English
新闻公告
More
化学进展 2023, Vol. 35 Issue (4): 620-642 DOI: 10.7536/PC220935 前一篇   后一篇

• 综述 •

锂离子电池释热机理与模型及安全改性技术研究综述

余抒阳1, 罗文雷3, 解晶莹2,*(), 毛亚2,*(), 徐超1,*()   

  1. 1.华北电力大学 北京 102206
    2.上海空间电源研究所 空间电源技术国家重点实验室 上海 200245
    3.军事科学院国防科技创新研究院 北京 100071
  • 收稿日期:2022-09-29 修回日期:2023-02-06 出版日期:2023-04-24 发布日期:2023-02-20
  • 作者简介:

    解晶莹 研究员,博士生导师,国务院特殊津贴专家,现任上海空间电源研究所总研究师、副总工程师。长期致力于新型空间储能电源及相关材料、储能电池全生命周期性能诊断及安全管控等技术研究,是我国最早从事空间电源失效机理分析、寿命预测的主要学者之一。主持国家自然科学基金等国家及省部级重点项目 40 余项,获国家级、省部级科技奖项 10 项。先后发表国内外论文 150 余篇,发表专著 3 部,授权专利 60 余项。

    毛亚 研究员,上海空间电源研究所化学电源研究师。主要从事锂离子电池安全、化学电源新体系研发等研究方向。主持和参与装备发展部、国家国防科技工业局、上海市科委等国家及省部级项目多项,在国际学术期刊上发表 SCI 论文 30 余篇,获国家授权发明专利 5 项。

    徐超 教授,博士生导师,华北电力大学能源电力创新研究院执行副院长。目前担任中国工程热物理学会传热传质分会青年工作委员会委员、中国可再生能源学会青年工作委员会委员、全国太阳能光热发电标准化技术委员会委员。研究领域包括:太阳能聚光热发电技术,中、高温储热技术,直接醇类燃料电池技术,强化传热传质技术,电子器件冷却技术等。在国际学术期刊上发表 SCI 论文 100 余篇,获国家授权发明专利 7 项。先后主持国家级项目 6 项。

  • 基金资助:
    装发项目资助(2209KW0014)

Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries

Shuyang Yu1, Wenlei Luo3, Jingying Xie2(), Ya Mao2(), Chao Xu1()   

  1. 1. North China Electric Power University,Beijing 102206, China
    2. State Key Laboratory of Space Power Source Technology, Shanghai Institute of Space Power-sources,Shanghai 200245, China
    3. National Innovation Institute of Defense Technology, Academic of Military Science,Beijing 100071, China
  • Received:2022-09-29 Revised:2023-02-06 Online:2023-04-24 Published:2023-02-20
  • Contact: *e-mail: jyxie@hit.edu.cn(Jingying Xie); maoya0106@163.com(Ya Mao); mechxu@ncepu.edu.cn(Chao Xu)
  • Supported by:
    National Project(2209KW0014)

锂离子电池具有能量功率密度高、寿命长、无记忆效应等优点,被广泛应用于移动电子产品、电动汽车、储能系统、航空航天等领域。然而近年来以电池热失控相关的电动汽车和储能系统安全事故频发,引起高度关注。高能量密度电池的高安全性是推动电池大规模应用的首要保障,以电池产热特性、热失控机理、防护和抑制方法为核心的研究成为近几年电池热安全领域的热点。因此,本文对电池热安全领域的核心问题进行了全面的综述。首先讨论电池在常规工况下的产热特性、热失控链式放热反应以及三种滥用条件下的电池失效机理;其次,阐述电池电化学-热耦合模型以及热失控模型的机理方程、构建、应用及演化;再次,介绍电池正负极材料、隔膜、电解液以及集流体安全改性技术的研究进展;最后本文对该领域的研究趋势做出展望,为提升锂离子电池的本征安全性,防止热失控提供思路和方向。

Lithium-ion batteries are widely used in mobile electronic products, electric vehicles, energy storage systems, aerospace and other fields due to their high energy and power density, long life and no memory effect. However, in recent years, the frequent safety accidents of electric vehicles and energy storage systems related to battery thermal runaway have attracted high attention. The high safety of high energy density batteries is the primary guarantee to promote the large-scale application of batteries, and the research on the characteristics of battery heat generation, thermal runaway mechanism, protection and suppression methods has become a hot topic in the field of battery thermal safety research in recent years. Therefore, the core issues in the field of battery thermal safety are comprehensively reviewed in this paper. Firstly, the thermal generation characteristics of the battery under normal conditions, the thermal runaway chain exothermic reaction and the failure mechanism of the battery under three kinds of abuse conditions are discussed; Secondly, the mechanistic equation, construction, application and evolution of the electrochemical-thermal coupling model and thermal runaway model are described; and then, the research progress of anode and cathode materials, separator, electrolyte and current collector safety modification technology are introduced; finally, this paper makes a prospect for the research trend in this field to provide ideas and directions for improving the intrinsic safety of lithium-ion batteries and preventing thermal runaway.

()
图1 锂离子电池原理图
Fig.1 Schematic diagram of lithium-ion battery
表1 近年来的电池安全事故
Table 1 Battery safety accidents in recent years
时间 事故回放 事故原因
2020.04 深圳一家充电站内电动汽车起火,多辆电动汽车烧毁 过充导致热量积累,触发热失控链式反应
2020.10.27 一辆威马 EX5 在北京市中国科学研究院力学研究所内发生起火事故,后发生剧烈爆燃 电芯供应商在生产过程中混入了杂质,导致动力电池产生异常析锂,极端情况下可能导致电芯短路,引发动力电池热失控
2021.04.06 韩国忠清南道洪城光伏+储能系统起火爆炸,爆炸摧毁 0.5 MW储能电池 电池过流过压保护不足、运行环境及安装工艺有待改进,智能储能系统 ESS 经验不足
2021.04.16 北京市丰台区福威斯油气技术有限公司光储充一体化项目发生火灾爆炸事故,造成 1 人遇难,两名消防员牺牲。 磷酸铁锂电池单体发生内短路故障,引发电池模组热失控扩散起火
2021.07.18 浙江省杭州市父女骑电动车在玉皇山路行驶的过程中,电动车突然起火爆燃,车上父女被严重烧伤 初步判断“7·18”电动车起火原因与其锂电池故障有关
2021.07.30 位于澳大利亚维多利亚州的“维多利亚大电池”(VBB)项目所装载的特斯拉 Megapack 储能系统在施工建设期间发生起火事故 冷却液泄露导致锂电池热管理失控,在风力作用下引发相邻的另外一个储能系统燃烧
2021.09.04 加利福尼亚州 Vistra Energy 旗下莫斯兰丁锂离子储能站一期项目,7000 个电池组融化,占全部的 7% 热管理系统在极低的烟雾水平下错误启动,系统中部分柔性软管和管道上的少数接头发生故障引发系统喷水降温,造成电池损坏出现过热现象
2022.02.08 上海普陀区宜川四村住宅发生一起火灾造成 3 人死亡 住户将电动自行车锂离子蓄电池放在卧室内,电池故障引发火灾,引发火灾的锂电池输出电压超过 60 伏,属于典型的超标电池
图2 近年来部分电池安全事故
Fig.2 Some battery safety accidents in recent years
图3 电池热失控触发因素
Fig.3 Trigger factors of battery thermal runaway
图4 锂离子电池热失控链式反应示意图[13]
Fig.4 Schematic diagram of thermal runaway chain reaction of lithium-ion battery[13]
图5 热失控的“三阶段”[14]
Fig.5 “Three stages” of thermal runaway[14]
图6 电池热失控的特征温度
Fig.6 Characteristic temperature of battery thermal runaway
图7 正负极交叉化学反应触发热失控[46]。(a) 带电正极材料的时间分辨 XRD 谱图;(b) 带电正极材料在不同温度下的原位产热和释氧;(c) 在 100~500℃ 内,正负极的混合物几乎不释放氧气,但有明显的产热增强;(d) 正负极交叉化学反应过程
Fig.7 Thermal runaway triggered by chemical crosstalk between the cathode and anode[47]: (a) time-resolved XRD patterns of charged cathode material; (b) in situ heat generation and oxygen release at different temperatures of charged cathode materials; (c) at 100~500℃, the mixture of cathode and anode releases virtually no oxygen but has sharp heat generation enhancement; (d) cathode and anode cross chemical reaction process
图8 两种内源性氧途径参与热失控强放热反应[49]。(a) 样品 Ca+An+Ely_31%EC 的 DSC 曲线分峰拟合;(b) 样品 Ca+An+Ely_0%EC 的 DSC 曲线分峰拟合;(c) 正极释氧的机理和途径;(d) 无 EC 电解液的 NMC811/Gr 电池(0%EC)与对照组(31%EC)的热失控温升速率比较
Fig.8 Two endogenous pathways of oxygen involved in thermal runaway strong exothermic reactions[50]: (a) peak fitting of DSC curve of Ca+An+Ely_31%EC sample; (b) peak fitting of DSC curve of Ca+An+Ely_0%EC sample; (c) mechanism and pathway of oxygen release from cathode; (d) thermal runaway temperature rise rate of NMC811/Gr battery with EC-free-electrolyte (0%EC) compared with the control set (31%EC)
图9 LiH诱导的负极侧放热反应以及H2向正极侧迁移触发热失控[56]。 (a) 100%SOC 负极/电解液混合体系的 ARC 实验及产气组成;(b) 双盐电解液及LiH/双盐电解液在 N2 气氛下的DSC曲线;(c) 满电态 NCM523/Gr 电池热失控路径图
Fig.9 Thermal runaway is triggered by LiH-induced exothermic reaction at anode side and H2 migration to cathode side[57]. (a) ARC temperature rise curve and gas generation composition of 100%SOC anode/electrolyte; (b) DSC curves of dual electrolyte and LiH/dual electrolyte under N2 atmosphere; (c) thermal runaway route map for fully charged NCM523/Gr battery
图10 无机氧化物固态电解质与金属锂的多步热失控反应路径图[59]
Fig.10 Multi-step thermal runaway route map for SEs and metallic Li[60]
图11 一维电化学-三维热耦合模型示意图:(a) 一维电化学模型计算域;(b) 三维几何模型
Fig.11 Schematic diagram of 1D electrochemical-3D thermal coupling model: (a) computational domain of 1D electrochemical model; (b) 3D geometric model
图12 从锂离子电池元件动力学分析出发,基于模型的锂离子电池热失控预测[96]
Fig.12 Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components[96]
图13 高安全型复合隔膜。(a) 电纺核壳微纤维隔膜[126];(b) 涂覆不溶性阻燃剂添加剂的新型隔膜[127]
Fig.13 High safety composite separators: (a) electrospun core-shell microfiber separator[127]; (b) new separator coated with electrolyte-insoluble flame retardants[128]
图14 (a) 采用高浓电解液 LiFSI/DMC 的 NCM811/Gr 电池组分组合的 DSC 曲线;(b) 采用高浓电解液 LiFSI/DMC 的 NCM523/Gr 电池组分组合的 DSC 曲线;(c) 高浓电解液LiFSI/DMC 与 1 M LiPF6/EC:EMC 电解液对 NCM/Gr 电池热失控特性的比较[134]
Fig.14 (a) DSC curves of components and their mixtures of NCM811/Gr battery using concentrated LiFSI/DMC electrolyte; (b) DSC curves of components and their mixtures of NCM523/Gr battery using concentrated LiFSI/DMC electrolyte; (c) comparison of thermal runaway features of NCM/Gr batteries with concentrated LiFSI/DMC and conventional 1 M LiPF6/EC:EMC electrolyte[136]
[71]
Togasaki N, Yokoshima T, Osaka T. J. Electrochem. Soc., 2022, 169(3): 030547.

doi: 10.1149/1945-7111/ac5d92    
[72]
Zhang L L, Ma Y L, Cheng X Q, Du C Y, Guan T, Cui Y Z, Sun S, Zuo P J, Gao Y Z, Yin G P. J. Power Sources, 2015, 293: 1006.

doi: 10.1016/j.jpowsour.2015.06.040     URL    
[73]
Guo R, Lu L G, Ouyang M G, Feng X N. Sci. Rep., 2016, 6: 30248.

doi: 10.1038/srep30248    
[74]
Lee D C, Lee J J, Kim J S, Cho S, Kim C W. Appl. Therm. Eng., 2020, 175: 115422.

doi: 10.1016/j.applthermaleng.2020.115422     URL    
[75]
Ouyang D X, Weng J W, Chen M Y, Liu J H, Wang J. Int. J. Energy Res., 2020, 44(1): 229.

doi: 10.1002/er.v44.1     URL    
[76]
Al-Hallaj S, Selman J R. J. Power Sources, 2002, 110(2): 341.

doi: 10.1016/S0378-7753(02)00196-9     URL    
[77]
Wu M S, Liu K H, Wang Y Y, Wan C C. J. Power Sources, 2002, 109(1): 160.

doi: 10.1016/S0378-7753(02)00048-4     URL    
[78]
Jeon D H, Baek S M. Energy Convers. Manag., 2011, 52(8/9): 2973.

doi: 10.1016/j.enconman.2011.04.013     URL    
[79]
Kim U S, Yi J, Shin C B, Han T, Park S. J. Electrochem. Soc., 2013, 160(6): A990.

doi: 10.1149/2.146306jes     URL    
[80]
Doyle M, Fuller T F, Newman J. J. Electrochem. Soc., 1993, 140(6): 1526.

doi: 10.1149/1.2221597    
[81]
Fuller T F, Doyle M, Newman J. J. Electrochem. Soc., 1994, 141(1): 1.

doi: 10.1149/1.2054684    
[82]
Pals C R, Newman J. J. Electrochem. Soc., 1995, 142(10): 3274.

doi: 10.1149/1.2049974    
[83]
Pals C R, Newman J. J. Electrochem. Soc., 1995, 142(10): 3282.

doi: 10.1149/1.2049975    
[84]
Madani S, Schaltz E, Knudsen Kær S. Batteries, 2018, 4(2): 20.

doi: 10.3390/batteries4020020     URL    
[85]
Mastali M, Foreman E, Modjtahedi A, Samadani E, Amirfazli A, Farhad S, Fraser R A, Fowler M. Int. J. Therm. Sci., 2018, 129: 218.

doi: 10.1016/j.ijthermalsci.2018.03.004     URL    
[86]
Lai Y Q, Du S L, Ai L, Ai L H, Cheng Y, Tang Y W, Jia M. Int. J. Hydrog. Energy, 2015, 40(38): 13039.

doi: 10.1016/j.ijhydene.2015.07.079     URL    
[87]
He C X, Yue Q L, Wu M C, Chen Q, Zhao T S. Int. J. Heat Mass Transf., 2021, 181: 121855.

doi: 10.1016/j.ijheatmasstransfer.2021.121855     URL    
[88]
Ren H L, Jia L, Dang C, Qi Z L. J. Energy Storage, 2022, 50: 104277.

doi: 10.1016/j.est.2022.104277     URL    
[89]
Jiang G W, Zhuang L, Hu Q H, Liu Z Q, Huang J H. Appl. Therm. Eng., 2020, 171: 115080.

doi: 10.1016/j.applthermaleng.2020.115080     URL    
[90]
Bahiraei F, Ghalkhani M, Fartaj A, Nazri G A. Appl. Therm. Eng., 2017, 125: 904.

doi: 10.1016/j.applthermaleng.2017.07.060     URL    
[91]
Samba A, Omar N, Gualous H, Capron O, Van den Bossche P, Van Mierlo J. Electrochimica Acta, 2014, 147: 319.

doi: 10.1016/j.electacta.2014.08.115     URL    
[92]
He T F, Zhang T, Wang Z R, Cai Q. Appl. Energy, 2022, 313: 118797.

doi: 10.1016/j.apenergy.2022.118797     URL    
[93]
Feng X N. Doctoral Dissertation of Tsinghua University, 2016.
冯旭宁. 清华大学博士论文, 2016.).
[94]
Hatchard T D, MacNeil D D, Basu A, Dahn J R. J. Electrochem. Soc., 2001, 148(7): A755.

doi: 10.1149/1.1377592     URL    
[95]
Kim G H, Pesaran A, Spotnitz R. J. Power Sources, 2007, 170(2): 476.

doi: 10.1016/j.jpowsour.2007.04.018     URL    
[96]
Ren D S, Liu X, Feng X N, Lu L G, Ouyang M G, Li J Q, He X M. Appl. Energy, 2018, 228: 633.

doi: 10.1016/j.apenergy.2018.06.126     URL    
[97]
Wang Y, Ren D S, Feng X N, Wang L, Ouyang M G. Appl. Energy, 2022, 306: 117943.

doi: 10.1016/j.apenergy.2021.117943     URL    
[98]
Chombo P V, Laoonual Y. J. Power Sources, 2020, 478: 228649.

doi: 10.1016/j.jpowsour.2020.228649     URL    
[99]
Liu K, Liu Y Y, Lin D C, Pei A, Cui Y. Sci. Adv., 2018, 4(6): eaas9820.

doi: 10.1126/sciadv.aas9820     URL    
[100]
Zhou F, Zhao X M, Dahn J R. J. Electrochem. Soc., 2010, 157(7): A798.

doi: 10.1149/1.3425606     URL    
[101]
Zhou F, Zhao X M, Jiang J W, Dahn J R. Electrochem. Solid-State Lett., 2009, 12(4): A81.

doi: 10.1149/1.3072759     URL    
[102]
Hilgers M, Achenbach W. Hybrid Vehicles. Alternative Powertrains and Extensions to the Conventional Powertrain, 2021.
[103]
Cho W, Kim S M, Song J H, Yim T, Woo S G, Lee K W, Kim J S, Kim Y J. J. Power Sources, 2015, 282: 45.

doi: 10.1016/j.jpowsour.2014.12.128     URL    
[104]
Lee D J, Scrosati B, Sun Y K. J. Power Sources, 2011, 196(18): 7742.

doi: 10.1016/j.jpowsour.2011.04.007     URL    
[105]
Ji W X, Wang F, Liu D T, Qian J F, Cao Y L, Chen Z X, Yang H X, Ai X P. J. Mater. Chem. A, 2016, 4(29): 11239.

doi: 10.1039/C6TA03407A     URL    
[106]
Xia L, Li S L, Ai X P, Yang H X, Cao Y L. Energy Environ. Sci., 2011, 4(8): 2845.

doi: 10.1039/c0ee00590h     URL    
[107]
Naguib M, Allu S, Simunovic S, Li J L, Wang H, Dudney N J. Joule, 2018, 2(1): 155.

doi: 10.1016/j.joule.2017.11.003     URL    
[108]
Ding F, Xu W, Choi D, Wang W, Li X L, Engelhard M H, Chen X L, Yang Z G, Zhang J G. J. Mater. Chem., 2012, 22(25): 12745.

doi: 10.1039/c2jm31015e     URL    
[109]
Lee M L, Li Y H, Liao S C, Chen J M, Yeh J W, Shih H C. Appl. Surf. Sci., 2012, 258(16): 5938.

doi: 10.1016/j.apsusc.2011.11.018     URL    
[110]
Eom J Y, Cho Y H, Kim S I, Han D, Sohn D. J. Alloys Compd., 2017, 723: 456.

doi: 10.1016/j.jallcom.2017.06.210     URL    
[111]
Gao K, Li S D. J. Power Sources, 2014, 270: 304.

doi: 10.1016/j.jpowsour.2014.07.133     URL    
[112]
Zhang H Y, Chen Y T, Li J, He C H, Chen Y M. Int. J. Hydrog. Energy, 2014, 39(28): 16096.

doi: 10.1016/j.ijhydene.2014.01.139     URL    
[113]
Ren B, Li W, Wei A J, Bai X, Zhang L H, Liu Z F. J. Alloys Compd., 2018, 740: 784.

doi: 10.1016/j.jallcom.2017.12.167     URL    
[114]
Chen Y T, Zhang H Y, Li Y Y, Chen Y M, Luo T. Int. J. Hydrog. Energy, 2017, 42(10): 7195.

doi: 10.1016/j.ijhydene.2016.09.089     URL    
[115]
Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X W. Energy Environ. Sci., 2014, 7(12): 3857.

doi: 10.1039/C4EE01432D     URL    
[116]
Kong L X, Li C, Jiang J C, Pecht M. Energies, 2018, 11(9): 2191.

doi: 10.3390/en11092191     URL    
[117]
Jeong H S, Lee S Y. J. Power Sources, 2011, 196(16): 6716.

doi: 10.1016/j.jpowsour.2010.11.037     URL    
[118]
Choudhury S, Azizi M, Raguzin I, Göbel M, Michel S, Simon F, Willomitzer A, Mechtcherine V, Stamm M, Ionov L. Phys. Chem. Chem. Phys., 2017, 19(18): 11239.

doi: 10.1039/c7cp00310b     pmid: 28406503
[119]
Miao Y E, Zhu G N, Hou H Q, Xia Y Y, Liu T X. J. Power Sources, 2013, 226: 82.

doi: 10.1016/j.jpowsour.2012.10.027     URL    
[120]
Kim J K, Niedzicki L, Scheers J, Shin C R, Lim D H, Wieczorek W, Johansson P, Ahn J H, Matic A, Jacobsson P. J. Power Sources, 2013, 224: 93.

doi: 10.1016/j.jpowsour.2012.09.029     URL    
[121]
Liu L, Park J, Lin X K, Sastry A M, Lu W. J. Power Sources, 2014, 268: 482.

doi: 10.1016/j.jpowsour.2014.06.050     URL    
[122]
Long M C, Duan P H, Gao Y, Wang X L, Wu G, Wang Y Z. Chem. Eng. J., 2022, 432: 134394.

doi: 10.1016/j.cej.2021.134394     URL    
[123]
Min Y, Guo L, Wei G Y, Xian D X, Zhang B, Wang L. Chem. Eng. J., 2022, 443: 136480.

doi: 10.1016/j.cej.2022.136480     URL    
[124]
Baginska M, Blaiszik B J, Merriman R J, Sottos N R, Moore J S, White S R. Adv. Energy Mater., 2012, 2(5): 583.

doi: 10.1002/aenm.201100683     URL    
[125]
Li H, Wu D B, Wu J, Dong L Y, Zhu Y J, Hu X L. Adv. Mater., 2017, 29(44): 1703548.

doi: 10.1002/adma.201703548     URL    
[126]
Liu K, Liu W, Qiu Y C, Kong B, Sun Y M, Chen Z, Zhuo D, Lin D C, Cui Y. Sci. Adv., 2017, 3(1): e1601978.

doi: 10.1126/sciadv.1601978     URL    
[127]
Chou L Y, Ye Y S, Lee H K, Huang W X, Xu R, Gao X, Chen R J, Wu F, Tsung C K, Cui Y. Nano Lett., 2021, 21(5): 2074.

doi: 10.1021/acs.nanolett.0c04568     URL    
[128]
Wang Y, Mao Y, Bai Q Y, Li C L, Guo R, Xie J Y. Solid State Ion., 2019, 337: 7.

doi: 10.1016/j.ssi.2019.03.028     URL    
[129]
Wang W, Liao C, Liu L X, Cai W, Yuan Y, Hou Y B, Guo W W, Zhou X, Qiu S L, Song L, Kan Y C, Hu Y. J. Power Sources, 2019, 420: 143.

doi: 10.1016/j.jpowsour.2019.02.037    
[130]
Xia L, Xia Y G, Wang C S, Hu H S, Lee S X, Yu Q, Chen H C, Liu Z P. ChemElectroChem, 2015, 2(11): 1707.

doi: 10.1002/celc.201500286     URL    
[131]
Wang J H, Yamada Y, Sodeyama K, Watanabe E, Takada K, Tateyama Y, Yamada A. Nat. Energy, 2018, 3(1): 22.

doi: 10.1038/s41560-017-0033-8    
[132]
Zeng Z Q, Murugesan V, Han K S, Jiang X Y, Cao Y L, Xiao L F, Ai X P, Yang H X, Zhang J G, Sushko M L, Liu J. Nat. Energy, 2018, 3(8): 674.

doi: 10.1038/s41560-018-0196-y    
[133]
Wang J H, Yamada Y, Sodeyama K, Chiang C H, Tateyama Y, Yamada A. Nat. Commun., 2016, 7: 12032.

doi: 10.1038/ncomms12032    
[134]
Hou J X, Lu L G, Wang L, Ohma A, Ren D S, Feng X N, Li Y, Li Y L, Ootani I, Han X B, Ren W N, He X M, Nitta Y, Ouyang M. Nat. Commun., 2020, 11: 5100.

doi: 10.1038/s41467-020-18868-w    
[135]
Ren X D, Chen S R, Lee H, Mei D H, Engelhard M H, Burton S D, Zhao W G, Zheng J M, Li Q Y, Ding M S, Schroeder M, Alvarado J, Xu K, Meng Y S, Liu J, Zhang J G, Xu W. Chem, 2018, 4(8): 1877.

doi: 10.1016/j.chempr.2018.05.002     URL    
[136]
Chen S R, Zheng J M, Mei D H, Han K S, Engelhard M H, Zhao W G, Xu W, Liu J, Zhang J G. Adv. Mater., 2018, 30(21): 1706102.

doi: 10.1002/adma.v30.21     URL    
[137]
Chen S R, Zheng J M, Yu L, Ren X D, Engelhard M H, Niu C J, Lee H, Xu W, Xiao J, Liu J, Zhang J G. Joule, 2018, 2(8): 1548.

doi: 10.1016/j.joule.2018.05.002     URL    
[138]
Wu Y, Feng X N, Yang M, Zhao C Z, Liu X, Ren D S, Ma Z, Lu L G, Wang L, Xu G L, He X M, Amine K, Ouyang M. Adv. Sci., 2022, 9(32): 2204059.

doi: 10.1002/advs.v9.32     URL    
[139]
Hoang H A, Kim D. Chem. Eng. J., 2022, 435: 135092.

doi: 10.1016/j.cej.2022.135092     URL    
[140]
Chen R S, Yao C X, Yang Q, Pan H Y, Yu X Q, Zhang K, Li H. ACS Appl. Mater. Interfaces, 2021, 13(16): 18743.

doi: 10.1021/acsami.1c01246     URL    
[141]
Pham M T M, Darst J J, Walker W Q, Heenan T M M, Cell Rep. Phys. Sci., 2021, 2: 100360.
[142]
Ye Y S, Chou L Y, Liu Y Y, Wang H S, Lee H K, Huang W X, Wan J Y, Liu K, Zhou G M, Yang Y F, Yang A K, Xiao X, Gao X, Boyle D T, Chen H, Zhang W B, Kim S C, Cui Y. Nat. Energy, 2020, 5(10): 786.

doi: 10.1038/s41560-020-00702-8    
[1]
Wang Q S, Mao B B, Stoliarov S I, Sun J H. Prog. Energy Combust. Sci., 2019, 73: 95.

doi: 10.1016/j.pecs.2019.03.002     URL    
[2]
Shan X Y, Li F, Wang D W, Cheng H M. Energy Storage Mater., 2016, 3: 66.
[3]
Feng X N, Ouyang M G, Liu X, Lu L G, Xia Y, He X M. Energy Storage Mater., 2018, 10: 246.
[4]
Goodenough J B, Kim Y. Chem. Mater., 2010, 22(3): 587.

doi: 10.1021/cm901452z     URL    
[5]
Wang Q S, Ping P, Zhao X J, Chu G Q, Sun J H, Chen C H. J. Power Sources, 2012, 208: 210.

doi: 10.1016/j.jpowsour.2012.02.038     URL    
[6]
Spotnitz R, Franklin J. J. Power Sources, 2003, 113(1): 81.

doi: 10.1016/S0378-7753(02)00488-3     URL    
[7]
Bernardi D, Pawlikowski E, Newman J. J. Electrochem. Soc., 1985, 132(1): 5.

doi: 10.1149/1.2113792    
[8]
Rao L, Newman J. J. Electrochem. Soc., 1997, 144(8): 2697.

doi: 10.1149/1.1837884    
[9]
Kim U S, Kwon K H, Shin C B, Kang T H, Kim C S. Meet. Abstr., 2006, MA2005-01(3): 178.
[10]
Kim U S, Shin C B, Kim C S. J. Power Sources, 2008, 180(2): 909.

doi: 10.1016/j.jpowsour.2007.09.054     URL    
[11]
Mao Y, Guo R, Sheng L M, Ma S D, Zhou L Z, Yan L Q, Yang C, Xie J Y. J. Electrochem. Soc., 2021, 168(6): 060553.

doi: 10.1149/1945-7111/ac0b59    
[12]
Liu S B, Zhang H Y, Xu X B. J. Energy Storage, 2021, 36: 102446.

doi: 10.1016/j.est.2021.102446     URL    
[13]
Wang Q S, Jiang L H, Yu Y, Sun J H. Nano Energy, 2019, 55: 93.

doi: 10.1016/j.nanoen.2018.10.035     URL    
[14]
Feng X N, Zheng S Q, Ren D S, He X M, Wang L, Liu X, Li M G, Ouyang M G. Energy Procedia, 2019, 158: 4684.

doi: 10.1016/j.egypro.2019.01.736     URL    
[15]
Zhao L W, Watanabe I, Doi T, Okada S, Yamaki J I, J. Power Sources, 2006, 161(2): 1275.
[16]
Richard M N, Dahn J R. J. Electrochem. Soc., 1999, 146(6): 2068.

doi: 10.1149/1.1391893    
[17]
Aurbach D, Zaban A, Ein-Eli Y, Weissman I, Chusid O, Markovsky B, Levi M, Levi E, Schechter A, Granot E. J. Power Sources, 1997, 68(1): 91.

doi: 10.1016/S0378-7753(97)02575-5     URL    
[18]
Andersson A M, Herstedt M, Bishop A G, Edström K. Electrochimica Acta, 2002, 47(12): 1885.

doi: 10.1016/S0013-4686(02)00044-0     URL    
[19]
Zhang L P, Li X L, Yang M R, Chen W H. Energy Storage Mater., 2021, 41: 522.
[20]
Mao B B, Chen H D, Cui Z X, Wu T Q, Wang Q S. Int. J. Heat Mass Transf., 2018, 122: 1103.

doi: 10.1016/j.ijheatmasstransfer.2018.02.036     URL    
[21]
Feng X N, He X M, Ouyang M, Lu L G, Wu P, Kulp C, Prasser S. Appl. Energy, 2015, 154: 74.

doi: 10.1016/j.apenergy.2015.04.118     URL    
[22]
Jiang J, Dahn J R. Electrochem. Commun., 2004, 6(1): 39.

doi: 10.1016/j.elecom.2003.10.011     URL    
[23]
Biensan P, Simon B, Peres J P. J. Power Sources, 1999, 81/82: 906.

doi: 10.1016/S0378-7753(99)00135-4     URL    
[24]
Ping P, Kong D P, Zhang J Q, Wen R X, Wen J. J. Power Sources, 2018, 398: 55.

doi: 10.1016/j.jpowsour.2018.07.044     URL    
[25]
Wang Y D, Jiang J W, Dahn J R. Electrochem. Commun., 2007, 9(10): 2534.

doi: 10.1016/j.elecom.2007.07.033     URL    
[26]
Huang Y Q, Lin Y C, Jenkins D M, Chernova N A, Chung Y, Radhakrishnan B, Chu I H, Fang J, Wang Q, Omenya F, Ong S P, Stanley Whittingham M. ACS Appl. Mater. Interfaces, 2016, 8(11): 7013.

doi: 10.1021/acsami.5b12081     URL    
[27]
Noh H J, Youn S, Yoon C S, Sun Y K. J. Power Sources, 2013, 233: 121.

doi: 10.1016/j.jpowsour.2013.01.063     URL    
[28]
Dahbi M, Saadoune I, Gustafsson T, Edström K. Solid State Ion., 2011, 203(1): 37.

doi: 10.1016/j.ssi.2011.09.022     URL    
[29]
Cho Y H, Jang D, Yoon J, Kim H, Ahn T K, Nam K W, Sung Y E, Kim W S, Lee Y S, Yang X Q, Yoon W S. J. Alloys Compd., 2013, 562: 219.

doi: 10.1016/j.jallcom.2013.02.060     URL    
[30]
Nam K W, Yoon W S, Yang X Q. J. Power Sources, 2009, 189(1): 515.

doi: 10.1016/j.jpowsour.2008.10.130     URL    
[31]
Röder P, Baba N, Wiemhöfer H D. J. Power Sources, 2014, 248: 978.

doi: 10.1016/j.jpowsour.2013.09.146     URL    
[32]
Johannes M D, Swider-Lyons K, Love C T. Solid State Ion., 2016, 286: 83.

doi: 10.1016/j.ssi.2015.12.025     URL    
[33]
Zhang Z, Fouchard D, Rea J R. J. Power Sources, 1998, 70(1): 16.

doi: 10.1016/S0378-7753(97)02611-6     URL    
[34]
Wang Q S, Sun J H, Chen C H. J. Electrochem. Soc., 2007, 154(4): A263.

doi: 10.1149/1.2433698     URL    
[35]
Li S Q, Meng X Y, Yi Q, Alonso J A, Fernandez-Diaz M T, Sun C W, Wang Z L. Nano Energy, 2018, 52: 510.

doi: 10.1016/j.nanoen.2018.08.007     URL    
[36]
Zaghib K, Dube J, Dallaire A, Galoustov K, Guerfi A, Ramanathan M, Benmayza A, Prakash J, Mauger A, Julien C M. J. Power Sources, 2012, 219: 36.

doi: 10.1016/j.jpowsour.2012.05.018     URL    
[37]
Röder P, Baba N, Friedrich K A, Wiemhöfer H D. J. Power Sources, 2013, 236: 151.

doi: 10.1016/j.jpowsour.2013.02.044     URL    
[38]
Golubkov A W, Fuchs D, Wagner J, Wiltsche H, Stangl C, Fauler G, Voitic G, Thaler A, Hacker V. RSC Adv., 2014, 4(7): 3633.

doi: 10.1039/C3RA45748F     URL    
[39]
Padhi A K, Nanjundaswamy K S, Goodenough J B. J. Electrochem. Soc., 1997, 144(4): 1188.

doi: 10.1149/1.1837571    
[40]
Ping P, Wang Q S, Huang P F, Li K, Sun J H, Kong D P, Chen C H. J. Power Sources, 2015, 285: 80.

doi: 10.1016/j.jpowsour.2015.03.035     URL    
[41]
Feng X N, Zheng S Q, Ren D S, He X M, Wang L, Cui H, Liu X, Jin C Y, Zhang F S, Xu C S, Hsu H, Gao S, Chen T Y, Li Y L, Wang T Z, Wang H, Li M G, Ouyang M. Appl. Energy, 2019, 246: 53.

doi: 10.1016/j.apenergy.2019.04.009     URL    
[42]
Feng X N, Ren D S, He X M, Ouyang M G. Joule, 2020, 4(4): 743.

doi: 10.1016/j.joule.2020.02.010     URL    
[43]
Xu C S, Feng X N, Huang W S, Duan Y K, Chen T Y, Gao S, Lu L G, Jiang F C, Ouyang M G. J. Energy Storage, 2020, 31: 101670.

doi: 10.1016/j.est.2020.101670     URL    
[44]
Feng X N, Fang M, He X M, Ouyang M G, Lu L G, Wang H, Zhang M X. J. Power Sources, 2014, 255: 294.

doi: 10.1016/j.jpowsour.2014.01.005     URL    
[45]
Wang H B, Du Z M, Rui X Y, Wang S Y, Jin C Y, He L, Zhang F S, Wang Q Z, Feng X N. J. Hazard. Mater., 2020, 393: 122361.

doi: 10.1016/j.jhazmat.2020.122361     URL    
[46]
Liu X, Ren D S, Hsu H, Feng X N, Xu G L, Zhuang M H, Gao H, Lu L G, Han X B, Chu Z Y, Li J Q, He X M, Amine K, Ouyang M. Joule, 2018, 2(10): 2047.

doi: 10.1016/j.joule.2018.06.015     URL    
[47]
Bak S M, Hu E Y, Zhou Y N, Yu X Q, Senanayake S D, Cho S J, Kim K B, Chung K Y, Yang X Q, Nam K W. ACS Appl. Mater. Interfaces, 2014, 6(24): 22594.

doi: 10.1021/am506712c     URL    
[48]
Li Y, Liu X, Wang L, Feng X N, Ren D S, Wu Y, Xu G L, Lu L G, Hou J X, Zhang W F, Wang Y L, Xu W Q, Ren Y, Wang Z F, Huang J Y, Meng X F, Han X B, Wang H W, He X M, Chen Z H, Amine K, Ouyang M. Nano Energy, 2021, 85: 105878.

doi: 10.1016/j.nanoen.2021.105878     URL    
[49]
Hou J X, Feng X N, Wang L, Liu X, Ohma A, Lu L G, Ren D S, Huang W S, Li Y, Yi M C, Wang Y, Ren J Q, Meng Z H, Chu Z Y, Xu G L, Amine K, He X M, Wang H W, Nitta Y, Ouyang M. Energy Storage Mater., 2021, 39: 395.
[50]
Wu Y, Ren D S, Liu X, Xu G L, Feng X N, Zheng Y J, Li Y L, Yang M, Peng Y, Han X B, Wang L, Chen Z H, Ren Y, Lu L G, He X M, Chen J T, Amine K, Ouyang M G. Adv. Energy Mater., 2021, 11: 1.
[51]
Ren D S, Feng X N, Liu L S, Hsu H, Lu L G, Wang L, He X M, Ouyang M. Energy Storage Mater., 2021, 34: 563.
[52]
Zheng Y J, Shi Z H, Ren D S, Chen J, Liu X, Feng X N, Wang L, Han X B, Lu L G, He X M, Ouyang M G. J. Energy Chem., 2022, 69: 593.

doi: 10.1016/j.jechem.2022.01.027     URL    
[53]
Zhong G B, Mao B B, Wang C, Jiang L, Xu K Q, Sun J H, Wang Q S. J. Therm. Anal. Calorim., 2019, 135(5): 2879.

doi: 10.1007/s10973-018-7599-7    
[54]
Mao B B, Huang P F, Chen H D, Wang Q S, Sun J H. Int. J. Heat Mass Transf., 2020, 149: 119178.

doi: 10.1016/j.ijheatmasstransfer.2019.119178     URL    
[55]
Huang P F, Yao C X, Mao B B, Wang Q S, Sun J H, Bai Z H. Energy, 2020, 213: 119082.

doi: 10.1016/j.energy.2020.119082     URL    
[56]
Huang L, Xu G J, Du X F, Li J D, Xie B, Liu H S, Han P X, Dong S M, Cui G L, Chen L Q. Adv. Sci., 2021, 8(14): 2100676.

doi: 10.1002/advs.v8.14     URL    
[57]
Janek J, Zeier W G. Nat. Energy, 2016, 1(9): 16141.

doi: 10.1038/nenergy.2016.141    
[58]
Albertus P, Anandan V, Ban C M, Balsara N, Belharouak I, Buettner-Garrett J, Chen Z H, Daniel C, Doeff M, Dudney N J, Dunn B, Harris S J, Herle S, Herbert E, Kalnaus S, Libera J A, Lu D P, Martin S, McCloskey B D, McDowell M T, Meng Y S, Nanda J, Sakamoto J, Self E C, Tepavcevic S, Wachsman E, Wang C S, Westover A S, Xiao J, Yersak T. ACS Energy Lett., 2021, 1399.
[59]
Chen R S, Nolan A M, Lu J Z, Wang J Y, Yu X Q, Mo Y F, Chen L Q, Huang X J, Li H. Joule, 2020, 4(4): 812.

doi: 10.1016/j.joule.2020.03.012     URL    
[60]
Yan J T, Zhu D D, Ye H J, Sun H M, Zhang X D, Yao J M, Chen J Z, Geng L, Su Y, Zhang P, Dai Q S, Wang Z F, Wang J, Zhao J, Rong Z Y, Li H, Guo B Y, Ichikawa S, Gao D W, Zhang L Q, Huang J Y, Tang Y F. ACS Energy Lett., 2022, 7(11): 3855.

doi: 10.1021/acsenergylett.2c01981     URL    
[61]
Wang J G, Mei W X, Cui Z X, Shen W X, Duan Q L, Jin Y, Nie J B, Tian Y, Wang Q S, Sun J H. Appl. Therm. Eng., 2020, 171: 115082.

doi: 10.1016/j.applthermaleng.2020.115082     URL    
[62]
Xu J J, Mei W X, Zhao C P, Liu Y J, Zhang L, Wang Q S. J. Therm. Anal. Calorim., 2021, 144(2): 273.

doi: 10.1007/s10973-020-10149-4    
[63]
Huang S, Du X N, Richter M. J. Electrochem. Soc., 2020, 167: 090526.

doi: 10.1149/1945-7111/ab8878    
[64]
Zhu X Q, Wang H, Wang X, Gao Y F, Allu S, Cakmak E, Wang Z P. J. Power Sources, 2020, 455: 227939.

doi: 10.1016/j.jpowsour.2020.227939     URL    
[65]
Lee D C, Kim C W. J. Power Sources, 2020, 475: 228678.

doi: 10.1016/j.jpowsour.2020.228678     URL    
[66]
Zhu X Q, Wang Z P, Wang Y T, Wang H, Wang C, Tong L, Yi M. Energy, 2019, 169: 868.

doi: 10.1016/j.energy.2018.12.041     URL    
[67]
Zhu X Q, Wang Z P, Wang C, Huang L W. J. Electrochem. Soc., 2018, 165(16): A3613.

doi: 10.1149/2.0161816jes     URL    
[68]
Ye J N, Chen H D, Wang Q S, Huang P F, Sun J H, Lo S. Appl. Energy, 2016, 182: 464.

doi: 10.1016/j.apenergy.2016.08.124     URL    
[69]
Ren D S, Feng X N, Lu L G, He X M, Ouyang M G. Appl. Energy, 2019, 250: 323.

doi: 10.1016/j.apenergy.2019.05.015     URL    
[70]
Liu J L, Duan Q L, Ma M N, Zhao C P, Sun J H, Wang Q S. J. Power Sources, 2020, 445: 227263.

doi: 10.1016/j.jpowsour.2019.227263     URL    
[1] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[2] 颜高杰, 吴琼, 谈玲华. 富氮唑类金属配合物的设计合成及应用[J]. 化学进展, 2021, 33(4): 689-712.
[3] 马晓辉, 杨立群, 郑士建, 戴其林, 陈聪, 宋宏伟. 全无机钙钛矿太阳电池: 现状与未来[J]. 化学进展, 2020, 32(10): 1608-1632.
[4] 赵宝东, 高福磊, 汪营磊, 刘亚静, 陈斌, 潘永飞. 火药用叠氮含能增塑剂[J]. 化学进展, 2019, 31(2/3): 475-490.
[5] 赵娟, 黄鹏程, 陈功, 詹茂盛. 碳十硼烷及其衍生物的反应性及应用[J]. 化学进展, 2012, 24(04): 556-567.
[6] 吴凯, 张耀, 曾毓群, 杨军. 锂离子电池安全性能研究[J]. 化学进展, 2011, 23(0203): 401-409.
[7] 杨泠 冯炫 刘应亮. 介孔氧化铝的制备及应用* [J]. 化学进展, 2010, 22(01): 32-43.
[8] 陈玉红,唐致远,卢星河,谭才渊. 锂离子电池爆炸机理研究*[J]. 化学进展, 2006, 18(06): 823-831.
[9] 马昌期,王雪松,张宝文,曹怡. 有机电致发光空穴传输材料研究进展*[J]. 化学进展, 2003, 15(06): 495-.