English
新闻公告
More
化学进展 2019, Vol. 31 Issue (2/3): 455-463 DOI: 10.7536/PC180601 前一篇   后一篇

• •

磷酸掺杂聚苯并咪唑高温膜燃料电池膜电极

姚东梅, 张玮琦, 徐谦, 徐丽, 李华明, 苏华能**()   

  1. 1. 江苏大学能源研究院 镇江 212013
  • 收稿日期:2018-06-04 出版日期:2019-02-15 发布日期:2018-12-20
  • 通讯作者: 苏华能
  • 基金资助:
    国家自然科学基金项目(21676126,51676092,21506081)(21676126); 国家自然科学基金项目(21676126,51676092,21506081)(51676092); 国家自然科学基金项目(21676126,51676092,21506081)(21506081); 江苏省自然科学基金项目(BK20171296)(BK20171296 the China Postdoctoral Science Foundation2017M610307); 江苏省自然科学基金项目(BK20171296)(2017M621648); 中国博士后科学基金项目(2017M610307,2017M621648)(16JDG018); 中国博士后科学基金项目(2017M610307,2017M621648)(17JDG012); 江苏大学高级人才启动基金项目(16JDG018); 江苏大学高级人才启动基金项目(17JDG012)

Membrane Electrode Assembly for High Temperature Polymer Electrolyte Membrane Fuel Cell Based on Phosphoric Acid-Doped Polybenzimidazole

Dongmei Yao, Weiqi Zhang, Qian Xu, Li Xu, Huaming Li, Huaneng Su**()   

  1. 1. Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
  • Received:2018-06-04 Online:2019-02-15 Published:2018-12-20
  • Contact: Huaneng Su
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21676126); National Natural Science Foundation of China(51676092); National Natural Science Foundation of China(21506081); Natural Science Foundation of Jiangsu Province(BK20171296 the China Postdoctoral Science Foundation2017M610307); Natural Science Foundation of Jiangsu Province(2017M621648); Research Foundation for Advanced Talents of Jiangsu University(16JDG018); Research Foundation for Advanced Talents of Jiangsu University(17JDG012); Priority Academic Program Development(PAPD) of Jiangsu Higher Education Institutions(16JDG018); Priority Academic Program Development(PAPD) of Jiangsu Higher Education Institutions(17JDG012)

基于磷酸掺杂聚苯并咪唑(PBI)高温膜燃料电池(HT-PEMFC)具有环境耐受性好、水热管理简单等优点,被认为是未来PEMFC发展的方向。作为HT-PEMFC的核心组件,膜电极对其性能、成本和寿命有着决定性影响。由于高温体系中磷酸电解质的存在,HT-PEMFC膜电极组分和特性与低温膜(如Nafion)燃料电池大不相同,同时还存在着铂用量高、磷酸流失以及高温带来的材料稳定性问题。本文综述了HT-PEMFC膜电极的构建、组分和结构优化方面的研究工作,概述了目前HT-PEMFC膜电极的研究趋势并展望了其未来发展方向,以期对后续先进HT-PEMFC膜电极研究开发提供有益借鉴。

High temperature polymer electrolyte membrane fuel cell(HT-PEMFC) based on phosphoric acid(PA)-doped polybenzimidazole(PBI) is considered as the trend of PEMFC future development due to its good environmental tolerance and simplified water/thermal management. As the key component of HT-PEMFC, membrane electrode assembly(MEA) plays an important role in determining its performance, cost and durability. Due to the presence of PA electrolyte, the composition and characteristics of the MEAs for HT-PEMFC are quite different from those for the PEMFC based on low temperature membranes(e.g. Nafion). At the same time, high use amount of Pt catalyst, PA loss and materials instabilities at high temperatures are concerns that HT-PEMFC currently confronts. In this paper, the studies on the construction, composition and structure optimization of HT-PEMFC MEA are reviewed, the research trend is summarized, and its future development is prospected, in the hope of providing useful guidance for the R&D of advanced HT-PEMFC MEAs in the future.

()
图1 PEMFC膜电极结构示意图
Fig. 1 Schematic diagram of MEA of PEMFC
图2 CCM型(左)和CCG型(右)膜电极构建方式示意图
Fig. 2 Schematic of constructing CCM type(left) and CCG type(right) MEA
图3 CCM型膜电极测试之前(干PBI膜,上)和之后(下)截面图[20]
Fig. 3 Cross-section images of CCM type MEA before(dry PBI membrane, upper) and after(bottom) test[20]. Copyright 2015, Elsevier
图4 双催化层气体扩散电极结构示意图[71]
Fig. 4 Schematic of a dual catalyst layer structured GDE[71]. Copyright 2014, Elsevier
图5 常规气体扩散电极(左)与免微孔层气体扩散电极(右)结构示意图[73]
Fig. 5 Conceptual diagrams of the conventional GDE with MPL(left) and the GDE eliminated MPL(right)[73]. Copyright 2017, Elsevier
[1]
Li Q, Jensen J O, Savinell R F, Bjerrum N J . Prog. Polym. Sci., 2009,34:449.
[2]
刘志祥(Liu Z X), 钱伟(Qian W), 郭建伟(Guo J W), 张杰(Zhang J), 王诚(Wang C), 毛宗强(Mao Z Q) . 化学进展 (Progress in Chemistry), 2011,487.
[3]
池滨(Chi B), 侯三英(Hou S Y), 刘广智(Liu G Z), 廖世军(Liao S J) . 化学进展 (Progress in Chemistry), 2018,30:243.
[4]
Araya S S, Zhou F, Liso V, Sahlin S L, Vang J R, Thomas S, Gao X, Jeppesen C, Kær S K . Int. J. Hydrogen Energy, 2016,41:21310.
[5]
Ramasamy R P . Encyclopedia of Electrochemical Power Sources. (Fuel Cells-Proton-Exchange Membrane Fuel Cells | Membrane-Electrode Assemblies). Elsevier: Amsterdam, 2009. 787.
[6]
Kongstein O E, Berning T, Børresen B, Seland F, Tunold R . Energy, 2007,32:418.
[7]
Pan C, Li Q, Jensen J O, He R, Cleemann L N, Nilsson M S, Bjerrum N J, Zeng Q . J. Power Sources, 2007,172:278.
[8]
Ong A L, Jung G B, Wu C C, Yan W M . Int. J. Hydrogen Energy, 2010,35:7866.
[9]
Su H, Pasupathi S, Bladergroen B J, Linkov V, Pollet B G . J. Power Sources, 2013,242:510.
[10]
Su H, Jao T C, Barron O, Pollet B G, Pasupathi S . J. Power Sources, 2014,267:155. https://linkinghub.elsevier.com/retrieve/pii/S0378775314007782

doi: 10.1016/j.jpowsour.2014.05.086     URL    
[11]
Felix C, Jao T C, Pasupathi S, Pollet B G . J. Power Sources, 2013,243:40.
[12]
Su H, Felix C, Barron O, Bujlo P, Bladergroen B J, Pollet B, Pasupathi S . Electrocatalysis, 2014,5:361. http://link.springer.com/10.1007/s12678-014-0202-5

doi: 10.1007/s12678-014-0202-5     URL    
[13]
Mazúr P, Soukup J, Paidar M, Bouzek K . J. Appl. Electrochem., 2011,41:1013.
[14]
Lobato J, Rodrigo M A, Linares J J, Scott K . J. Power Sources, 2006,157:284.
[15]
Schmidt T J, Baurmeister J . J. Power Sources, 2008,176:428.
[16]
Wannek C, Lehnert W, Mergel J . J. Power Sources, 2009,192:258.
[17]
Cho Y H, Kim S K, Kim T H, Cho Y H, Lim J W, Jung N, Yoon W S, Lee J C, Sung Y E . Electrochem. Solid-State Lett., 2011,14:B38.
[18]
Wannek C, Konradi I, Mergel J, Lehnert W . Int. J. Hydrogen Energy, 2009,34:9479.
[19]
Liang H, Su H, Pollet B G, Linkov V, Pasupathi S . J. Power Sources, 2014,266:107.
[20]
Liang H, Su H, Pollet B G, Pasupathi S . J. Power Sources, 2015,288:121.
[21]
Haque M A, Sulong A B, Loh K S, Majlan E H, Husaini T, Rosli R E . Int. J. Hydrogen Energy, 2017,42:9156.
[22]
卢善富(Lu S F), 徐鑫(Xu X), 张劲(Zhang J), 相艳(Xiang Y) . 中国科学:化学 (SCIENTIA SINICA Chimica), 2017,47:565.
[23]
Bose S, Kuila T, Nguyen T X H, Kim N H, Lau K T, Lee J H . Prog. Polym. Sci., 2011,36:813.
[24]
Asensio J A, Gómez-Romero P . Fuel Cells, 2005,5:336.
[25]
Patric J . Curr. Opin. Colloid Interface Sci., 2003,8:96.
[26]
代化(Dai H), 林立(Lin L), 张华民(Zhang H M) . 船电技术 (Marine Electric & Electronic Engineering), 2011,31:39.
[27]
汪嘉澍(Wang J S), 潘国顺(Pan G S), 郭丹(Guo D) . 化学进展 (Progress in Chemistry), 2012,10:1906.
[28]
Debe M K . Nature, 2012,486:43. https://www.ncbi.nlm.nih.gov/pubmed/22678278

doi: 10.1038/nature11115     URL     pmid: 22678278
[29]
刘宾(Liu B), 廖世军(Liao S J), 梁振兴(Liang Z X) . 化学进展 (Progress in Chemistry), 2011,852.
[30]
Søndergaard T, Cleemann L N, Zhong L, Becker H, Steenberg T, Hjuler H A, Seerup L, Li Q, Jensen J O . Electrocatalysis, 2018,9:302.
[31]
Zhai Y, Zhang H, Xing D, Shao Z G . J. Power Sources, 2007,164:126.
[32]
Zhai Y, Zhang H, Liu G, Hu J, Yi B . J. Electrochem. Soc., 2007,154:B72.
[33]
Liu G, Zhang H, Hu J, Zhai Y, Xu D, Shao Z G . J. Power Sources, 2006,162:547.
[34]
Hu J, Zhang H, Zhai Y, Liu G, Yi B . Int. J. Hydrogen Energy, 2006,31:1855.
[35]
Liu G, Zhang H M, Zhai Y, Zhang Y, Xu D, Shao Z G . Electrochem. Commun., 2007,9:135. https://linkinghub.elsevier.com/retrieve/pii/S1388248106003900

doi: 10.1016/j.elecom.2006.08.056     URL    
[36]
刘欣(Liu X), 刘刚(Liu G), 陈剑(Chen J), 张华民(Zhang H M) . 电池 (Battery Bimonthly), 2009,39:123.
[37]
Parrondo J, Mijangos F, Rambabu B . J. Power Sources, 2010,195:3977.
[38]
Zamora H, Plaza J, Cañizares P, Rodrigo M A, Lobato J . ChemElectroChem, 2017,4:3288.
[39]
Du H Y, Yang C S, Hsu H C, Huang H C, Chang S T, Wang C H, Chen J C, Chen K H, Chen L C . Int. J. Hydrogen Energy, 2015,40:14398. https://linkinghub.elsevier.com/retrieve/pii/S0360319915010691

doi: 10.1016/j.ijhydene.2015.04.131     URL    
[40]
Berber M R, Fujigaya T, Sasaki K, Nakashima N . Sci. Rep., 2013,3:1764. https://doi.org/10.1038/srep01764

doi: 10.1038/srep01764     URL    
[41]
Lobato J, Cañizares P, Ubeda D, Pinar F J, Rodrigo M A . Appl. Catal. B, 2011,106:174.
[42]
Zamora H, Plaza J, Velhac P, Cañizares P, Rodrigo M A, Lobato J . Appl. Catal. B, 2017,207:244. https://linkinghub.elsevier.com/retrieve/pii/S0926337317301236

doi: 10.1016/j.apcatb.2017.02.019     URL    
[43]
Lobato J, Zamora H, Plaza J, Cañizares P, Rodrigo M A . Appl. Catal. B, 2016,198:516. https://linkinghub.elsevier.com/retrieve/pii/S0926337316304490

doi: 10.1016/j.apcatb.2016.06.011     URL    
[44]
Lobato J, Zamora H, Plaza J, Rodrigo M A . ChemCatChem, 2016,8:848. http://doi.wiley.com/10.1002/cctc.v8.4

doi: 10.1002/cctc.v8.4     URL    
[45]
Lobato J, Cañizares P, Rodrigo M A, Linares J J, Úbeda D, Pinar F J . Fuel Cells, 2010,10:312. http://doi.wiley.com/10.1002/fuce.v10%3A2

doi: 10.1002/fuce.v10:2     URL    
[46]
Su H, Pasupathi S, Bladergroen B, Linkov V, Pollet B G . Int. J. Hydrogen Energy, 2013,38:11370.
[47]
Lobato J, Cañizares P, Rodrigo M A, Linares J J, Pinar F J . Int. J. Hydrogen Energy, 2010,35:1347.
[48]
Park J O, Kwon K, Cho M D, Hong S G, Kim T Y, Yoo D Y . J. Electrochem. Soc., 2011,158:B675. https://iopscience.iop.org/article/10.1149/1.3573773

doi: 10.1149/1.3573773     URL    
[49]
Mamlouk M, Scott K . Int. J. Hydrogen Energy, 2010,35:784.
[50]
Mamlouk M, Scott K . Int. J. Energy Res., 2011,35:507.
[51]
Oono Y, Sounai A, Hori M . J. Power Sources, 2013,241:87.
[52]
Oono Y, Sounai A, Hori M . J. Power Sources, 2012,210:366.
[53]
Kim J H, Kim H J, Lim T H, Lee H I . J. Power Sources, 2007,170:275.
[54]
Jeong G, Kim M, Han J, Kim H J, Shul Y G, Cho E . J. Power Sources, 2016,323:142.
[55]
Martin S, Li Q, Jensen J O . J. Power Sources, 2015,293:51.
[56]
Martin S, Li Q, Steenberg T, Jensen J O . J. Power Sources, 2014,272:559. https://linkinghub.elsevier.com/retrieve/pii/S0378775314013779

doi: 10.1016/j.jpowsour.2014.08.112     URL    
[57]
Holst-Olesen K, Nesselberger M, Perchthaler M, Hacker V, Arenz M . J. Power Sources, 2014,272:1072.
[58]
Kwon K, Park J O, Yoo D Y, Yi J S . Electrochim. Acta, 2009,54:6570.
[59]
Matar S, Higier A, Liu H . J. Power Sources, 2010,195:181.
[60]
Oono Y, Sounai A, Hori M . J. Power Sources, 2009,189:943.
[61]
王树博(Wang S B), 谢晓峰(Xie X F), 王要武(Wang Y W), 王金海(Wang J H), 尚玉明(Shang Y M), 李薇薇(Li W W), 方谋(Fang M) . 化工进展 (Chemical Industry and Engineering Progress), 2012,343.
[62]
Barron O, Su H, Linkov V, Pollet B G, Pasupathi S . J. Power Sources, 2015,278:718.
[63]
Barron O, Su H, Linkov V, Pollet B G, Pasupathi S . J. Appl. Electrochem., 2014,44:1037.
[64]
Oh H S, Cho Y, Lee W H, Kim H . J. Mater. Chem. A, 2013,1:2578. http://xlink.rsc.org/?DOI=c2ta00492e

doi: 10.1039/c2ta00492e     URL    
[65]
Xu X, Tao S, Irvine J T S . Solid State Ionics, 2009,180:343. https://linkinghub.elsevier.com/retrieve/pii/S0167273808006425

doi: 10.1016/j.ssi.2008.11.001     URL    
[66]
Su H, Sita C, Pasupathi S . Int. J. Electrochem. Sci., 2016,11:2919.
[67]
Lobato J, Cañizares P, Rodrigo M A, Ruiz-López C, Linares J J . J. Appl. Electrochem., 2008,38:793.
[68]
Lobato J, Canizares P, Rodrigo M A, Ubeda D, Pinar F J, Linares J J . Fuel Cells, 2010,10:770.
[69]
Chevalier S, Fazeli M, Mack F, Galbiati S, Manke I, Bazylak A, Zeis R . Electrochim. Acta, 2016,212:187.
[70]
Kannan A, Li Q, Cleemann L N, Jensen J O . Fuel Cells, 2018,18:103. http://doi.wiley.com/10.1002/fuce.v18.2

doi: 10.1002/fuce.v18.2     URL    
[71]
Su H, Jao T C, Pasupathi S, Bladergroen B J, Linkov V, Pollet B G . J. Power Sources, 2014,246:63. https://linkinghub.elsevier.com/retrieve/pii/S0378775313012524

doi: 10.1016/j.jpowsour.2013.07.062     URL    
[72]
Su H, Liang H, Bladergroen B J, Linkov V, Pollet B G, Pasupathi S . J. Electrochem. Soc., 2014,161:F506.
[73]
Su H, Xu Q, Chong J, Li H, Sita C, Pasupathi S . J. Power Sources, 2017,341:302.
[74]
DOE. Fuel Cells Technical Plan, in: Multi-Year Research, Development and Demonstration Plan. Department of Energy: US, 2016. 18.
[75]
Søndergaard T, Cleemann L N, Becker H, Aili D, Steenberg T, Hjuler H A, Seerup L, Li Q, Jensen J O . J. Power Sources, 2017,342:570.
[76]
Rastedt M, Büsselmann J, Tullius V, Wagner P, Dyck A . Fuel Cells, 2018,18:113.
[77]
Jung G B, Chen H H, Yan W M . J. Power Sources, 2014,247:354.
[78]
Schonvogel D, Rastedt M, Wagner P, Wark M, Dyck A . Fuel Cells, 2016,4:480.
[79]
Thomas S, Jeppesen C, Steenberg T, Araya S S, Vang J R, Kær S K . Int. J. Hydrogen Energy, 2017,42:27230.
[80]
Schenk A, Gamper S, Grimmer C, Pichler B E, Bodner M, Weinberger S, Hacker V . ECS Trans., 2016,75:435.
[81]
Gokhale R, Asset T, Qian G, Serov A, Artyushkova K, Benicewicz B C, Atanassov P . Electrochem. Commun., 2018,93:91.
[82]
You D J, Kim D H, De Lile J R, Li C, Lee S G, Kim J M, Pak C . Appl. Catal. A, 2018,562:250.
[83]
刘锋(Liu F), 王诚(Wang C), 张剑波(Zhang J B), 兰爱东(Lan A D), 李建秋(Li J Q), 欧阳明高(Ouyang M G) . 化学进展 (Progress in Chemistry), 2014,26:1763.
[1] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[2] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[3] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[4] 白钰, 王拴紧, 肖敏, 孟跃中, 王成新. 燃料电池用高温质子交换膜[J]. 化学进展, 2021, 33(3): 426-441.
[5] 李高, 李艳梅. 截短与修饰的β-淀粉样蛋白与阿尔茨海默病[J]. 化学进展, 2020, 32(1): 14-22.
[6] 叶跃坤, 池滨, 江世杰, 廖世军. 质子交换膜燃料电池膜电极耐久性的提升[J]. 化学进展, 2019, 31(12): 1637-1652.
[7] 林娇, 刘春伟, 曹宏斌, 李丽, 陈人杰, 孙峙. 基于高温化学转化的废旧锂离子电池资源化技术[J]. 化学进展, 2018, 30(9): 1445-1454.
[8] 许云汉, 王磊磊, 胡爱军, 袁莉莉, 王志媛, 杨士勇*. 耐高温聚酰亚胺泡沫材料[J]. 化学进展, 2018, 30(5): 684-691.
[9] 池滨, 侯三英, 刘广智, 廖世军*. 高性能高功率密度质子交换膜燃料电池膜电极[J]. 化学进展, 2018, 30(2/3): 243-251.
[10] 朱燕燕, 岳宗洋, 边文, 刘瑞林, 马晓迅, 王晓东. 六铝酸盐结构及其在高温反应中的应用[J]. 化学进展, 2018, 30(12): 1992-2002.
[11] 杜远超, 华政, 梁风, 李永梅, 戴永年, 姚耀春. 液相法合成磷酸铁锂正极材料[J]. 化学进展, 2017, 29(1): 137-148.
[12] 赵新红, 高向平, 郝志鑫, 张晓晓. 多级孔磷酸铝分子筛的合成、表征及催化应用[J]. 化学进展, 2016, 28(5): 686-696.
[13] 杨露姣, 张颖, 程璇. 先驱体转化法制备硅硼碳氮陶瓷的结构与性能[J]. 化学进展, 2016, 28(2/3): 308-316.
[14] 陈峰, 朱英杰. 磷酸钙纳米结构材料的微波辅助液相合成[J]. 化学进展, 2015, 27(5): 459-471.
[15] 刘锋, 王诚, 张剑波, 兰爱东, 李建秋, 欧阳明高. 质子交换膜燃料电池有序化膜电极[J]. 化学进展, 2014, 26(11): 1763-1771.