English
新闻公告
More
化学进展 2023, Vol. 35 Issue (5): 794-806 DOI: 10.7536/PC221104 前一篇   

• 综述 •

制备固体氧化物燃料电池中电解质薄膜的电泳沉积法

赵秉国1, 刘亚迪2,*(), 胡浩然1,2, 张扬军1, 曾泽智1,*()   

  1. 1 清华大学汽车安全与节能国家重点实验室 北京 100084
    2 北京思伟特新能源科技有限公司 北京 100192
  • 收稿日期:2022-11-07 修回日期:2023-01-04 出版日期:2023-05-24 发布日期:2023-02-20
  • 作者简介:

    刘亚迪 2014年毕业于中科院上海硅酸盐研究所,获得材料物理与化学专业博士。2018年,清华大学博士后出站,化学科学与工程专业。主要从事新能源方向的研究,包括高温固体氧化物燃料电池、低温聚合物燃料电池及电解池和Li-S电池等,已发表SCI期刊论文13篇。

    曾泽智 博士毕业于加州大学洛杉矶分校机械工程系。主要从事高温燃料电池热质传输研究,重点研究固体氧化物燃料电池功率密度与循环寿命提升机制。研究成果共发表SCI论文18篇,EI论文6篇,其中以第一作者发表SCI论文10篇。

  • 基金资助:
    先进航空动力创新工作站项目和清华大学自主科研计划课题资助

Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells

Bingguo Zhao1, Yadi Liu2(), Haoran Hu1,2, Yangjun Zhang1, Zezhi Zeng1()   

  1. 1 State Key Laboratory of Automotive Safety and Energy, Tsinghua University,Beijing 100084, China
    2 Beijing Swift New Energy Technologies Co., Ltd, Beijing 100192, China
  • Received:2022-11-07 Revised:2023-01-04 Online:2023-05-24 Published:2023-02-20
  • Contact: * e-mail: liuyadi@swifth2.com (Yadi Liu); zezhizeng@mail.tsinghua.edu.cn (Zezhi Zeng)
  • Supported by:
    Advanced Aviation Power Innovation institution and the Aero Engine Academy of China, and the Tsinghua University Initiative Scientific Research Program

固体氧化物燃料电池(SOFCs)是一种高效、清洁的全固态能量转化装置,但过高的工作温度(700~900 ℃)限制了其使用范围和寿命,SOFC中低温化已成为当前研究热点。制备超薄电解质(厚度<10 μm)可缩短氧离子传导路径,有效降低欧姆损耗并提升中低温SOFC输出功率。电泳沉积工艺因其成本低、制备速度快等优势,极具大规模商业化生产电解质薄膜的潜力。本文归纳了近十年来电泳沉积工艺在SOFC电解质薄膜生产中的研究进展,并针对电泳沉积过程中的基体选择及预处理、稳定悬浮液制备、气泡消除及热处理过程等瓶颈问题展开讨论。结合大规模商业化薄膜制备应用的需求分析,给出了电泳沉积工艺未来研究方向的建议。

Solid oxide fuel cells (SOFCs) are power generation devices with high efficiency and low emissions. The high operating temperature (700~900 ℃) has impeded the wider adoption of SOFC stacks and limited their lifetime. This has motivated intense research efforts in developing SOFC stacks which can operate at lower temperatures. The thin electrolytes with a thickness smaller than 10 μm could shorten the ion conductive paths and reduce the associated ohmic loss, effectively improving the electrical performance of the low-temperature SOFC. The electrophoretic deposition process has the advantages of low cost and fast manufacturing speed. It is a potential candidate for large-scale commercial production of electrolyte thin films for low-temperature SOFC. In the present article, the research progress of electrophoretic deposition during the past ten years has been summarized. The key results and achievements for the important procedures of the electrophoretic deposition process, which are respectively substrate selection and pretreatment, stable suspension preparation, bubble elimination and heat treatment process, are also discussed and analyzed. The suggestions for future development of the electrophoretic deposition are also provided based on the requirements of large-scale commercialization of thin electrolyte for low-temperature SOFC.

Contents

1 Introduction

2 Fundamentals of the electrophoretic deposition process

3 Technical challenges and research progress of electrophoretic deposition process for the preparation of electrolyte thin films

3.1 Substrate selection and pretreatment

3.2 Stable suspension preparation

3.3 Bubble elimination

3.4 Heat treatment process

4 Conclusion and outlook

()
图1 SOFC 工作原理[5]
Fig. 1 Working principle of SOFC[5]
图2 近20年SOFC薄膜制备工艺发展趋势(可通过Web of science 检索获取)[32]
Fig. 2 Development of SOFC thin film preparation process in recent 20 years (utilizing web of science to access the data)[32]
图3 电泳沉积系统示意图[37]
Fig. 3 Schematic of the electrophoretic deposition system[37]
图4 电泳沉积工艺基本原理示意图[38]
Fig. 4 Schematic of the working principle of electrophoretic deposition process[38]
图5 不导电基体上电泳沉积机制示意图[41]
Fig. 5 Schematic of mechanism of electrophoretic deposition on the non-conductive substrate[41]
图6 粒子双电层区域及ζ(zeta)电位示意图[54]
Fig. 6 Schematic of particle electric double layer and ζ(zeta) potential[54]
图7 不同脉冲宽度下电解质薄膜质量对比(镍基体,20 V外加电压)[80]
Fig. 7 Quality comparison of electrolyte films under different pulse widths (Ni substrate, 20 V applied voltage)[80]
图8 沉积的BCZYYbO-CuO/SDC双层电解质光学照片:(a)沉积干燥后;(b)1400 ℃空气中烧结5 h[87]
Fig. 8 Optical photographs of the deposited BCZYYbO -CuO/SDC bilayer electrolyte: (a) after deposition and drying; (b) sintered in air at 1400 ℃ for 5 h[87]
图9 1000 ℃烧结下(a)GDC 薄膜表面和(b)GDC/LSCF支撑体横截面的扫描电镜图片;(c)和(d)分别为(a)和(b)图的高倍率放大图[88]
Fig. 9 Surface and cross-sectional SEM images of (a) GDC film and (b) GDC film/LSCF support sintered at 1000 ℃. High-magnification of the (c) surface and (d) cross-sectional SEM images of (a) and (b), respectively[88]
表1 电泳沉积法制备SOFC超薄电解质薄膜工艺热处理过程
Table 1 Heat treatment process of SOFC electrolyte thin films prepared by electrophoretic deposition
Electrolyte/
thickness/size
Substrate/dispersant/dispersion medium Heat treatment(temperature, atmosphere) EPD mode/
deposition time
Distance between substrate and electrode Electrochemical performance ref
YSZ/2.95 μm/- Substrate: porous NiO-YSZ anode prepared by PIM method
Dispersant: 5 wt%
polyethylene glycol
Dispersion medium: ethanol
Sintering: co-sintered at 1200~1400 ℃ for 1h (heating rate 3 ℃/min); Air atmosphere
Reduction: reduced at 1250~1350 ℃ until open circuit voltage and impedance did not change; humidified H2 atmosphere
Voltage: 20~30 V
Deposition time: 30~180 s
Peak power density: 0.013 W/cm2
(800 ℃)
44
GDC/~
7.5 μm/-
Substrate: porous NiO-YSZ anode
Dispersant: polyethyleneimine
Dispersion medium: ethanol
Sintering: co-sintered at
1400 ℃ for 2 h
Voltage: 50 V(DC) 2 cm Peak power density: 0.011 W/cm2
(800 ℃)
50
SDC/10 μm/~1.2 cm2 Substrate: porous NiO-BCS-CuO
Dispersant: none
Dispersion medium: isopropanol and acetylacetone
Drying: dried at room temperature for 24 h after EPD
Sintering: co-sintered at
1450 ℃ for 5 h
Voltage: 200 V
Deposition time: 60 s
10 mm Power density:
0.072 W/cm2
(750 ℃, 0.5 V)
67
YSZ/~
3 μm/25×
25 mm2
Substrate: porous NiO-YSZ anode with a conductive steel plane at the back
Dispersant: Phosphate ester (PE)
Dispersion medium: isopropanol
Sintering: sintered at 1000~1200 ℃ for 2 h Voltage: 10~70 V
Deposition time:
1~6 min
4 cm Peak power density: 0.90 W/cm2
(800 ℃)
70
YSZ/7.98 μm/- Substrate: Stainless steel AISI-310
Dispersant: iodine
Dispersion medium: isopropanol or acetone
Preheating: substrate is
preheated at 300 ℃ for
60 min; air atmosphere
Current: 3~10 mA
Deposition time: 5~25 min
1 cm 73
GDC/1 ~
2 μm /25 ×
25 mm2
Substrate: LSCF cathode
Dispersant: 1.25% polyacrylic acid ammonium (PAAA)
Dispersion medium: water
Drying: dried at 60 ℃ for 1 h
Sintering: co-sintered at
1000 ℃ for 2 h (heating rate
2 ℃/min)
Voltage: 100 V
(DC)
Deposition time:
2 min
15 mm 88
GDC/6 μm /4 cm2 Substrate: YSZ electrolyte
Dispersant: iodine
Dispersion medium: ethanol
Sintering: YSZ and NiO-YSZ are co-sintered at 1400 ℃ for 4 h
Sintering: GDC and LSCF-GDC are co-sintered at
1150 ℃ for 1.5 h
Voltage: -100 V ~
+80 V (AC)
1 cm Peak power density: 0.99 W/cm2
(800 ℃)
94
38
YSZ/
2.92 μm /-
Substrate: Ni-YSZ anode
Dispersant: none
Dispersion medium: acetylacetone
Drying: dried at room temperature for a night after EPD
Sintering: co-sintered at
1400 ℃ for 2 h
Voltage: 25 V
Deposition time:
3 min
1 cm Peak power density: 0.477 W/cm2
(800 ℃, H2)
99
YSZ/10 μm/- Substrate: porous NiO-YSZ anode
Dispersant: Darvan 821-A
Dispersion medium: acetylacetone
Drying: dried at room temperature for a night after EPD
Sintering: co-sintered at
1450 ℃ for 5 h
Voltage: 50~300 V (DC)
Deposition time: 1~5 min
10 mm Peak power density: 0.624 W/cm2
(800 ℃)
100
YSZ/5 μm/- Substrate: porous NiO-YSZ anode
Dispersant: 0.1 g/L iodine, 5 vol% acetylacetone and 2 vol% water
Dispersion medium: isopropanol
Sintering: co-sintered at
1400 ℃ for 6 h (heating to 800 ℃ with heating rate of
50 ℃/h and then keeping
30 min; then heating to
1400 ℃ with heating rate of
75 ℃/h and keeping 6 h)
Voltage: 15~40 V (DC)
Deposition time: 1~4 min
2 cm Power density: 0.91 W/cm2 (800 ℃, 0.7 V) 101
YSZ/
~2.5 μm/-
Sintering: co-sintered at
1400 ℃ for 2 h (heating rate 1 ℃/min)
Voltage: 30 V
Deposition time:
2 min
Peak power density: 0.077 W/cm2
(800 ℃)
102
BCSCuO/
8 μm/
~1.2 cm2
Substrate: SDC
Dispersant: iodine
Dispersion medium: isopropanol and acetylacetone
Sintering: co-sintered at
1450 ℃ for 5 h
Voltage: 20~80 V
Deposition time: 1~ 3 min
1 cm 103
BSCF/
10 μm/-
Substrate: porous BSCF
Dispersant: polymethylmethacrylate
Dispersion medium: reagent-grade ethanol
Sintering: co-sintered at
1100 ℃ for 3 h
Voltage: 150 V
Deposition time:
5 min
10 mm 104
[1]
Zhang Y, Knibbe R, Sunarso J, Zhong Y J, Zhou W, Shao Z P, Zhu Z H. Adv. Mater., 2017, 29(48): 1700132.

doi: 10.1002/adma.v29.48     URL    
[2]
Zeng Z Z, Hao C K, Zhao B G, Qian Y P, Zhuge W L, Wang Y Q, Shi Y X, Zhang Y J. Int. J. Green Energy, 2022, 19(10): 1132.

doi: 10.1080/15435075.2021.1986406     URL    
[3]
Zhao B G, Zeng Z Z, Hao C K, Qian Y P, Zhuge W L, Zhang Y J. J. Eng. Thermophys., 2022, 43(11): 3029.
(赵秉国, 曾泽智, 郝长坤, 钱煜平, 诸葛伟林, 张扬军. 工程热物理学报, 2022, 43(11): 3029.).
[4]
Essaghouri A, Zeng Z Z, Zhao B G, Hao C K, Qian Y P, Zhuge W L, Zhang Y J. Energies, 2022, 15(19): 7048.

doi: 10.3390/en15197048     URL    
[5]
Zhao B G, Zeng Z Z, Hao C K, Essaghouri A, Qian Y P, Zhuge W L, Wang Y Q, Shi Y X, Zhang Y J. Int. J. Energy Res., 2022, 46(13): 18426.

doi: 10.1002/er.v46.13     URL    
[6]
Zeng Z Z, Qian Y P, Zhang Y J, Hao C K, Dan D, Zhuge W L. Appl. Energy, 2020, 280: 115899.

doi: 10.1016/j.apenergy.2020.115899     URL    
[7]
Hao C K, Zeng Z Z, Zhao B G, Qian Y P, Zhuge W L, Wang Y Q, Shi Y X, Zhang Y J. Appl. Therm. Eng., 2022, 211: 118453.

doi: 10.1016/j.applthermaleng.2022.118453     URL    
[8]
Zeng Z Z, Zhao B G, Hao C K, Essaghouri A, Qian Y P, Zhuge W L, Wang Y Q, Shi Y X, Zhang Y J. Appl. Therm. Eng., 2023, 219: 119577.

doi: 10.1016/j.applthermaleng.2022.119577     URL    
[9]
Zuo N, Zhang M L, Mao Z Q, Gao Z, Xie F C. J. Eur. Ceram. Soc., 2011, 31(16): 3103.

doi: 10.1016/j.jeurceramsoc.2011.04.030     URL    
[10]
Kim Y B, Park J S, Gür T M, Prinz F B. J. Power Sources, 2011, 196(24): 10550.

doi: 10.1016/j.jpowsour.2011.08.075     URL    
[11]
Jaiswal N, Tanwar K, Suman R, Kumar D, Upadhyay S, Parkash O. J. Alloys Compd., 2019, 781: 984.

doi: 10.1016/j.jallcom.2018.12.015     URL    
[12]
Ryu S, Yu W, Chang I, Park T, Cho G Y, Cha S W. Ceram. Int., 2020, 46(8): 12648.

doi: 10.1016/j.ceramint.2020.02.030     URL    
[13]
Fallah Vostakola M, Amini Horri B. Energies, 2021, 14(5): 1280.

doi: 10.3390/en14051280     URL    
[14]
Wang L S, Li C X, Li C J, Yang G J. Electrochimica Acta, 2018, 275: 208.

doi: 10.1016/j.electacta.2018.04.101     URL    
[15]
Chen R, Zhang S L, Li C J, Li C X. J. Therm. Spray Technol., 2021, 30(1/2): 196.

doi: 10.1007/s11666-021-01166-2    
[16]
Yang B C, Go D, Oh S, Woo Shin J, Kim H J, An J. Appl. Surf. Sci., 2019, 473: 102.

doi: 10.1016/j.apsusc.2018.12.142     URL    
[17]
Yang T R, Zhao H L, Fang M Y, Świerczek K, Wang J, Du Z H. J. Eur. Ceram. Soc., 2019, 39(2/3): 424.

doi: 10.1016/j.jeurceramsoc.2018.08.047     URL    
[18]
Baquero T, Escobar J, Frade J, Hotza D. Ceram. Int., 2013, 39(7): 8279.

doi: 10.1016/j.ceramint.2013.03.097     URL    
[19]
Suzuki T, Hasan Z, Funahashi Y, Yamaguchi T, Fujishiro Y, Awano M. Electrochem. Solid-State Lett., 2008, 11(6): B87.

doi: 10.1149/1.2895008     URL    
[20]
Li J Y, Fan L J, Hou N J, Zhao Y C, Li Y D. RSC Adv., 2022, 12(21): 13220.

doi: 10.1039/D2RA02035A     URL    
[21]
Somalu M R, Muchtar A, Daud W R W, Brandon N P. Renew. Sustain. Energy Rev., 2017, 75: 426.

doi: 10.1016/j.rser.2016.11.008     URL    
[22]
Dayaghi A M, Askari M, Rashtchi H, Gannon P. Surf. Coat. Technol., 2013, 223: 110.

doi: 10.1016/j.surfcoat.2013.02.041     URL    
[23]
Guo Y B, Zhao Z, Li Y C, Qi H Y, Cheng M J. Chinese Journal of Power Sources, 2020, 44(09): 1297.
(郭意博, 赵哲, 李宇超, 戚惠颖, 程谟杰. 电源技术, 2020, 44(09): 1297.).
[24]
Du K, Song C, Yu M, Chen D, Guo Y, Liu T K, Yang C H, Liu M. Journal of the Chinese Ceramic Society, 2022, 50(07): 1929.
(杜柯, 宋琛, 余敏, 陈丹, 郭宇, 刘太楷, 杨成浩, 刘敏. 硅酸盐学报, 2022, 50(07): 1929.).
[25]
Sakai T, Kato T, Katsui H, Tanaka Y, Goto T. Mater. Today Commun., 2020, 24: 101184.
[26]
Lee H, Park J, Lim Y, Yang H, Kim Y B. J. Alloys Compd., 2021, 861: 158397.

doi: 10.1016/j.jallcom.2020.158397     URL    
[27]
Han F, Riegraf M, Sata N, Bombarda I, Liensdorf T, Sitzmann C, Langhof N, Schafföner S, Walter C, Geipel C, Costa R. ECS Trans., 2021, 103(1): 139.

doi: 10.1149/10301.0139ecst    
[28]
García Sánchez M F, Ponce Rosas I, MalagÓn García J F, Alberto Andraca Adame J, Lartundo-Rojas L, Santana G. Phys. Status Solidi A, 2020, 217(22): 2000235.

doi: 10.1002/pssa.v217.22     URL    
[29]
Liu M F, Uba F, Liu Y. J. Am. Ceram. Soc., 2020, 103(9): 5325.

doi: 10.1111/jace.v103.9     URL    
[30]
Yang H, Lee H, Lim Y, Kim Y B. J. Am. Ceram. Soc., 2021, 104(1): 86.

doi: 10.1111/jace.v104.1     URL    
[31]
Pikalova E Y, Kalinina E G. Renew. Sustain. Energy Rev., 2019, 116: 109440.

doi: 10.1016/j.rser.2019.109440     URL    
[32]
https://www.webofscience.com/wos/alldb/basic-search.
[33]
Besra L, Compson C, Liu M L. J. Power Sources, 2007, 173(1): 130.

doi: 10.1016/j.jpowsour.2007.04.061     URL    
[34]
Sharkawi N A, Azmi M A, Jaidi Z, Abd., Rahman H, Ahmad S, Mahzan S, Ismail A, Tajul Arifin A M, Zakaria H, Hassan S. Journal of Advanced Mechanical Engineering Applications, 2021, 2(2): 9.
[35]
Chasta G, Himanshu, Dhaka M S. Int. J. Energy Res., 2022, 46(11): 14627.

doi: 10.1002/er.v46.11     URL    
[36]
Yu J, Zhang Y, Pu J, Shen S X, Wang L J, Zhou F. Hot Working Technology, 2018, 47(08): 11.
(于静, 张勇, 蒲健, 沈淑馨, 王利捷, 周凡. 热加工工艺, 2018, 47(08): 11.).
[37]
Lowrance Y N, Azmi M A, Rahman H A, Rahman N F A, Zakaria H, Hassan S. Key Eng. Mater., 2022, 908: 555.

doi: 10.4028/v-55iy3h     URL    
[38]
Hu S S, Finklea H, Li W Y, Li W, Qi H, Zhang N, Liu X B. ACS Appl. Mater. Interfaces, 2020, 12(9): 11126.

doi: 10.1021/acsami.9b17504     URL    
[39]
Chelmehsara M E, Mahmoudimehr J. Int. J. Hydrog. Energy, 2018, 43(32): 15521.

doi: 10.1016/j.ijhydene.2018.06.114     URL    
[40]
Mahato N, Banerjee A, Gupta A, Omar S, Balani K. Prog. Mater. Sci., 2015, 72: 141.

doi: 10.1016/j.pmatsci.2015.01.001     URL    
[41]
Besra L, Compson C, Liu M L. J. Am. Ceram. Soc., 2006, 89(10): 3003.

doi: 10.1111/jace.2006.89.issue-10     URL    
[42]
Will J, Hruschka M K M, Gubler L, Gauckler L J. J. Am. Ceram. Soc., 2001, 84(2): 328.

doi: 10.1111/j.1151-2916.2001.tb00658.x     URL    
[43]
van Tassel J, Randall C A. J. Mater. Sci., 2004, 39(3): 867.

doi: 10.1023/B:JMSC.0000012916.92366.48     URL    
[44]
Chauoon S, Meepho M, Chuankrerkkul N, Chaianansutcharit S, Pornprasertsuk R. Thin Solid Films, 2018, 660: 741.

doi: 10.1016/j.tsf.2018.03.082     URL    
[45]
Oskouyi O E, Maghsoudipour A, Shahmiri M, Hasheminiasari M. J. Alloys Compd., 2019, 795: 361.

doi: 10.1016/j.jallcom.2019.04.334     URL    
[46]
Azarian Borojeni I, Raissi B, Maghsoudipour A, Kazemzad M, Talebi T. Key Eng. Mater., 2015, 654: 83.

doi: 10.4028/www.scientific.net/KEM.654     URL    
[47]
Hu S S, Li W Y, Finklea H, Liu X B. Adv. Colloid Interface Sci., 2020, 276: 102102.

doi: 10.1016/j.cis.2020.102102     URL    
[48]
Talebi T, Raissi B, Haji M, Maghsoudipour A. Int. J. Hydrog. Energy, 2010, 35(17): 9405.

doi: 10.1016/j.ijhydene.2010.04.011     URL    
[49]
Bozza F, Polini R, Traversa E. Electrochem. Commun., 2009, 11(8): 1680.

doi: 10.1016/j.elecom.2009.06.029     URL    
[50]
Suzuki H T, Uchikoshi T, Kobayashi K, Suzuki T S, Sugiyama T, Furuya K, Matsuda M, Sakka Y, Munakata F. J. Ceram. Soc. Japan, 2009, 117(1371): 1246.

doi: 10.2109/jcersj2.117.1246     URL    
[51]
Pikalova E Y, Kalinina E G. Int. J. EQ, 2019, 4(1): 1.

doi: 10.2495/EQ     URL    
[52]
Besra L, Liu M. Prog. Mater. Sci., 2007, 52(1): 1.

doi: 10.1016/j.pmatsci.2006.07.001     URL    
[53]
Khanali O, Rajabi M, Baghshahi S. Journal of Ceramic Processing Research, 2017, 18(10): 735.
[54]
Aznam I, Mah J C W, Muchtar A, Somalu M R, Ghazali M J. J. Zhejiang Univ. Sci. A, 2018, 19(11): 811.

doi: 10.1631/jzus.A1700604    
[55]
Barbati A C, Kirby B J. ELECTROPHORESIS, 2016, 37(14): 1979.

doi: 10.1002/elps.v37.14     URL    
[56]
Bhattacharjee S. J. Control. Release, 2016, 235: 337.

doi: 10.1016/j.jconrel.2016.06.017     URL    
[57]
Visco S J, Jacobson C, DeJonghe L C. U.S. Patent No. 6, 887, 361. 3 May 2005.
[58]
Dukhin A S, Goetz P J, Wines T H, Somasundaran P. Colloids Surf. A Physicochem. Eng. Aspects, 2000, 173(1/3): 127.

doi: 10.1016/S0927-7757(00)00593-8     URL    
[59]
Kalinina E G, Efimov A A, Safronov A P. Thin Solid Films, 2016, 612: 66.

doi: 10.1016/j.tsf.2016.05.039     URL    
[60]
Yadav T. U.S. Patent No.7, 683, 098. 23 Mar. 2010.
[61]
Pikalova E Y, Nikonov A V, Zhuravlev V D, Bamburov V G, Samatov O M, Lipilin A S, Khrustov V R, Nikolaenko I V, Plaksin S V, Molchanova N G. Inorg. Mater., 2011, 47(4): 396.

doi: 10.1134/S0020168511040170     URL    
[62]
Osipov V V, Kotov Y A, Ivanov M G, Samatov O M, Lisenkov V V, Platonov V V, Murzakaev A M, Medvedev A I, Azarkevich E I. Laser Phys., 2006, 16(1): 116.

doi: 10.1134/S1054660X06010105     URL    
[63]
Kalinina E G, Samatov O M, Safronov A P. Inorg. Mater., 2016, 52(8): 858.

doi: 10.1134/S0020168516080094     URL    
[64]
Ammam M. RSC Adv., 2012, 2(20): 7633.

doi: 10.1039/c2ra01342h     URL    
[65]
Negishi H, Yamaji K, Sakai N, Horita T, Yanagishita H, Yokokawa H. J. Mater. Sci., 2004, 39(3): 833.

doi: 10.1023/B:JMSC.0000012911.86185.13     URL    
[66]
Das D, Basu R N. Mater. Res. Bull., 2013, 48(9): 3254.

doi: 10.1016/j.materresbull.2013.05.034     URL    
[67]
Pikalova E, Osinkin D, Kalinina E. Membranes, 2022, 12(7): 682.

doi: 10.3390/membranes12070682     URL    
[68]
Guo F W, Javed A, Shapiro I P, Xiao P. J. Eur. Ceram. Soc., 2012, 32(1): 211.

doi: 10.1016/j.jeurceramsoc.2011.08.011     URL    
[69]
Xu H, Shapiro I P, Xiao P. J. Eur. Ceram. Soc., 2010, 30(5): 1105.

doi: 10.1016/j.jeurceramsoc.2009.07.021     URL    
[70]
Das D, Bagchi B, Basu R N. J. Alloys Compd., 2017, 693: 1220.

doi: 10.1016/j.jallcom.2016.10.088     URL    
[71]
Matsuda M, Hashimoto M, Matsunaga C, Suzuki T S, Sakka Y, Uchikoshi T. J. Eur. Ceram. Soc., 2016, 36(16): 4077.

doi: 10.1016/j.jeurceramsoc.2016.06.043     URL    
[72]
Kalinina E G, Pikalova E Y. Russ. J. Phys. Chem., 2021, 95(9): 1942.

doi: 10.1134/S0036024421090077    
[73]
Pantoja-Pertegal J L, Díaz-Parralejo A, Macías-García A, Sánchez-González J, Cuerda-Correa E M. Ceram. Int., 2021, 47(10): 13312.

doi: 10.1016/j.ceramint.2020.12.279     URL    
[74]
Schwer C, Kenndler E. Anal. Chem., 1991, 63(17): 1801.

doi: 10.1021/ac00017a026     URL    
[75]
Ishihara T, Sato K, Takita Y. J. Am. Ceram. Soc., 1996, 79(4): 913.

doi: 10.1111/jace.1996.79.issue-4     URL    
[76]
Zhang H, Zhan Z L, Liu X B. J. Power Sources, 2011, 196(19): 8041.

doi: 10.1016/j.jpowsour.2011.05.053     URL    
[77]
Tabellion J, Clasen R. J. Mater. Sci., 2004, 39(3): 803.

doi: 10.1023/B:JMSC.0000012907.52051.fb     URL    
[78]
Uchikoshi T, Ozawa K, Hatton B D, Sakka Y. J. Mater. Res., 2001, 16(2): 321.

doi: 10.1557/JMR.2001.0048     URL    
[79]
Sakurada O, Suzuki K, Miura T, Hashiba M. J. Mater. Sci., 2004, 39(5): 1845.

doi: 10.1023/B:JMSC.0000016200.89677.57     URL    
[80]
Besra L, Uchikoshi T, Suzuki T S, Sakka Y. J. Am. Ceram. Soc., 2008, 91(10): 3154.

doi: 10.1111/jace.2008.91.issue-10     URL    
[81]
Oskouyi O E, Shahmiri M, Maghsoudipour A, Hasheminiasari M. J. Alloys Compd., 2019, 785: 220.

doi: 10.1016/j.jallcom.2019.01.166     URL    
[82]
Solomentsev Y, Böhmer M, Anderson J L. Langmuir, 1997, 13(23): 6058.

doi: 10.1021/la970294a     URL    
[83]
Hu S S, Li W, Li W Y, Zhang N, Qi H, Finklea H, Liu X B. Colloids Surf. A Physicochem. Eng. Aspects, 2019, 579: 123717.

doi: 10.1016/j.colsurfa.2019.123717     URL    
[84]
Neirinck B, Fransaer J, Van der Biest O, Vleugels J. Electrochem. Commun., 2009, 11(1): 57.

doi: 10.1016/j.elecom.2008.10.028     URL    
[85]
Talebi T, Haji M, Raissi B. Int. J. Hydrog. Energy, 2010, 35(17): 9420.

doi: 10.1016/j.ijhydene.2010.05.079     URL    
[86]
Baharuddin N A, Muchtar A, Somalu M R, MuhammedAliS M, Rahman H. Ceramics-Silikáty, 2016, 60(2): 115.
[87]
Kalinina E, Pikalova E, Ermakova L, Bogdanovich N. Coatings, 2021, 11(7): 805.

doi: 10.3390/coatings11070805     URL    
[88]
Yamamoto K, Sato K, Matsuda M, Ozawa M, Ohara S. Ceram. Int., 2021, 47(11): 15939.

doi: 10.1016/j.ceramint.2021.02.168     URL    
[89]
LÓpez-Honorato E, Dessoliers M, Shapiro I P, Wang X, Xiao P. Ceram. Int., 2012, 38(8): 6777.

doi: 10.1016/j.ceramint.2012.05.073     URL    
[90]
Dickerson J H, Boccaccini A R. Springer Science & Business Media, 2011.
[91]
Baufeld B, van der Biest O, Rätzer-Scheibe H J. J. Eur. Ceram. Soc., 2008, 28(9): 1793.

doi: 10.1016/j.jeurceramsoc.2007.11.019     URL    
[92]
Guo F W, Xiao P. J. Eur. Ceram. Soc., 2012, 32(16): 4157.

doi: 10.1016/j.jeurceramsoc.2012.07.035     URL    
[93]
Bai M W, Guo F W, Xiao P. Ceram. Int., 2014, 40(10): 16611.

doi: 10.1016/j.ceramint.2014.08.021     URL    
[94]
Hu S, Li W, Yao M, Li T, Liu X. Fuel Cells, 2017, 17(6): 869.

doi: 10.1002/fuce.v17.6     URL    
[95]
Alavi B, Aghajani H, Rasooli A. J. Eur. Ceram. Soc., 2019, 39(7): 2526.

doi: 10.1016/j.jeurceramsoc.2019.01.028     URL    
[96]
Nazari N, Aghajani H. J. Dispers. Sci. Technol., 2020, 41(12): 1754.

doi: 10.1080/01932691.2019.1649154     URL    
[97]
Savo G, Rainer A, D’Epifanio A, Licoccia S, Traversa E. ECS Proceedings Volumes, 2005, 2005(1): 1031.
[98]
Chen C, Fan H Y, Xing S Y, Zhou X Y, Wang W, Yuan J H. Shanghai Metals, 2020, 42(05): 5.
(陈超, 范宏誉, 邢守义, 周细应, 王伟, 袁建辉. 上海金属, 2020, 42(05): 5.).
[99]
Salehzadeh D, Torabi M, Sadeghian Z, Marashi P. J. Alloys Compd., 2020, 830: 154654.

doi: 10.1016/j.jallcom.2020.154654     URL    
[100]
Majhi S M, Behura S K, Bhattacharjee S, Singh B P, Chongdar T K, Gokhale N M, Besra L. Int. J. Hydrog. Energy, 2011, 36(22): 14930.

doi: 10.1016/j.ijhydene.2011.02.100     URL    
[101]
Das D, Basu R N. J. Am. Ceram. Soc., 2014, 97(11): 3452.

doi: 10.1111/jace.13163     URL    
[102]
Meepho M, Wattanasiriwech D, Aungkavattana P, Wattanasiriwech S. Energy Procedia, 2015, 79: 272.

doi: 10.1016/j.egypro.2015.11.484     URL    
[103]
Kalinina E, Shubin K, Pikalova E. Membranes, 2022, 12(3): 308.

doi: 10.3390/membranes12030308     URL    
[104]
Ishii K, Matsunaga C, Kobayashi K, Stevenson A J, Tardivat C, Uchikoshi T. J. Eur. Ceram. Soc., 2021, 41(4): 2709.

doi: 10.1016/j.jeurceramsoc.2020.11.024     URL    
[1] 张旸, 张敏, 赵海雷. 双钙钛矿型固体氧化物燃料电池阳极材料[J]. 化学进展, 2022, 34(2): 272-284.
[2] 张文锐, 张智慧, 高立国, 马廷丽. 双钙钛矿型电极材料在中低温固体氧化物燃料电池中的应用[J]. 化学进展, 2016, 28(6): 961-974.
[3] 阙亚萍, 翁坚, 胡林华, 戴松元. 二氧化钛在钙钛矿太阳电池中的应用[J]. 化学进展, 2016, 28(1): 40-50.
[4] 刘少名, 于波, 张文强, 朱建新, 翟玉春, 陈靖. 原子尺度研究固体氧化物池氧电极中氧迁移规律[J]. 化学进展, 2014, 26(09): 1570-1585.
[5] 刘张波, 刘蓓蓓, 夏长荣. 固体氧化物燃料电池的纳米阳极[J]. 化学进展, 2013, 25(11): 1821-1829.
[6] 邵宗平. 中低温固体氧化物燃料电池阴极材料[J]. 化学进展, 2011, 23(0203): 418-429.
[7] 章蕾, 夏长荣. 低温固体氧化物燃料电池[J]. 化学进展, 2011, 23(0203): 430-440.
[8] 吕喆, 魏波, 田彦婷, 王志红, 苏文辉. 单气室固体氧化物燃料电池关键材料与微堆系统[J]. 化学进展, 2011, 23(0203): 449-462.
[9] 陈建颖, 曾凡蓉, 王绍荣, 陈玮, 郑学斌. 固体氧化物燃料电池关键材料及电池堆技术[J]. 化学进展, 2011, 23(0203): 463-469.
[10] 刘泽, 雷泽, 宋世栋, 于立安, 韩敏芳. 低温制备掺杂氧化锆/氧化铈电解质[J]. 化学进展, 2011, 23(0203): 470-476.
[11] 阮北 闫柏军 张家芸. 新型氧离子导体La2Mo2O9*[J]. 化学进展, 2010, 22(01): 44-50.
[12] 辛显双,朱庆山. 固体氧化物燃料电池(SOFC)电池稳定性分析*[J]. 化学进展, 2009, 21(01): 227-234.
[13] 梁明德,于波,文明芬,陈靖,徐景明,翟玉春. YSZ电解质薄膜的制备方法*[J]. 化学进展, 2008, 20(0708): 1222-1232.
[14] 郑尧,周嵬,冉然,邵宗平. 钙钛矿型固体氧化物燃料电池阳极材料*[J]. 化学进展, 2008, 20(0203): 413-421.
[15] 朱晓东,孙克宁,周德瑞. 稳定的ZrO2基SOFC中CeO2夹层的制备方法和作用机制*[J]. 化学进展, 2007, 19(11): 1710-1717.