English
新闻公告
More
化学进展 2020, Vol. 32 Issue (7): 943-949 DOI: 10.7536/PC191120 前一篇   后一篇

• 综述 •

质子交换膜燃料电池电流密度分布特性和研究展望

黄振宇1, 涂正凯1,**()   

  1. 1. 华中科技大学能源与动力工程学院 武汉 430074
  • 收稿日期:2019-11-27 出版日期:2020-07-24 发布日期:2020-07-10
  • 通讯作者: 涂正凯
  • 基金资助:
    国家自然科学基金项目(51776144)

Local Current Density Distribution of Proton Exchange Membrane Fuel Cell and Its Research Prospects

Zhenyu Huang1, Zhengkai Tu1,**()   

  1. 1. School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • Received:2019-11-27 Online:2020-07-24 Published:2020-07-10
  • Contact: Zhengkai Tu
  • About author:
  • Supported by:
    National Natural Science Foundation of China(51776144)

质子交换膜燃料电池具有无污染、噪声低、能量密度高、燃料转换效率高、响应速度快的显著优点,得到了迅速发展,但寿命仍然是制约其大规模商业化的重要原因。局部电流密度作为质子交换膜燃料电池运行过程中的重要参数,既能作为电池运行过程中的故障诊断和定位工具,提升电池运行的稳定性和和耐久性;又能提供电池运行期间其内部现象的有关信息,为深入理解电池反应机理以及优化电池设计提供有力指导,因此研究局部电流密度具有非常重要的意义。本文介绍并分析了实时原位测量局部电流密度的方法,比较了前人实验所得结果与模拟所得结果,阐述了相关参数对局部电流密度分布的影响机制,回顾并评析了局部电流密度用于燃料电池分析中的实际工作。最后,立足于局部电流密度的研究现状,给出了局部电流密度下一步的研究方向。

Proton exchange membrane fuel cell(PEMFC) is being paid to special attention around the world duo to their zero pollution, low noise, high energy density, high efficiency and fast response, thus it is developing rapidly in recent years. However, the lifespan of PEMFC vehicle is an important issue that restricts its commercialization. Local current density is an important parameter during the operation of PEMFC, which can be used as the fault diagnosis and positioning tool, improving the operation durability and stability of PEMFC. Moreover, the internal information of an operating PEMFC can be also revealed by the local current density, providing comprehensive understanding of the reaction mechanism and guidance for the optimization design of PEMFC. In consequence, it is of great importance for the thorough and comprehensive research of the local current density. In this paper, the methods for the in-situ and real-time measurement of the local current density are introduced and analyzed, and the results obtained by previous experiments and numerical simulation are compared. The effect of operation parameters on local current density have been summarized in detail and the applications of local current density in fuel cell analysis are reviewed. Finally, the development tendency is proposed based on the research progress of this topic.

Contents

1 Introduction

2 Research methods of the local current density

2.1 Methods for the in-situ and real-time measurement of the local current density

2.2 Numerical Simulation of the local current density

2.3 Factors affecting the local current density distribution

3 Applications of the local current density

4 Conclusions and outlook

()
图1 测量垫圈法示意图
Fig.1 Schematic diagram of measuring gaskets
图2 膜电极部分利用法示例(a)入口催化;(b)单根流道区域催化
Fig.2 Examples of MEA design for the partial MEA method(a)catalyzed entrance area; (b)catalyzed single flow channel area
图3 (a)子电池法示意图;(b)子电池法与多个电子负载结合的测试电路图
Fig.3 (a) Schematic diagram of the sub-cell; (b) Circuit diagram of several load banks testing system for the sub-cell
图4 并联电阻法与电池分块技术结合的测试电路图
Fig.4 Circuit diagram of the shunt resistor testing system for segmented cell technology
图5 集成有印刷电路板的测试系统
Fig.5 The testing system integrated with a PCB
[1]
肖宽(Xiao K), 潘牧(Pan M), 詹志刚(Zhan Z G), 吴凡(Wu F) . 电源技术 (Chinese Journal of Power sources), 2018,42(01):153.
[2]
Wang G , Yu Y , Liu H , Gong C , Wen S , Wang X , Tu Z . Fuel Processing Technology, 2018,179:203. doi: 10.1016/j.fuproc.2018.06.013 https://linkinghub.elsevier.com/retrieve/pii/S0378382017315588
[3]
Majlan E H , Rohendi D , Daud W R W , Husaini T , Haque M A . Renewable and Sustainable Energy Reviews, 2018,89:117. doi: 10.1016/j.rser.2018.03.007 https://linkinghub.elsevier.com/retrieve/pii/S1364032118300935
[4]
Daud W R W , Rosli R E , Majlan E H , Hamid S A A , Mohamed R , Husaini T . Renewable Energy, 2017,113:620. doi: 10.1016/j.renene.2017.06.027 https://linkinghub.elsevier.com/retrieve/pii/S0960148117305281
[5]
Lim J W , Lee D , Kim M , Choe J , Nam S , Lee D G . Composite Structures, 2015,134:927. doi: 10.1016/j.compstruct.2015.08.121 https://linkinghub.elsevier.com/retrieve/pii/S026382231500817X
[6]
侯明(Hou M), 俞红梅(Yu H M), 衣宝廉(Yi B L) . 化学进展 (Progress in Chemistry), 2009,21(11):2319. 25fa250b-3df4-4e4b-84c9-bcd48cd68300 http://www.progchem.ac.cn//CN/abstract/abstract10165.shtml
[7]
Guerrero M N , Cisneros M M , Gervasio D , Pérez R J F . Renewable and Sustainable Energy Reviews, 2015,52:897.
[8]
Wang J . Energy, 2015,80:509.
[9]
Chen H , Zhao X , Zhang T , Pei P . Energy Conversion and Management, 2019,182:282.
[10]
王诚(Wang C), 王树博(Wang S B), 张剑波(Zhang J B), 李建秋(Li J Q), 王建龙(Wang J L), 欧阳明高(Ou Y M G) . 化学进展 (Progress in Chemistry), 2015,27(04):424. http://manu56.magtech.com.cn/progchem/CN/10.7536/PC140807
[11]
Lobato J , Cañizares P , Rodrigo M A , Pinar F J , úbeda D . Journal of Power Sources, 2011,196(9):4209.
[12]
Belhadj M , Aquino A , Heng J , Kmiotek S , Raël S , Bonnet C , Lapicque F . Chemical Engineering Science, 2018,185:18.
[13]
Reshetenko T V , Bethune K , Rubio M A , Rocheleau R . Journal of Power Sources, 2014,269:344.
[14]
Cleghorn S J C , Derouin C R , Wilson M S , Gottesfeld S . Journal of Applied Electrochemistry, 1998,28(7):663.
[15]
Stumper J , Campbell S A , Wilkinson D P , Johnson M C , Davis M . Electrochimica Acta, 1998,43(24):3773.
[16]
Albaghdadi M , Aljanabi H . International Journal of Hydrogen Energy, 2007,32(17):4510.
[17]
Asghari S , Mokmeli A , Samavati M . International Journal of Hydrogen Energy, 2010,35(17):9283.
[18]
Zhang Y , Verma A , Pitchumani R . International Journal of Hydrogen Energy, 2016,41(20):8412.
[19]
Weng F , Jou B , Li C , Su A , Chan S . Journal of Power Sources, 2008,181(2):251.
[20]
Yu Y , Yuan X , Li H , Gu E , Wang H , Wang G , Pan M . International Journal of Hydrogen Energy, 2012,37(20):15288.
[21]
Liang D , Shen Q , Hou M , Shao Z , Yi B . Journal of Power Sources, 2009,194(2):847.
[22]
Strickland D G , Litster S , Santiago J G . Journal of Power Sources, 2007,174(1):272.
[23]
Alaefour I , Karimi G , Jiao K , Li X . Applied Energy, 2012,93:80.
[24]
Lin R , Gülzow E , Schulze M , Friedrich K A . Journal of The Electrochemical Society, 2011,158(1):B11.
[25]
Mench M M , Wang C Y , Ishikawa M . Journal of The Electrochemical Society, 2003,150(8):A1052.
[26]
Wieser C , Helmbold A , Gülzow E . Journal of Applied Electrochemistry, 2000,30(7):803.
[27]
Noponen M , Mennola T , Mikkola M , Hottinen T , Lund P . Journal of Power Sources, 2002,106(1):304.
[28]
Zhang G , Guo L , Ma B , Liu H . Journal of Power Sources, 2009,188(1):213.
[29]
Sun H , Zhang G , Guo L , Liu H . Journal of Power Sources, 2006,158(1):326.
[30]
Sun H , Zhang G , Guo L , Dehua S , Liu H . Journal of Power Sources, 2007,168(2):400. doi: 10.1016/j.jpowsour.2007.03.022 https://linkinghub.elsevier.com/retrieve/pii/S037877530700571X
[31]
Wang L , Liu H . Journal of Power Sources, 2008,180(1):365.
[32]
Higier A , Liu H . Journal of Power Sources, 2009,193(2):639. doi: 10.1016/j.jpowsour.2009.03.059 https://linkinghub.elsevier.com/retrieve/pii/S0378775309005692
[33]
Liu Z , Mao Z , Wu B , Wang L , Schmidt V M . Journal of Power Sources, 2005,141(2):205.
[34]
Geiger A B , Eckl R , Wokaun A , Scherer G G . Journal of The Electrochemical Society, 2004,151(3):A394.
[35]
Bender G , Wilson M S , Zawodzinski T A . Journal of Power Sources, 2003,123(2):163.
[36]
Lin R , Sander H , Gülzow E , Friedrich A K . ECS Transactions, 2010,26(1):229.
[37]
Liu D , Lin R , Feng B , Han L , Zhang Y , Ni M , Wu S . Applied Energy, 2019,254:113712. doi: 10.1016/j.apenergy.2019.113712 https://linkinghub.elsevier.com/retrieve/pii/S0306261919313996
[38]
Shan J , Gazdzicki P , Lin R , Schulze M , Friedrich K A . Energy, 2017,128:357.
[39]
Zhang Q , Lin R , Técher L , Cui X . Energy, 2016,115:550.
[40]
Wang Y , Xie X , Zhou C , Feng Q , Zhou Y , Yuan X , Xu J , Fan J , Zeng L , Li H , Wang H . Journal of Power Sources, 2020,449:227542.
[41]
Priya K , Sathishkumar K , Rajasekar N . Renewable and Sustainable Energy Reviews, 2018,93:121.
[42]
Zhang G , Jiao K . Journal of Power Sources, 2018,391:120.
[43]
Jahnke T , Futter G , Latz A , Malkow T , Papakonstantinou G , Tsotridis G , Schott P , Gérard M , Quinaud M , Quiroga M , Franco A A , Malek K , Calle-Vallejo F , Ferreira De Morais R , Kerber T , Sautet P , Loffreda D , Strahl S , Serra M , Polverino P , Pianese C , Mayur M , Bessler W G , Kompis C . Journal of Power Sources, 2016,304:207.
[44]
Eslamibidgoli M J , Huang J , Kadyk T , Malek A , Eikerling M . Nano Energy, 2016,29:334.
[45]
Thosar A U , Agarwal H , Govarthan S , Lele A K . Chemical Engineering Science, 2019,206:96.
[46]
Chevalier S , Josset C , Auvity B . Renewable Energy, 2018,125:738.
[47]
Reshetenko T , Kulikovsky A . Electrochemistry Communications, 2019,101:35.
[48]
Nguyen P T , Berning T , Djilali N . Journal of Power Sources, 2004,130(1/2):149.
[49]
Jia S , Liu H . International Journal of Hydrogen Energy, 2014,39(3):1449.
[50]
Hakenjos A , Muenter H , Wittstadt U , Hebling C . Journal of Power Sources, 2004,131(1/2):213.
[51]
Lin R , Cao C , Ma J , Gülzow E , Andreas Friedrich K . International Journal of Hydrogen Energy, 2012,37(4):3373.
[52]
Liu D , Lin R , Feng B , Yang Z . International Journal of Hydrogen Energy, 2019,44(14):7564.
[53]
Kim S , Kim M , Sohn Y . International Journal of Hydrogen Energy, 2015,40(35):11676.
[54]
Ihonen J , Jaouen F , Lindbergh G , Sundholm G , Kemiteknik, Tidigare I F , Kth. Electrochimica Acta, 2001,46(19):2899.
[55]
Lee W , Ho C , Van Zee J W , Murthy M . Journal of Power Sources, 1999,84(1):45.
[56]
Reshetenko T V , Bender G , Bethune K , Rocheleau R . Electrochimica Acta, 2013,88:571.
[57]
Shin D K , Yoo J H , Kang D G , Kim M S . Renewable Energy, 2018,115:663.
[58]
Bertei A , Yufit V , Tariq F , Brandon N P . Journal of Power Sources, 2018,396:246.
[59]
Santis M , Freunberger S A , Reiner A , Büchi F N . Electrochimica Acta, 2006,51(25):5383.
[60]
Zhang Y , Smirnova A , Verma A , Pitchumani R . Journal of Power Sources, 2015,291:46.
[61]
Herden S , Riewald F , Hirschfeld J A , Perchthaler M . Journal of Power Sources, 2017,355:36.
[62]
Chen H , Xu S , Pei P , Qu B , Zhang T . International Journal of Hydrogen Energy, 2019,44(11):5437.
[63]
Dou M , Hou M , Liang D , Shen Q , Zhang H , Lu W , Shao Z , Yi B . Journal of Power Sources, 2011,196(5):2759.
[64]
Zhong D , Lin R , Liu D , Cai X . Journal of Power Sources, 2018,403:1. doi: 10.1016/j.jpowsour.2018.09.067 https://linkinghub.elsevier.com/retrieve/pii/S0378775318310371
[65]
Weng F , Hsu C , Li C . International Journal of Hydrogen Energy, 2010,35(8):3664. doi: 10.1016/j.ijhydene.2010.01.065 51d8b6dc-11da-48cc-9d46-d5d72f05c7aa http://www.sciencedirect.com/science/article/pii/S0360319910001369
[66]
Shan J , Lin R , Xia S , Liu D , Zhang Q . International Journal of Hydrogen Energy, 2016,41(7):4239.
[67]
Lin R , Xiong F , Tang W C , Técher L , Zhang J M , Ma J X . Journal of Power Sources, 2014,260:150.
[68]
Reshetenko T V , Bethune K , Rocheleau R . Journal of Power Sources, 2012,218:412.
[69]
Reshetenko T V , St-Pierre J . Journal of Power Sources, 2015,287:401. doi: 10.1016/j.jpowsour.2015.04.073 https://linkinghub.elsevier.com/retrieve/pii/S0378775315007302
[70]
Reshetenko T V , St-Pierre J . Journal of Power Sources, 2016,333:237. doi: 10.1016/j.jpowsour.2016.09.165 https://linkinghub.elsevier.com/retrieve/pii/S0378775316313647
[71]
Reshetenko T , Laue V , Krewer U , Artyushkova K . Journal of Power Sources, 2019,438:226949.
[72]
Reshetenko T V , St-Pierre J . Journal of Power Sources, 2015,293:929.
[73]
Mohammadi A , Djerdir A , Yousfi Steiner N , Khaburi D . International Journal of Hydrogen Energy, 2015,40(45):15845.
[74]
池滨(Chi B), 侯三英(Hou S Y), 刘广智(Liu G Z), 廖世军(Liao S J) . 化学进展 (Progress in Chemistry), 2018,30(2/3):243. http://manu56.magtech.com.cn/progchem/CN/10.7536/PC170818
[75]
叶跃坤(Ye Y K), 池滨(Chi B), 江世杰(Jiang S J), 廖世军(Liao S J) . 化学进展 (Progress in Chemistry), 2019,31(12):1637.
[1] 薛宗涵, 马楠, 王炜罡. 大气中的单环芳香族硝基化合物[J]. 化学进展, 2022, 34(9): 2094-2107.
[2] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[3] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[4] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[5] 雷雨洋, 李方方, 欧阳洁, 李敏杰, 郭良宏. 浙江地区抗生素残留的环境分布特征及来源分析[J]. 化学进展, 2021, 33(8): 1414-1425.
[6] 李强, 林鲲, 邢献然. 基于全散射技术局域结构确定与凝聚态物质[J]. 化学进展, 2020, 32(8): 1219-1230.
[7] 叶跃坤, 池滨, 江世杰, 廖世军. 质子交换膜燃料电池膜电极耐久性的提升[J]. 化学进展, 2019, 31(12): 1637-1652.
[8] 王军丽, 王亚玲, 郑静霞, 于世平, 杨永珍, 刘旭光. 碳量子点激发依赖荧光特性的机理、调控及应用[J]. 化学进展, 2018, 30(8): 1186-1201.
[9] 魏晨辉, 付翯云, 瞿晓磊, 朱东强. 溶解态黑碳的环境过程研究[J]. 化学进展, 2017, 29(9): 1042-1052.
[10] 韩冬琳, 亓洪昭, 赵瑾, 龙丽霞, 任玉, 原续波. 增强纳米药物载体肿瘤内渗透分布的研究进展[J]. 化学进展, 2016, 28(9): 1397-1405.
[11] 李东, 李文海, 董桂芳, 段炼, 王立铎. 有机光敏二极管的功能材料探索及其器件结构[J]. 化学进展, 2014, 26(12): 1889-1898.
[12] 刘锋, 王诚, 张剑波, 兰爱东, 李建秋, 欧阳明高. 质子交换膜燃料电池有序化膜电极[J]. 化学进展, 2014, 26(11): 1763-1771.
[13] 付超, 朱雨田, 施德安. 嵌段共聚物的临界条件液相色谱分离与表征[J]. 化学进展, 2014, 26(01): 140-151.
[14] 陈旭, 何大平, 木士春. 掺氮石墨烯研究[J]. 化学进展, 2013, 25(08): 1292-1301.
[15] 汪嘉澍, 潘国顺, 郭丹. 质子交换膜燃料电池膜电极组催化层结构[J]. 化学进展, 2012, (10): 1906-1914.