhou H. J. Mater. Sci.: Mater. Electron., 2012, 23: 1500.
[9] Wang W, Bi J, Wu L, Li Z, Fu X. Scripta Mater., 2009, 60: 186.
[10] Deng J, Zhang L, Dai H, Au C T. Catal. Lett., 2009, 130: 622.
[11] Nakashima K, Kera M, Fujii I, Wada S. Ceram. Int., 2013, 39: 3231.
[12] Lamminen J. J. Electrochem. Soc., 1991, 138: 905.
[13] 夏 熙(Xia X), 潘存信(Pan C X). 应用化学(Chinese Journal of Applied Chemistry), 2001, 18: 96.
[14] Wang K, Wu X, Wu W, Li Y, Liao S. Ceram. Int., 2014, 40: 5997.
[15] Farhadi S, Sepahvand S. J. Alloy. Compd., 2010, 489: 586.
[16] Schaak R E, Mallouk T E. Chem. Mater., 2002, 14: 1455.
[17] Rudskaya A G, Pustovaya L E, Kofanova N B, Kupriyanov M F. J. Struct. Chem., 2005, 46: 647.
[18] Bhella S S, Kuti L M, Li Q, Thangadurai V. Dalton. Trans., 2009, 9520.
[19] Isupova L. A, Alikina G M, Tsybulya S V, Boldyreva N N, Kryukova G N, Yakovleva I S, Isupov V P, Sadykov V A. Int. J. Inorg. Mater., 2001, 3: 559.
[20] Wong Y J, Hassan J, Hashim M. J. Alloy. Compd., 2013, 571: 138.
[21] Liu L, Zheng S, Huang R, Shi D, Huang Y, Wu S, Li Y, Fang L, Hu C. Adv. Powder Technol., 2013, 24: 908.
[22] Ablat A, Wu R, Mamat M, Li J, Muhemmed E, Si C, Wu R, Wang J, Qian H, Ibrahim K. Ceram. Int., 2014, 40: 14083.
[23] Bhalla A S, Guo R, Roy R. Mater. Res. Innov., 2000, 4: 3.
[24] Zhang S, Xia R, Shrout T R, Zang G, Wang J. J. Appl. Phys., 2006, 100: 104108.
[25] Navale S C, Samuel V, Ravi V. Ceram. Int., 2006, 32: 847.
[26] Jadhav A D, Gaikwad A B, Samuel V, Ravi V. Mater. Lett., 2007, 61: 2030.
[27] Ma J, Theingi M, Chen Q, Wang W, Liu X, Zhang H. Ceram. Int., 2013, 39: 7839.
[28] Veith M, Mathur S, Lecerf N, Huch V, Decker T. J. Sol-Gel Sci. Technol., 2000, 15: 145.
[29] Chilibon I, Marat-Mendes J N. J. Sol-Gel Sci. Technol., 2012, 64: 571.
[30] Shimizu Y, Uemura K, Matsuda H, Miura N, Yamazoe N. J. Electrochem. Soc., 1990, 137: 3430.
[31] Zhu J, Yang X, Xu X, Wei K. J. Phys. Chem. C, 2007, 111: 1487.
[32] Graça M P F, Prezas P R, Costa M M, Valente M A. J. Sol-Gel Sci. Technol., 2012, 64: 78.
[33] Marinšek M, Zupan K, Maèek J. J. Power Sources, 2002, 106: 178.
[34] Chakroborty A, Das Sharma A, Maiti B, Maiti H S. Mater. Lett., 2002, 57: 862.
[35] Deganello F, Marcì G, Deganello G. J. Eur. Ceram. Soc., 2009, 29: 439.
[36] Jiang L, Liu W, Wu A, Xu J, Liu Q, Qian G, Zhang H. Ceram. Int., 2012, 38: 3667.
[37] Benali A, Azizi S, Bejar M, Dhahri E, Graça M F P. Ceram. Int., 2014, 40: 14367.
[38] Ji L, Zhang J, Gao Y, Li Y, Wang J. Ceram. Int., 2014, 40: 11419.
[39] Yang X, Ren Z, Xu G, Chao C, Jiang S, Deng S, Shen G, Wei X, Han G. Ceram. Int., 2014, 40: 9663.
[40] Guo H Y, Lin J G. J. Cryst. Growth, 2013, 364: 145.
[41] Zhang J, Shen B, Zhai J, Yao X. Ceram. Int., 2013, 39: 5943.
[42] Basavalingu B, Vijaya Kumar M S, Girish H N, Yoda S. J. Alloy. Compd., 2013, 552: 382.
[43] Sun Z, Pu Y, Dong Z, Hu Y, Liu X, Wang P, Ge M. Mater. Lett., 2014, 118: 1.
[44] Fuentes S, Céspedes F, Padilla-Campos L, Diaz-Droguett D E. Ceram. Int., 2014, 40:4975.
[45] Boukriba M, Sediri F, Gharbi N. Mater. Res. Bull., 2013, 48: 574.
[46] Zhou Z, Guo L, Ye F. J. Alloy. Compd., 2013, 571: 123.
[47] Wang S, Huang K, Zheng B, Zhang J, Feng S. Mater. Lett., 2013, 101: 86.
[48] Makovec D, Goršak T, Zupan K, Lisjak D. J. Cryst. Growth, 2013, 375: 78.
[49] Kumar R D, Jayavel R. Mater. Lett., 2013, 113: 210.
[50] Zhang D, Shi F, Cheng J, Yang X, Yan E, Cao M. Ceram. Int., 2014, 40: 14279.
[51] Wang J, Durussel A, Sandu C S, Sahini M G, He Z, Setter N. J. Cryst. Growth, 2012, 347: 1.
[52] Ai Z, Lu G, Lee S. J. Alloy. Compd., 2014, 613: 260.
[53] Xu G, Zhang Y, He W, Zhao Y, Liu Y, Shen G, Han G. J. Cryst. Growth, 2012, 346: 101.
[54] Choi B H, Park S, Park B K, Chun H H, Kima Y, Mater. Res. Bull., 2013, 48: 3651.
[55] Ji K, Dai H, Deng J, Song L, Xie S, Han W. J. Solid State Chem., 2013, 199: 164.
[56] Wang Z, Zhu J, Xu W, Sui J, H Peng, Tang X. Mater. Chem. Phys., 2012, 135: 330.
[57] Ponzoni C, Rosa R, Cannio M, Buscaglia V, E Finocchio, Nanni P, Leonelli C. J. Alloy. Compd.,2013, 558: 150.
[58] López-Juárez R, Castañeda-Guzmán R, Villafuerte-Castrejón M E. Ceram. Int., 2014, 40: 14757.
[59] He H, Liu M, Dai H, Qiu W, Zi X. Catal. Today, 2007, 126: 290.
[60] Aman D, Zaki T, Mikhail S, Selim S A. Catal. Today, 2011, 164: 209.
[61] Zhao Y, L Xu, Mai L, Han C, An Q, Xu X, Liu X, Zhang Q. Proc. Natl. Acad. Sci. U.S.A., 2012, 109: 19569.
[62] Shojaei S, Hassanzadeh-Tabrizi S A, Ghashangc M. Ceram. Int., 2014, 40: 9609.
[63] Abazari R, Sanati S. Superlattice. Microst., 2013, 64: 148.
[64] Wang Y, Ren J, Wang Y, Zhang F, Liu X, Guo Y, Lu G. J. Phys. Chem. C, 2008, 112: 15293.
[65] Wang N, Yu X, Wang Y, Chu W, M Liu. Catal. Today, 2013, 212: 98.
[66] Gao B, Deng J, Liu Y, Zhao Z, Li X, Wang Y, Dai H. Chinese J. Catal., 2013, 34: 2223.
[67] Wang Y, Cui X, Li Y, Shu Z, Chen H, Shi J. Micropor. Mesopor. Mat., 2013, 176: 8.
[68] Xu J, Liu J, Zhao Z, Zheng J, Zhang G, Duan A, Jiang G. Catal. Today, 2010, 153: 136.
[69] Sadakane M, Horiuchi T, Kato N, Sasaki K, Ueda W. J. Solid State Chem., 2010, 183: 1365.
[70] Xiao P, Zhu J, Li H, Jiang W, Wang T, Zhu Y, Zhao Y, Li J. ChemCatChem, 2014, 6: 1774.
[71] Liu Y, Dai H, Du Y, Deng J, Zhang L, Zhao Z, Au C T. J. Catal., 2012, 287: 149.
[72] Ji K, Dai H, Deng J, Zhang L, Wang F, Jiang H, Au C T. Appl. Catal. A: Gen., 2012, 425/426: 153.
[73] Liu Y, Dai H, Du Y, Deng J, Zhang L, Zhao Z. Appl. Catal. B: Environ., 2012, 119/120: 20.
[74] Zhao Z, Dai H, Deng J, Du Y, Liu Y, Zhang L. Micropor. Mesopor. Mat., 2012, 163: 131.
[75] Arandiyan H, Dai H, Deng J, Liu Y, Bai B, Wang Y, Li X, Xie S, Li J. J. Catal., 2013, 307: 327.
[76] Zhao Z, Dai H, Deng J, Du Y, Liu Y, Zhang L. J. Mol. Catal. A: Chem., 2013, 366: 116.
[77] Liu Y, Dai H, Deng J, Li X, Wang Y, Arandiyan H, Xie S, Yang H, Guo G. J. Catal., 2013, 305: 146.
[78] Peña M A, Fierro J L G. Chem. Rev., 2001, 101: 1981.
[79] Jacobson A J. Chem. Mater., 2010, 22: 660.
[80] Sakaki Y, Takeda Y, Kato A, Imanishi N, Yamamoto O, Hattori M, Iio M, Esaki Y. Solid State Ionics, 1999, 118: 187.
[81] Yu H C, Zhao F, Virkar A V, Fung K Z. J. Power Sources, 2005, 152: 22.
[82] Dong F, Chen D, Ran R, Park H, Kwak C, Shao Z. Int. J. Hydrogen Energy, 2012, 37: 4377.
[83] Tu H Y, Takeda Y, Imanishi N, Yamamoto O. Solid State Ionics, 1999, 117: 277.
[84] Kindermann L, Das D, Nickel H, Hilpert K. Solid State Ionics, 1996, 89: 215.
[85] Ko H J, Myung J H, Lee J H, Hyun S H, Chung J S. Int. J. Hydrogen Energy, 2012, 37: 17209.
[86] Wang Y, Zhang L, Chen F, Xia C. Int. J. Hydrogen Energy, 2012, 37: 8582.
[87] Bansal N P, Wise B. Ceram. Int., 2012, 38: 5535.
[88] Park S Y, Ji H I, Kim H R, Yoon K J, Son J W, Kim B K, Je H J, Lee H W, Lee J H. J. Power Sources, 2013, 228: 97.
[89] Park Y M, Kim H. Int. J. Hydrogen Energy, 2012, 37: 5320.
[90] Gong Y, Palacio D, Song X, Patel R L, Liang X, Zhao X, Goodenough J B, Huang K. Nano Lett., 2013, 13: 4340.
[91] Banerjee K, Mukhopadhyay J, Basu R N. Int. J. Hydrogen Energy, 2014, 39: 15754.
[92] Liu Y, Chen J, Wang F, Chi B, Pu J, Jian L. Int. J. Hydrogen Energy, 2014, 39: 3404.
[93] Liu Y, Chen K, Zhao L, Chi B, Pu J, Jiang S P, Jian L. Int. J. Hydrogen Energy, 2014, 39: 15868.
[94] Yu T, Mao X, Ma G. Ceram. Int., 2014, 40: 13747.
[95] Li W, Pu J, Chi B, Jian L. Electrochim. Acta, 2014, 141: 189.
[96] Hou J, Zhu Z, Qian J, Liu W. J. Power Sources, 2014, 264: 67.
[97] Prakash B S, Kumar S S, Aruna S T. Renew. Sust. Energy Rev., 2014, 36: 149.
[98] Steele B C H, Heinzel A. Nature, 2001, 414: 345.
[99] Atkinson A, Barnett S A, Gorte R J, Irvine J T S, Mcevoy A J, Mogensen M, Singhal S C, Vohs J. Nat. Mater., 2004, 3: 17.
[100] Hui S Q, Petric A. J. Eur. Ceram. Soc., 2002, 22: 1673.
[101] Hui S Q, Petric A. J. Electrochem. Soc., 2002, 149: 1.
[102] Hui S Q, Petric A. Mater. Res. Bull., 2002,37:1215.
[103] Li X, Zhao H, Xu N, Zhou X, Zhang C, Chen N. Int. J. Hydrogen Energy, 2009, 34: 6407.
[104] Li X, Zhao H, Zhou X, Xu N, Xie Z, Chen N. Int. J. Hydrogen Energy, 2010, 35: 7913.
[105] Ma Q, Tietz F, Leonide A, Ivers-Tiffée E. J. Power Sources, 2011, 196: 7308.
[106] Ma Q, Tietz F, Stöver D. Solid State Ionics, 2011, 192: 535.
[107] Du Z, Zhao H, X Zhou, Z Xie, Zhang C. Int. J. Hydrogen Energy, 2013, 38: 1068.
[108] Périllat-Merceroz C, Gauthier G, Roussel P, Huvé M, Gélin P, Vannier R N. Chem. Mater., 2011, 23: 1539.
[109] Ma Q, Tietz F. Solid State Ionics, 2012, 225: 108.
[110] Ishihara T, Matsuda H, Takita Y. J. Am. Chem. Soc., 1994, 116: 3801.
[111] Feng M, Goodenough J. Eur. J. Solid State Inorg. Chem., 1994, 31: 663.
[112] Laguna-Bercero M A. J. Power Sources, 2012, 203: 4.
[113] Saribo D?a V, Özdemir H, Faruk Öksüzömer M A. J. Eur. Ceram. Soc., 2013, 33: 1435.
[114] Biswal R C, Biswas K. J. Eur. Ceram. Soc., 2013, 33: 3053.
[115] Hao G, Liu X, Wang H, Be H, Pei L, Su W. Solid State Ionics, 2012, 255: 81.
[116] Hao G, Li B, Liu S, Liu X, Wang H, Su W. Int. J. Hydrogen Energy, 2013, 38: 11392.
[117] Raghvendra, Singh R K, Singh P. Solid State Ionics, 2014, 262: 428.
[118] Raghvendra, Singh R K, Sinha A S K, Singh P. Cera. Int., 2014, 40: 10711.
[119] Iwahara H, Uchida H, Ono K, Ogaki K. J. Electrochem. Soc., 1988, 135: 529.
[120] Zuo C D, Zha S W, Liu M L, Hatano M. Adv. Mater., 2006, 18: 3318.
[121] Fabbri E, D’Epifanio A, Bartolomeo E D, Licoccia S, Traversa E. Solid State Ion., 2008, 179: 558.
[122] Yang L, Wang S Z, Blinn K, Liu M F, Liu Z, Cheng Z, Liu M L. Science, 2009, 326: 126.
[123] Bi L, Traversa E. Electrochem. Commun., 2013, 36: 42.
[124] Zhang L, Lan R, Tao S. Int. J. Hydrogen Energy, 2013, 38: 16546.
[125] Gewirth A A, Thorum M S. Inorg. Chem., 2010, 49: 3557.
[126] Li Y, Gong M, Liang Y, Feng J, Kim J E, Wang H, Hong G, Zhang B, Dai H. Nat. Commun., 2013, 4: 1805.
[127] Lee J S, Kim S T, Cao R, Choi N S, Liu M, Lee K T, Cho J. Adv. Energy Mater., 2011, 1: 34.
[128] Dong H, Y Kiros, Noréus D. Inter. J. Hydrogen Energy, 2010, 35: 4336.
[129] Suntivich J, Gasteiger H A, Yabuuchi N, Nakanishi H, Goodenough J B, Horn Y S. Nat. Chem., 2011, 3: 546.
[130] Zhang T, Imanishi N, Takeda Y, Yamamoto O. Chem. Lett., 2011, 40, 668.
[131] Ohkuma H, Uechi I, Imanishi N, Hirano A, Takeda Y, Yamamoto O. J. Power Sources, 2013, 223: 319.
[132] Chang Y M, Wu P W, Wu C Y, Hsieh Y F, Chen J Y. Electrochem. Solid State Lett., 2008, 11: B47.
[133] Chang Y M, Hsieh Y C, Wu P W, Lai C H, Chang T Y. Mater. Lett., 2008, 62: 4220.
[134] Chang Y M, Wu P W, Wu C Y, Hsien Y C. J. Power Sources, 2009, 189: 1003.
[135] Zhuang S, Huang K, Huang C, Huang H, Liu S, Fan M. J. Power Sources, 2011, 196: 4019.
[136] Deng J G, Zhang L, Dai H X, Au C T. Appl. Catal. A, 2009, 352: 43.
[137] Hu J, Wang L, Shi L, H Huang. J. Power Sources, 2014, 269: 144.
[138] Park H W, Lee D U, Zamani P, Seo M H, Nazar L F, Chen Z. Nano Energy, 2014, 10: 192.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[3] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[4] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[5] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[6] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[7] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[8] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[9] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[10] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[11] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[12] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[13] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[14] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.
[15] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.