English
新闻公告
More
化学进展 2021, Vol. 33 Issue (9): 1525-1537 DOI: 10.7536/PC210216 前一篇   后一篇

• 综述 •

耐久型超疏水表面:理论模型、制备策略和评价方法

曹祥康1, 孙晓光2, 蔡光义1, 董泽华1,*()   

  1. 1 华中科技大学化学与化工学院 材料化学与服役失效湖北省重点实验室 武汉 430074
    2 中车青岛四方机车车辆股份有限公司 青岛 266111
  • 收稿日期:2021-02-20 修回日期:2021-05-05 出版日期:2021-09-20 发布日期:2021-09-06
  • 通讯作者: 董泽华
  • 基金资助:
    国家自然科学基金项目(51371087); 国家自然科学基金项目(51771079); 中车青岛四方机车车辆股份有限公司项目(SF/JG-吕字-2020-50)

Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods

Xiangkang Cao1, Xiaoguang Sun2, Guangyi Cai1, Zehua Dong1()   

  1. 1 Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology,Wuhan 430074, China
    2 CRRC Qingdao Sifang Co., Ltd, Qingdao 266111, China
  • Received:2021-02-20 Revised:2021-05-05 Online:2021-09-20 Published:2021-09-06
  • Contact: Zehua Dong
  • Supported by:
    National Natural Science Foundation of China(51371087); National Natural Science Foundation of China(51771079); CRRC Qingdao Sifang Co., Ltd(SF/JG-吕字-2020-50)

超疏水材料以其独特的润湿性在日常生活和工业领域都展示出广阔的应用前景,但其表面的微纳米结构和低表面能物质易受到机械摩擦或化学侵蚀而失去超疏水性。当前诸多报道都采用微纳结构设计和表面优化来延长超疏水材料的耐久性,以期提升其商业价值。本文先从表面浸润模型出发,包括经典理论、亚稳态理论和接触线理论,梳理了超疏水理论模型的发展脉络,阐明这些理论在超疏水耐久性设计上发挥的关键指导作用。接着对微纳米结构设计、胶黏+涂装、铠装防护、自修复和气膜修补等延长超疏水耐久性的制备策略进行了总结,并对不同制备策略各自的优势和局限性进行简要评述。本综述还从机械稳定性和化学稳定性两方面汇总了超疏水耐久性的快速评价手段,讨论了提升超疏水表面耐久性所遇到的问题,并展望了超疏水材料的发展前景,以期助力长效超疏水材料的研发和应用。

Superhydrophobic surface has broad applications in daily life and industries owing to its unique wettability. However, the micro-nano structures and low surface energy substance of surface are vulnerable to mechanical damage and chemical erosion, often prone to lose their superhydrophobicity. It is of great practical significance to construct durable superhydrophobic surface through morphologic design and performance optimization for its commercialization. In this review, based on the surface wettability model, including classical theory, metastable theory and contact line theory, the development history of superhydrophobic theoretical model is first reviewed, as well as their key guiding roles in the design of superhydrophobic durability. Then, the preparation strategies for durable superhydrophobic surface, such as micro-nano structure design, adhesive + coating, armor protection, self-healing, air cushion replenishment or replacement, are summarized. And the advantages and limitations of each strategy are reviewed. In addition, according to mechanical and chemical stability, the evaluation methods of superhydrophobic durability are illustrated. Finally, the problems and prospects of durable superhydrophobic surface are summarized for the future research of durable superhydrophobic coating.

Contents

1 Introduction

2 Theoretical model of wettability

2.1 Classical wetting theory

2.2 Metastable wetting theory

2.3 Contact line theory

3 Preparation strategy of durable superhydrophobic surface

3.1 Micro-nano structure regulation

3.2 Adhesive + coating

3.3 Armor protection

3.4 Self-healing policy

3.5 Air cushion replenishment or replacement

4 Evaluation methods for durable superhydrophobic surface

4.1 Mechanical durability

4.2 Chemical durability

5 Existing problems

6 Conclusion and outlook

()
图1 固体表面润湿状态示意图:(A)液滴平衡状态下的表面张力;(B)Wenzel状态;(C)Cassie状态
Fig.1 Schematic diagram of the solid surface wetting state: (A) Surface tension in the equilibrium state of the droplet; (B) Wenzel state; (C) Cassie state
图2 激光共聚焦显微镜记录超疏水表面亚稳态在不同条件下的可视化动态形成过程[20]:在(A) 0 kPa、(B) 14 kPa、 (C) 50 kPa下浸泡5 min; (D) 50 kPa下浸泡15 min
Fig.2 Visualized dynamic formation process of metastable state of superhydrophobic surface by confocal microscopy[20]. after 5 min immersion under (A) 0 kPa; (B)14 kPa; (C) 50 kPa; and (D)15 min immersion under 50 kPa
图3 超疏水表面微结构设计示意图及实际SEM形貌[39]
Fig.3 Schematic diagram of the microstructure design of super-hydrophobic surface and the actual SEM morphology[39]
图4 有机/无机复合超疏水涂层制备示意图[48]
Fig.4 Schematic diagram of preparation of organic/inorganic composite superhydrophobic coating[48]
图5 铠装超疏水表面的制备示意图[51]
Fig.5 Preparation schematic diagram of armored super-hydrophobic surface[51]
图6 室温下硅油自补充修复表面低表面能物质示意图[53]
Fig.6 Schematic diagram of silicone oil self-replenishment repair for low surface energy substances at room temperature[53]
图7 在高温刺激下自修复表面微纳米粗糙形貌示意图[56]
Fig.7 Diagram of self-repairing micro-nano rough morphology of surface under high temperature stimulation[56]
图8 加热和酸性刺激下微纳米结构和低表面能物质双自修复示意图及实际修复效果[46]
Fig.8 Schematic diagram of the dual self-repair of micro-nano structures and low surface energy substances under heating and acid stimulation as well as the actual repair effect[46]
图9 三维超疏水表面:(A~E)制备示意图及SEM形貌[63]
Fig.9 Three-dimensional superhydrophobic surface: (A~E) Schematic diagram of block preparation and SEM morphology[63]
图10 气体补充促进Wenzel状态向Cassie状态转变过程[66]
Fig.10 Gas supplementation promotes the transition from Wenzel state to Cassie state[66]
图11 超疏水表面机械稳定性的评价方法. (A) 摩擦磨损;(B)胶带剥离; (C) 水流冲击
Fig.11 Evaluation methods of mechanical stability of superhydrophobic surface. (A) Friction and wear; (B) Tape peeling; (C) Water impact
表1 不同制备策略下超疏水表面抗磨损和耐酸碱性能比较
Table 1 Comparison of wear resistance and acid and alkali resistance of superhydrophobic surface under different preparation strategies
[1]
Si Y F, Guo Z G. Nanoscale, 2015, 7(14): 5922.

doi: 10.1039/C4NR07554D     URL    
[2]
Jiang D, Xia X C, Hou J, Cai G Y, Zhang X X, Dong Z H. Chem. Eng. J., 2019, 373: 285.

doi: 10.1016/j.cej.2019.05.046    
[3]
Ding Y R, Xue C H, Fan Q Q, Zhao L L, Tian Q Q, Guo X J, Zhang J, Jia S T, An Q F. Chem. Eng. J., 2021, 404: 126489.

doi: 10.1016/j.cej.2020.126489     URL    
[4]
Pakdel E, Wang J F, Kashi S M, Sun L, Wang X G. Adv. Colloid Interface Sci., 2020, 277: 102116.

doi: 10.1016/j.cis.2020.102116     URL    
[5]
Liu J, Ye L J, Sun Y L, Hu M H, Chen F, Wegner S, Mailänder V, Steffen W, Kappl M, Butt H J. Adv. Mater., 2020, 32(11): 1908008.

doi: 10.1002/adma.v32.11     URL    
[6]
Long M Y, Peng S, Deng W S, Miao X R, Wen N, Zhou Q N, Yang X J, Deng W L. J. Mater. Chem. A, 2017, 5(43): 22761.

doi: 10.1039/C7TA06190K     URL    
[7]
Barthlott W, Neinhuis C. Planta, 1997, 202(1): 1.

doi: 10.1007/s004250050096     URL    
[8]
Xia F, Jiang L. Adv. Mater., 2008, 20(15): 2842.

doi: 10.1002/adma.v20:15     URL    
[9]
Blossey R. Nat. Mater., 2003, 2(5): 301.

pmid: 12728235
[10]
Wenzel R N. Ind. Eng. Chem., 1936, 28(8): 988.

doi: 10.1021/ie50320a024     URL    
[11]
Cassie A B D, Baxter S. Trans. Faraday Soc., 1944, 40: 546.

doi: 10.1039/tf9444000546     URL    
[12]
Nosonovsky M. Nature, 2011, 477(7365): 412.

doi: 10.1038/477412a     URL    
[13]
Bico J, Marzolin C, Quéré D. Europhys. Lett., 1999, 47: 220.

doi: 10.1209/epl/i1999-00548-y     URL    
[14]
Wang B, Zhang Y B, Shi L, Li J, Guo Z G. J. Mater. Chem., 2012, 22(38): 20112.

doi: 10.1039/c2jm32780e     URL    
[15]
Dupuis A, Yeomans J M. Langmuir, 2005, 21: 2624.

pmid: 15752062
[16]
Emami B, Tafreshi H V, Gad-El-hak M, Tepper G C. J. Appl. Phys., 2012, 111(6): 064325.

doi: 10.1063/1.3697895     URL    
[17]
Lobaton E J, Salamon T R. J. Colloid Interface Sci., 2007, 314(1): 184.

doi: 10.1016/j.jcis.2007.05.059     URL    
[18]
Patankar N A. Langmuir, 2004, 20(17): 7097.

pmid: 15301493
[19]
Marmur A. Langmuir, 2003, 19(20): 8343.

doi: 10.1021/la0344682     URL    
[20]
Lv P, Xue Y H, Shi Y P, Lin H, Duan H L. Phys. Rev. Lett., 2014, 112(19): 196101.

doi: 10.1103/PhysRevLett.112.196101     URL    
[21]
Lafuma A, Quéré D. Nat. Mater., 2003, 2(7): 457.

doi: 10.1038/nmat924     URL    
[22]
Bormashenko E. Adv. Colloid Interface Sci., 2015, 222: 92.

doi: 10.1016/j.cis.2014.02.009     URL    
[23]
Lambley H, Schutzius T M, Poulikakos D. PNAS, 2020, 117(44): 27188.

doi: 10.1073/pnas.2008775117     pmid: 33077603
[24]
Bocquet L, Lauga E. Nat. Mater., 2011, 10(5): 334.

doi: 10.1038/nmat2994     URL    
[25]
Chen A Y F W, Hsieh M C, Oner D, Youngblood J, Thomas J. McCarthy. Langmuir, 1999, 15: 3395.

doi: 10.1021/la990074s     URL    
[26]
Extrand C W. Langmuir, 2002, 18(21): 7991.

doi: 10.1021/la025769z     URL    
[27]
Luo S Q, Chen Z D, Dong Z C, Fan Y X, Chen Y, Liu B, Yu C L, Li C X, Dai H Y, Li H F, Wang Y L, Jiang L. Adv. Mater., 2019, 31(41): 1904475.

doi: 10.1002/adma.v31.41     URL    
[28]
Sun Y H, Huang J X, Guo Z G, Liu W M. J. Mater. Chem. A, 2021, 9(3): 1471.

doi: 10.1039/D0TA11686F     URL    
[29]
Quéré D. Annu. Rev. Mater. Res., 2008, 38(1): 71.

doi: 10.1146/matsci.2008.38.issue-1     URL    
[30]
Wang F, Pi J, Song F, Feng R, Xu C, Wang X L, Wang Y Z. Chem. Eng. J., 2020, 381: 122539.

doi: 10.1016/j.cej.2019.122539     URL    
[31]
Su Y W, Ji B H, Huang Y G, Hwang K C. Langmuir, 2010, 26(24): 18926.

doi: 10.1021/la103442b     URL    
[32]
Hemeda A A, Gad-El-hak M, Tafreshi H V. Phys. Fluids, 2014, 26(8): 082103.

doi: 10.1063/1.4891363     URL    
[33]
Shirtcliffe N J, McHale G, Newton M I, Chabrol G, Perry C C. Adv. Mater., 2004, 16(21): 1929.

doi: 10.1002/(ISSN)1521-4095     URL    
[34]
Hensel R, Finn A, Helbig R, Killge S, Braun H G, Werner C. Langmuir, 2014, 30(50): 15162.

doi: 10.1021/la503601u     pmid: 25496232
[35]
Xiang Y L, Huang S L, Lv P, Xue Y H, Su Q, Duan H L. Phys. Rev. Lett., 2017, 119(13): 134501.

doi: 10.1103/PhysRevLett.119.134501     URL    
[36]
Verho T, Bower C, Andrew P, Franssila S, Ikkala O, Ras R H A. Adv. Mater., 2011, 23(5): 673.

doi: 10.1002/adma.201003129     URL    
[37]
Liu C, Zhan H Y, Yu J G, Liu R, Zhang Q X, Liu Y H, Li X W. Surf. Coat. Technol., 2019, 361: 342.

doi: 10.1016/j.surfcoat.2019.01.041     URL    
[38]
Jung Y C, Bhushan B. ACS Nano, 2009, 3: 4155.

doi: 10.1021/nn901509r     URL    
[39]
Liu T Y, Kim C J. Science, 2014, 346(6213): 1096.

doi: 10.1126/science.1254787     URL    
[40]
Su B, Tian Y, Jiang L. J. Am. Chem. Soc., 2016, 138(6): 1727.

doi: 10.1021/jacs.5b12728     URL    
[41]
Yang C, Cui S H, Weng Y C, Wu Z C, Liu L L, Ma Z Y, Tian X B, Fu R K Y, Chu P K, Wu Z Z. Chem. Eng. J., 2021, 409: 128142.

doi: 10.1016/j.cej.2020.128142     URL    
[42]
Ren T T, Tang G W, Yuan B, Yan Z S, Ma L R, Huang X. Surf. Coat. Technol., 2019, 380: 125086.

doi: 10.1016/j.surfcoat.2019.125086     URL    
[43]
Xiao Z, Wang Q, Yao D, Yu X, Zhang Y. Langmuir, 2019, 35: 6650.

doi: 10.1021/acs.langmuir.9b00690     URL    
[44]
Lu Y, Sathasivam S, Song J L, Crick C R, Carmalt C J, Parkin I P. Science, 2015, 347: 1132.

doi: 10.1126/science.aaa0946     URL    
[45]
Li D W, Wang H Y, Liu Y, Wei D S, Zhao Z X. Chem. Eng. J., 2019, 367: 169.

doi: 10.1016/j.cej.2019.02.093     URL    
[46]
Pan S Y, Chen M, Wu L M. ACS Appl. Mater. Interfaces, 2020, 12(4): 5157.

doi: 10.1021/acsami.9b22693     URL    
[47]
Liu M M, Hou Y Y, Li J, Tie L, Peng Y B, Guo Z G. J. Mater. Chem. A, 2017, 5(36): 19297.

doi: 10.1039/C7TA06001G     URL    
[48]
Wang S Q, Wang Y M, Zou Y C, Chen G L, Ouyang J H, Jia D C, Zhou Y. ACS Appl. Mater. Interfaces, 2020, 12(31): 35502.

doi: 10.1021/acsami.0c10539     URL    
[49]
Wu B R, Lyu J J, Peng C Y, Jiang D Z, Yang J, Yang J S, Xing S L, Sheng L P. Chem. Eng. J., 2020, 387: 124066.

doi: 10.1016/j.cej.2020.124066     URL    
[50]
Wang D H, Sun Q Q, Hokkanen M J, Zhang C L, Lin F Y, Liu Q, Zhu S P, Zhou T F, Chang Q, He B, Zhou Q, Chen L Q, Wang Z K, Ras R H A, Deng X. Nature, 2020, 582(7810): 55.

doi: 10.1038/s41586-020-2331-8     URL    
[51]
Zhang W L, Wang D H, Sun Z N, Song J N, Deng X. Chem. Soc. Rev., 2021, 50(6): 4031.

doi: 10.1039/D0CS00751J     URL    
[52]
Wang L M, Urata C, Sato T, England M W, Hozumi A. Langmuir, 2017, 33(38): 9972.

doi: 10.1021/acs.langmuir.7b02343     URL    
[53]
Wang T, Bao Y, Gao Z P, Wu Y, Wu L M. Prog. Org. Coat., 2019, 132: 275.
[54]
Wang Y K, Liu Y P, Li J, Chen L W, Huang S L, Tian X L. Chem. Eng. J., 2020, 390: 124311.

doi: 10.1016/j.cej.2020.124311     URL    
[55]
Zhang Y F, Zhang L Q, Xiao Z, Wang S L, Yu X Q. Chem. Eng. J., 2019, 369: 1.

doi: 10.1016/j.cej.2019.03.021     URL    
[56]
Guo X J, Xue C H, Sathasivam S, Page K, He G J, Guo J, Promdet P, Heale F L, Carmalt C J, Parkin I P. J. Mater. Chem. A, 2019, 7(29): 17604.

doi: 10.1039/C9TA03264A     URL    
[57]
Cao C Y, Yi B, Zhang J Q, Hou C S, Wang Z Y, Lu G, Huang X, Yao X. Chem. Eng. J., 2020, 392: 124834.

doi: 10.1016/j.cej.2020.124834     URL    
[58]
Zhang D J, Cheng Z J, Kang H J, Yu J X, Liu Y Y, Jiang L. Angew. Chem. Int. Ed., 2018, 57(14): 3701.

doi: 10.1002/anie.201800416     URL    
[59]
Lv T, Cheng Z J, Zhang E S, Kang H J, Liu Y Y, Jiang L. Small, 2017, 13(4):201770023.
[60]
Liu M L, Luo Y F, Jia D M. Chem. Eng. J., 2019, 368: 18.

doi: 10.1016/j.cej.2019.02.162     URL    
[61]
Zhang X, Zhi D F, Sun L, Zhao Y B, Tiwari M K, Carmalt C J, Parkin I P, Lu Y. J. Mater. Chem. A, 2018, 6(2): 357.

doi: 10.1039/C7TA08895G     URL    
[62]
Liu M L, Luo Y F, Jia D M. Chem. Eng. J., 2020, 398: 125362.

doi: 10.1016/j.cej.2020.125362     URL    
[63]
Qing Y Q, Shi S L, Lv C, Zheng Q S. Adv. Funct. Mater., 2020, 30(39): 1910665.

doi: 10.1002/adfm.v30.39     URL    
[64]
Peng C Y, Chen Z Y, Tiwari M K. Nat. Mater., 2018, 17(4): 355.

doi: 10.1038/s41563-018-0044-2     URL    
[65]
Lou X D, Huang Y, Yang X, Zhu H, Heng L P, Xia F. Adv. Funct. Mater., 2020, 30(10): 2070061.

doi: 10.1002/adfm.v30.10     URL    
[66]
Lee C, Kim C J. Phys. Rev. Lett., 2011, 106: 014502.

doi: 10.1103/PhysRevLett.106.014502     URL    
[67]
Adera S, Raj R, Enright R, Wang E N. Nat. Commun., 2013, 4(1): 1.
[68]
Boreyko J B, Chen C H. Phys. Rev. Lett., 2009, 103(17): 174502.

doi: 10.1103/PhysRevLett.103.174502     URL    
[69]
Wong T S, Kang S H, Tang S K Y, Smythe E J, Hatton B D, Grinthal A, Aizenberg J. Nature, 2011, 477(7365): 443.

doi: 10.1038/nature10447     URL    
[70]
Yao X, Hu Y H, Grinthal A, Wong T S, Mahadevan L, Aizenberg J. Nat. Mater., 2013, 12(6): 529.

doi: 10.1038/nmat3598     pmid: 23563739
[71]
Timonen J V I, Latikka M, Leibler L, Ras R H A, Ikkala O. Science, 2013, 341(6143): 253.

doi: 10.1126/science.1233775     pmid: 23869012
[72]
Yao X, Wu S W, Chen L, Ju J, Gu Z D, Liu M J, Wang J J, Jiang L. Angew. Chem. Int. Ed., 2015, 54(31): 8975.

doi: 10.1002/anie.201503031     URL    
[73]
Jiang D, Xia X C, Hou J, Zhang X X, Dong Z H. Ind. Eng. Chem. Res., 2019, 58(1): 165.

doi: 10.1021/acs.iecr.8b04060    
[74]
Jiang D, Zhou H, Wan S, Cai G Y, Dong Z H. Surf. Coat. Technol., 2018, 339: 155.

doi: 10.1016/j.surfcoat.2018.02.001     URL    
[75]
Gao J, Zhang Y F, Wei W, Yin Y, Liu M H, Guo H, Zheng C B, Deng P Y. ACS Appl. Mater. Interfaces, 2019, 11(50): 47545.

doi: 10.1021/acsami.9b16181     URL    
[76]
Deng R, Shen T, Chen H L, Lu J X, Yang H C, Li W H. J. Mater. Chem. A, 2020, 8(16): 7536.

doi: 10.1039/D0TA02000A     URL    
[77]
Wang P, Zhang D, Lu Z, Sun S M. ACS Appl. Mater. Interfaces, 2016, 8(2): 1120.

doi: 10.1021/acsami.5b08452     URL    
[78]
Tian X L, Verho T, Ras R H A. Science, 2016, 352:142.

doi: 10.1126/science.aaf2073     URL    
[79]
Barati Darband G, Aliofkhazraei M, Khorsand S, Sokhanvar S, Kaboli A. Arab. J. Chem., 2020, 13(1): 1763.

doi: 10.1016/j.arabjc.2018.01.013     URL    
[80]
Zhu T X, Cheng Y, Huang J Y, Xiong J Q, Ge M Z, Mao J J, Liu Z K, Dong X L, Chen Z, Lai Y K. Chem. Eng. J., 2020, 399: 125746.

doi: 10.1016/j.cej.2020.125746     URL    
[81]
Xue C H, Li X, Jia S T, Guo X J, Li M. RSC Adv., 2016, 6(88): 84887.

doi: 10.1039/C6RA11508J     URL    
[82]
Li J T, Zhou L, Yang N, Gao C L, Zheng Y M. RSC Adv., 2017, 7(70): 44234.

doi: 10.1039/C7RA09016A     URL    
[83]
Milionis A, Loth E, Bayer I S. Adv. Colloid Interface Sci., 2016, 229: 57.

doi: 10.1016/j.cis.2015.12.007     URL    
[84]
Chen H Y, Wang F F, Fan H Z, Hong R Y, Li W H. Chem. Eng. J., 2021, 408: 127343.

doi: 10.1016/j.cej.2020.127343     URL    
[85]
Li X Y, Zhao S P, Hu W H, Zhang X, Pei L, Wang Z. Appl. Surf. Sci., 2019, 481: 374.

doi: 10.1016/j.apsusc.2019.03.114     URL    
[86]
Li M, Li Y, Xue F, Jing X L. Appl. Surf. Sci., 2019, 480: 738.

doi: 10.1016/j.apsusc.2019.03.001     URL    
[87]
Xu L Y, Zhu D D, Lu X M, Lu Q H. J. Mater. Chem. A, 2015, 3(7): 3801.

doi: 10.1039/C4TA06944G     URL    
[88]
Zhao X X, Park D S, Choi J, Park S, Soper S A, Murphy M C. J. Colloid Interface Sci., 2020, 574: 347.

doi: 10.1016/j.jcis.2020.04.065     URL    
[89]
Xu K, Ren S Z, Song J L, Liu J Y, Liu Z A, Sun J, Ling S Y. Chem. Eng. J., 2021, 403: 126348.

doi: 10.1016/j.cej.2020.126348     URL    
[90]
Lyu J J, Wu B R, Wu N, Peng C Y, Yang J, Meng Y Y, Xing S L. Chem. Eng. J., 2021, 404: 126456.

doi: 10.1016/j.cej.2020.126456     URL    
[91]
Liu X, He H Q, Zhang T C, Ouyang L K, Zhang Y X, Yuan S J. Chem. Eng. J., 2021, 404: 127106.

doi: 10.1016/j.cej.2020.127106     URL    
[92]
Liang Z H, Zhou Z Z, Dong B H, Wang S M. Coatings, 2020, 10(4): 349.

doi: 10.3390/coatings10040349     URL    
[93]
Huang S S, Liu G J, Zhang K K, Hu H, Wang J, Miao L, Tabrizizadeh T. Chem. Eng. J., 2019, 360: 445.

doi: 10.1016/j.cej.2018.11.220     URL    
[94]
Xue C H, Bai X, Jia S T. Sci. Rep., 2016, 6(1): 1.

doi: 10.1038/s41598-016-0001-8     URL    
[95]
Razavi S M R, Neisiany R E, Marjani A. Theor. Appl. Fract. Mech., 2018, 94: 181.

doi: 10.1016/j.tafmec.2018.02.001     URL    
[96]
Barthwal S, Lim S H. Int. J. Pr. Eng. Man. Gt., 2019, 7: 481.
[97]
Saddiqi N U H, Seeger S. Adv. Mater. Interfaces, 2019, 6(7): 1900041.

doi: 10.1002/admi.v6.7     URL    
[98]
Yin X X, Mu P, Wang Q T, Li J. ACS Appl. Mater. Interfaces, 2020, 12(31): 35453.

doi: 10.1021/acsami.0c09497     URL    
[99]
Huang J B, Yang M, Zhang H, Zhu J. ACS Appl. Mater. Interfaces, 2021, 13(1): 1323.

doi: 10.1021/acsami.0c16582     URL    
[100]
Lin D, Zhang X G, Yuan S C, Li Y, Xu F, Wang X, Li C, Wang H Y. ACS Appl. Mater. Interfaces, 2020, 12(42): 48216.

doi: 10.1021/acsami.0c14471     URL    
[101]
Zhang W X, Gao J, Deng Y J, Peng L F, Yi P Y, Lai X M, Lin Z Q. Adv. Funct. Mater., 2021, 31(24): 2101068.

doi: 10.1002/adfm.v31.24     URL    
[102]
Han J P, Cai M Y, Lin Y, Liu W J, Luo X, Zhang H J, Wang K Y, Zhong M L. RSC Adv., 2018, 8(12): 6733.

doi: 10.1039/C7RA13496G     URL    
[103]
Liu Z J, Zhang C Y, Zhang X G, Wang C J, Liu F T, Yuan R X, Wang H Y. Chem. Eng. J., 2021, 411: 128632.

doi: 10.1016/j.cej.2021.128632     URL    
[104]
Li C, Lai H, Cheng Z J, Yan J J, Xiao L H, Jiang L, An M Z. Chem. Eng. J., 2020, 385: 123924.

doi: 10.1016/j.cej.2019.123924     URL    
[105]
Zhi D F, Lu Y, Sathasivam S, Parkin I P, Zhang X. J. Mater. Chem. A, 2017, 5(21): 10622.

doi: 10.1039/C7TA02488F     URL    
[1] 郭永刚, 朱亚超, 张鑫, 罗冰鹏. 表面超疏水对摩擦学性能的影响:机理、现状与展望[J]. 化学进展, 2020, 32(2/3): 320-330.
[2] 叶跃坤, 池滨, 江世杰, 廖世军. 质子交换膜燃料电池膜电极耐久性的提升[J]. 化学进展, 2019, 31(12): 1637-1652.
[3] 邵建文, 杨付超, 郭志光. 仿生超疏油材料在苛刻工况条件下的应用[J]. 化学进展, 2018, 30(12): 2003-2011.
[4] 侯琳刚, 马利利, 周亦晨, 赵彧, 张毅, 何金梅*. 低表面能化合物在超浸润材料中的应用[J]. 化学进展, 2018, 30(12): 1887-1898.
[5] 周长路, 辛忠*. 聚苯并嗪功能表面的构筑、性能与应用[J]. 化学进展, 2018, 30(1): 112-123.
[6] 郑海坤, 常士楠, 赵媛媛. 超疏水/超润滑表面的防疏冰机理及其应用[J]. 化学进展, 2017, 29(1): 102-118.
[7] 屈孟男*, 侯琳刚, 何金梅*, 马雪瑞, 袁明娟, 刘向荣. 功能化超疏水材料的研究与发展[J]. 化学进展, 2016, 28(12): 1774-1787.
[8] 田苗苗, 李雪梅, 殷勇, 何涛, 刘金盾. 超疏水膜的制备及其在膜蒸馏过程中的应用[J]. 化学进展, 2015, 27(8): 1033-1041.
[9] 王诚, 王树博, 张剑波, 李建秋, 王建龙, 欧阳明高. 车用燃料电池耐久性研究[J]. 化学进展, 2015, 27(4): 424-435.
[10] 詹媛媛, 刘玉云, 吕久安, 赵勇, 俞燕蕾. 光响应固体表面的浸润性调控[J]. 化学进展, 2015, 27(2/3): 157-167.
[11] 张凯强, 李博, 赵蕴慧, 李辉, 袁晓燕. 功能性POSS聚合物及其应用[J]. 化学进展, 2014, 26(0203): 394-402.
[12] 阎映弟, 罗能镇, 相咸高, 徐义明, 张庆华, 詹晓力. 防覆冰涂层构建机理及制备[J]. 化学进展, 2014, 26(01): 214-222.
[13] 毕鹏禹, 常林, 牟瑛琳, 刘建友, 吴昱, 魏芸. 溶剂浮选技术的研究现状与展望[J]. 化学进展, 2013, 25(08): 1362-1374.
[14] 李辉, 赵蕴慧, 袁晓燕. 抗结冰涂层: 从表面化学到功能化表面[J]. 化学进展, 2012, 24(11): 2087-2096.
[15] 陈钰, 徐建生, 郭志光. 仿生超疏水性表面的最新应用研究[J]. 化学进展, 2012, 24(05): 696-708.
阅读次数
全文


摘要