English
新闻公告
More
化学进展 2021, Vol. 33 Issue (3): 426-441 DOI: 10.7536/PC200612 前一篇   后一篇

• 综述 •

燃料电池用高温质子交换膜

白钰1, 王拴紧1,*(), 肖敏1,*(), 孟跃中1, 王成新1   

  1. 1 中山大学广东省低碳化学与过程节能重点实验室/光电材料与技术国家重点实验室 广州 510275
  • 收稿日期:2020-06-03 修回日期:2020-07-31 出版日期:2021-03-20 发布日期:2020-12-22
  • 通讯作者: 王拴紧, 肖敏
  • 作者简介:
    * Corresponding author e-mail: (Shuanjin Wang); (Min Xiao)
  • 基金资助:
    国家重点研发计划日中合作项目(2017YFE0197900); 国家自然科学基金与广东省联合资助项目(U1601211); 国家重点研发计划项目(2018YFA0702002)

Phosphoric Acid Based Proton Exchange Membranes for High Temperature Proton Exchange Membrane Fuel Cells

Yu Bai1, Shuanjin Wang1,*(), Min Xiao1,*(), Yuezhong Meng1, Chengxin Wang1   

  1. 1 Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University,Guangzhou 510275, China
  • Received:2020-06-03 Revised:2020-07-31 Online:2021-03-20 Published:2020-12-22
  • Contact: Shuanjin Wang, Min Xiao
  • Supported by:
    the National Key Research and Development Program(Japan-China Joint Research Program)(2017YFE0197900); Link Project of the National Natural Science Foundation of China and Guangdong Province(U1601211); and the National Key Research and Development Program(2018YFA0702002)

与传统质子交换膜燃料电池相比,高温质子交换膜燃料电池(HT-PEMFCs)不仅可以提高催化剂对CO的耐受能力,还能简化水热管理,提高能量转化效率。高温质子交换膜是实现高温操作的关键部件之一。掺杂无机磷酸的高温质子交换膜因为在高温度(100~200 ℃)和低相对湿度下具有较高的质子传导率,以及较长使用寿命而成为研究的热点。高的磷酸掺杂量有助于质子传导率的提升,但也会牺牲膜的机械强度,因此已有大量致力于提升膜综合性能的改性研究。本文对目前基于磷酸基的聚苯并咪唑类、聚芳醚类等高温质子交换膜的改性策略进行评述,并梳理总结了包括 MOFs、COFs 在内的新型多孔材料在质子交换膜领域的应用,最后指出了高温质子交换膜当前面临的挑战。

High temperature proton exchange membrane fuel cells(HT-PEMFCs) have many advantages over traditional proton exchange membrane fuel cells, which can not only enhance the catalysts tolerance to carbon monoxide poisoning, but also simplify the water and heat management as well as improve the energy conversion efficiency. Proton exchange membrane(PEM) is one of the key components of PEMFCs. Phosphoric acid(PA) doped PEMs have recently shown remarkable advantages due to the high proton conductivity and longevity at high operating temperatures(100~200 ℃) and low relative humidity. Generally, high PA doping level can improve the proton conductivity of PEMs, whereas the mechanical strength of the membranes dramatically deteriorates as an expense, therefore, enormous research on the synthesis of modified polymer electrolyte membranes with improved comprehensive performance has been carried out. This review focuses on the research progress of PA doped high temperature proton exchange membranes(HT-PEMs) such as polybenzimidazole and alkaline poly(aryl ether). Particularly, the application of porous materials including metal organic frameworks(MOFs) and covalent organic frameworks(COFs) in PEMs is also summarized. Finally, the remaining challenges in this filed are indicated.

Contents

1 Introduction

2 Proton conduction mechanism in proton exchange membranes

3 Challenges of HT?PEMs

4 Research progress on modification of phosphoric acid?based proton exchange membranes for HT?PEMFCs

4.1 Polybenzimidazole?based HT?PEMs

4.2 Non?polybenzimidazole?based HT?PEMs

5 Application of novel porous materials in HT?PEMFCs

5.1 Porous membranes based on PBI

5.2 MOFs

5.3 COFs

6 Conclusion and outlook

()
图1 m-PBI 的重复单元:碱性 N(绿色); 键合酸(蓝色); 游离酸(红色), ADL=4[16]
Fig.1 Repeat unit of m-PBI showing Lewis basic nitrogen atoms(green), “bonded acid”(blue), and “free acid”(red) at an acid doping level of 4 [16]
图2 PA-PBI 膜中的质子传导机理(a)水-酸质子传递(b)酸-酸质子传递(c)酸-咪唑环质子传递[4]
Fig.2 Conductivity mechanism of PA doped polybenzimidazoles:(a) water-acid proton transfer(b) proton transfer through a phosphoric acid chain and(c) benzimidazole ring-phosphoric acid proton transfer[4]
图3 Ph-PBI 与 Me-PBI 的合成示意图[40]
Fig.3 Synthesis of Ph-PBI and Me-PBI[40]
图4 p-PPBI 的合成示意图[42]
Fig.4 Synthesis of p-PPBI[42]
图5 SPBIs 的化学结构:(a) PBI-2Θ-1SO3H,(b) PBI-2Θ-2SO3H,(c) PBI-3Θ-1SO3H,(d) PBI-3Θ-3SO3H[44]
Fig.5 Chemical structures of SPBIs:(a) PBI-2Θ-1SO3H,(b) PBI-2Θ-2SO3H,(c) PBI-3Θ-1SO3H and(d) PBI-3Θ-3SO3H[44]
图6 2OHPBI 的合成示意图[45]
Fig.6 Synthesis of 2OHPBI[45]
图 7 OHPyPBI 的合成示意图[46]
Fig.7 Synthesis of OHPyPBI[46]
图8 磷酸掺杂的 P-MWNTS/PBI 复合膜的质子传导网络[62]
Fig.8 Interaction of P-MWCNTs with phosphoric acid doped PBI membranes, resulting in the formation of localized networks for efficient proton transport along the sidewalls of PMWCNTs[62]
图9 氧化石墨烯的结构示意图[63]
Fig.9 Schematic of graphite oxide(GO) structure[63]
图10 推测交联 PBI 中 2BIM-2Cl 自反应可能形成的结构:(a)线性结构;(b)支化结构;(c)自交联结构[71]
Fig.10 Presumed structures of self-reacted 2BIM-2Cl in crosslinked PBI(a) linear;(b) branched;(c) self-cross-linked[71]
图 11 超支化交联剂 Br-HPP 的化学结构[72]
Fig.11 Chemical structure of hyperbranched cross-linker Br-HPP[72]
图12 (a)支化 F6PBI;(b)双酚A型苯并口恶嗪(BA-a)的化学结构。蓝色与红色分别标示出各自的交联位点
Fig.12 Chemical structures of(a) branched F6PBI;(b) benzoxazine. The crosslinking sites are colored by blue and red, respectively
图13 (a)离子交联膜;(b)热固化后共价交联膜的分子链结构示意图[75]
Fig.13 Schematic illustration of(a) ionically crosslinked blend membranes, and(b) the resulting covalently crosslinked blend membranes after heat cure[75]
图14 含三唑的聚(2,6-二甲基-1,4-苯醚)交联膜 XTPPO 的分子链结构示意图[14]
Fig.14 Schematic illustration of cross-linked triazole modified poly(2,6-dimethyl-1,4-phenylene oxide) membranes(XTPPO)[14]
图15 [Zn(H2PO4)2(C2N3H3)2]n 的结构模型(Zn∶P∶C∶N=1∶1.6∶4.1∶5.8), H3PO4 分子占据晶体缺陷[118]
Fig.15 Proposed structural model of [Zn(H2PO4)2(C2N3H3)2]n(Zn∶P∶C∶N=1∶1.6∶4.1∶5.8), whereas the uncoordinated H3PO4 occupies the space where the monodentate H2P4- existed[118]
图16 Z-COF 的化学结构[132]
Fig.16 Chemical structure of Z-COF[132]
[1]
Bp. BP Statistical Review of World Energy 2018. Bp Espaa, 2019.
[2]
Rosli R E, Sulong A B, Daud W R W, Zulkifley M A, Husaini T, Rosli M I, Majlan E H, Haque M A. Int. J. Hydrog. Energy, 2017, 42(14):9293.
[3]
Haque M A, Sulong A B, Loh K S, Majlan E H, Husaini T, Rosli R E. Int. J. Hydrog. Energy, 2017, 42(14):9156.
[4]
Asensio J A, Sánchez E M, GÓmez-Romero P. Chem. Soc. Rev., 2010, 39(8):3210.
[5]
Bose S, Kuila T, Nguyen T X H, Kim N H, Lau K T, Lee J H. Prog. Polym. Sci., 2011, 36(6):813.
[6]
Spendelow J S, Papageorgopoulos D C. Fuel Cells, 2011, 11(6):775.
[7]
Kongkanand A, Mathias M F. J. Phys. Chem. Lett., 2016, 7(7):1127.
[8]
Li Q F, He R H, Jensen J O, Bjerrum N J. Chem. Mater., 2003, 15(26):4896.
[9]
Yang C, Costamagna P, Srinivasan S, Benziger J, Bocarsly A B. J. Power Sources, 2001, 103(1):1.
[10]
Yang J S, Wang Y H, Yang G H, Zhan S F. Int. J. Hydrog. Energy, 2018, 43(17):8464.
[11]
Du M Q, Yang L, Luo X, Wang K L, Chang G J. Polym. J., 2019, 51(1):69.
[12]
Wang J, Jiang H X, Xu Y X, Yang J S, He R H. Appl. Surf. Sci., 2018, 452:473.
[13]
Bu F Z, Zhang Y R, Hong L H, Zhao W C, Li D, Li J L, Na H, Zhao C J. J. Membr. Sci., 2018, 545:167.
[14]
Jang J, Kim D H, Ahn M K, Min C M, Lee S B, Byun J, Pak C, Lee J S. J. Membr. Sci., 2020, 595:117508.
[15]
Zhang B, Edwards B J. J. Electrochem. Soc., 2015, 162(9):F1088.
[16]
Nawn G, Pace G, Lavina S, Vezzù K, Negro E, Bertasi F, Polizzi S, di Noto V. Macromolecules, 2015, 48(1):15.
[17]
Hu Y, Li X, Yan L, Yue B. Fuel Cells, 2017, 17(1):3.
[18]
Agmon N. Chem. Phys. Lett., 1995, 244(5/6):456.
[19]
Smitha B, Sridhar S, Khan A A. Macromolecules, 2004, 37(6):2233.
[20]
Zhen D X. Doctoral Dissertation of Dalian University of Technology, 2018.(甄栋兴. 大连理工大学博士论文, 2018.).
[21]
Pei H Q, Hong L, Lee J Y. J. Power Sources, 2006, 160(2):949.
[22]
Hooshyari K, Javanbakht M, Shabanikia A, Enhessari M. J. Power Sources, 2015, 276:62.
[23]
Bouchet R, Miller S, Duclot M, Souquet J L. Solid State Ionics, 2001, 145(1/4):69.
[24]
Bouchet R. Solid State Ionics, 1999, 118(3/4):287.
[25]
Hughes C E, Haufe S, Angerstein B, Kalim R, Mähr U, Reiche A, Baldus M. J. Phys. Chem. B, 2004, 108(36):13626.
[26]
Ma Y L, Wainright J S, Litt M H, Savinell R F. J. Electrochem. Soc., 2004, 151(1):A8.
[27]
He R. J. Membr. Sci., 2003, 226(1/2):169.
[28]
Jeong Y H, Jung J H, Choi E, Han S, Begley A I, Yoo S J, Jang J H, Kim H J, Nam S W, Lee K Y, Kim J Y. J. Power Sources, 2015, 299:480.
[29]
Wang M K. Mater. Rep, 1992, 6:47.
( 王睦铿 . 材料导报, 1992, 6:47.).
[30]
Quartarone E, Mustarelli P. Energy Environ. Sci., 2012, 5(4):6436.
[31]
Yang J S, Li Q F, Cleemann L N, Jensen J O, Pan C, Bjerrum N J, He R H. Adv. Energy Mater., 2013, 3(5):622.
[32]
He R, Li Q, Bach A, Jensen J, Bjerrum N. J. Membr. Sci., 2006, 277(1/2):38.
[33]
Xiao L X, Zhang H F, Scanlon E, Ramanathan L S, Choe E W, Rogers D, Apple T, Benicewicz B C. Chem. Mater., 2005, 17(21):5328.
[34]
Kim T H, Kim S K, Lim T W, Lee J C. J. Membr. Sci., 2008, 323(2):362.
[35]
Yang J S, Li Q F, Cleemann L N, Xu C X, Jensen J O, Pan C, Bjerrum N J, He R H. J. Mater. Chem., 2012, 22(22):11185.
[36]
Li X, Qian G, Chen X, Benicewicz B C. Fuel Cells, 2013, 13(5):832.
[37]
Zhang Q, Liu B J, Hu W, Xu W, Jiang Z H, Xing W, Guiver M D. J. Membr. Sci., 2013, 428:629.
[38]
Li X P, Liu C, Zhang S H, Zong L S, Jian X G. J. Membr. Sci., 2013, 442:160.
[39]
Liu C, Li X P, Xu J, Jian X G. Eur. Polym. J., 2011, 47(9):1852.
[40]
Li X B, Ma H W, Wang H L, Zhang S T, Jiang Z H, Liu B J, Guiver M D. RSC Adv., 2015, 5(66):53870.
[41]
Tang Y Y. Master’s Dissertation of Lanzhou University, 2017.(汤一尧. 兰州大学硕士论文, 2017.).
[42]
Li X P, Liu C, Zhang S H, Yu G P, Jian X G. J. Membr. Sci., 2012, 423/424:128.
[43]
Maity S, Jana T. Macromolecules, 2013, 46(17):6814.
[44]
Angioni S, Villa D C, Barco S D, Quartarone E, Righetti P P, Tomasi C, Mustarelli P. J. Mater. Chem. A, 2014, 2(3):663.
[45]
Yu S, Benicewicz B C. Macromolecules, 2009, 42(22):8640.
[46]
Yang J S, Xu Y X, Zhou L, Che Q T, He R H, Li Q F. J. Membr. Sci., 2013, 446:318.
[47]
Ngamsantivongsa P, Lin H L, Leon Yu T. J. Membr. Sci., 2015, 491:10.
[48]
Xu H J, Chen K C, Guo X X, Fang J H, Yin J. Polymer, 2007, 48(19):5556.
[49]
Dai H, Zhang H, Zhong H, Jin H, Li X, Xiao S, Mai Z. Fuel Cells, 2010, 10(5):754.
[50]
Nicotera I, Kosma V, Simari C, Angioni S, Mustarelli P, Quartarone E. J. Phys. Chem. C, 2015, 119(18):9745.
[51]
Sun X W, Simonsen S, Norby T, Chatzitakis A. Membranes, 2019, 9(7):83.
[52]
Chu F Q, Lin B C, Qiu B, Si Z H, Qiu L H, Gu Z Z, Ding J N, Yan F, Lu J M. J. Mater. Chem., 2012, 22(35):18411.
[53]
Lee S, Seo K, Ghorpade R V, Nam K H, Han H. Mater. Lett., 2020, 263:127167.
[54]
Pinar F J, Cañizares P, Rodrigo M A, Ubeda D, Lobato J. RSC Adv., 2012, 2(4):1547.
[55]
Plackett D, Siu A, Li Q F, Pan C, Jensen J O, Nielsen S F, Permyakova A A, Bjerrum N J. J. Membr. Sci., 2011, 383(1/2):78.
[56]
Cai Y B, Yue Z Y, Teng X, Xu S A. J. Electrochem. Soc., 2018, 165(11):F914.
[57]
Verma A, Scott K. J. Solid State Electrochem., 2010, 14(2):213.
[58]
Qian W, Shang Y M, Fang M, Wang S B, Xie X F, Wang J H, Wang W X, Du J Y, Wang Y W, Mao Z Q. Int. J. Hydrog. Energy, 2012, 37(17):12919.
[59]
Xu C X, Wu X, Wang X, Mamlouk M, Scott K. J. Mater. Chem., 2011, 21(16):6014.
[60]
Stenina I A, Yaroslavtsev A B. Inorg. Mater., 2017, 53(3):253.
[61]
Guerrero Moreno N, Gervasio D, Godínez García A, PÉrez Robles J F. J. Power Sources, 2015, 300:229.
[62]
Kannan R, Kagalwala H N, Chaudhari H D, Kharul U K, Kurungot S, Pillai V K. J. Mater. Chem., 2011, 21(20):7223.
[63]
Xu C X, Cao Y C, Kumar R, Wu X, Wang X, Scott K. J. Mater. Chem., 2011, 21(30):11359.
[64]
Abouzari-Lotf E, Zakeri M, Nasef M M, Miyake M, Mozarmnia P, Bazilah N A, Emelin N F, Ahmad A. J. Power Sources, 2019, 412:238.
[65]
Yang J S, Liu C, Gao L P, Wang J, Xu Y X, He R H. RSC Adv., 2015, 5(122):101049.
[66]
Schechter A. Solid State Ionics, 2002, 147(1/2):181.
[67]
Chuang S W, Hsu S L C, Yang M L. Eur. Polym. J., 2008, 44(7):2202.
[68]
Wang J T W, Hsu S L C. Electrochimica Acta, 2011, 56(7):2842.
[69]
Yang J S, Jiang H X, Gao L P, Wang J, Xu Y X, He R H. Int. J. Hydrog. Energy, 2018, 43(6):3299.
[70]
Li X B, Ma H W, Wang P, Liu Z C, Peng J W, Hu W, Jiang Z H, Liu B J. ACS Appl. Mater. Interfaces, 2019, 11(34):30735.
[71]
Li X B, Ma H W, Wang P, Liu Z C, Peng J W, Hu W, Jiang Z H, Liu B J, Guiver M D. Chem. Mater., 2020,(32):1182.
[72]
Hu M S, Li T Y, Neelakandan S, Wang L, Chen Y M. J. Membr. Sci., 2020, 593:117435.
[73]
Wang L, Liu Z R, Liu Y, Wang L. J. Membr. Sci., 2019, 583:110.
[74]
Kerres J, Ullrich A, Meier F, Häring T. Solid State Ionics, 1999, 125(1/4):243.
[75]
Krishnan N N, Joseph D, Duong N M H, Konovalova A, Jang J H, Kim H J, Nam S W, Henkensmeier D. J. Membr. Sci., 2017, 544:416.
[76]
Li X B, Wang P, Liu Z C, Peng J W, Shi C Y, Hu W, Jiang Z H, Liu B J. J. Power Sources, 2018, 393:99.
[77]
Sinigersky V, Budurova D, Penchev H, Ublekov F, Radev I. J. Appl. Polym. Sci., 2013, 129(3):1223.
[78]
Hasiotis C, Li Q F, Deimede V, Kallitsis J K, Kontoyannis C G, Bjerrum N J. J. Electrochem. Soc., 2001, 148(5):A513.
[79]
Zheng H T, Luo H Z, Mathe M. J. Power Sources, 2012, 208:176.
[80]
Liu D, Tanaka M, Kawakami H. J. Photopol. Sci. Technol., 2015, 28(2):181.
[81]
Arunbabu D, Sannigrahi A, Jana T. J. Phys. Chem. B, 2008, 112(17):5305.
[82]
Acar O, Sen U, Bozkurt A, Ata A L. Int. J. Hydrog. Energy, 2009, 34(6):2724.
[83]
Wang L, Meng Y Z, Gao C M, Zhu G M. Acta Chim. Sinica, 2007, 65(14):1403.
王雷, 孟跃中, 高春梅, 朱光明. 化学学报, 2007, 65(14):1403.
[84]
Suzuki K, Iizuka Y, Tanaka M, Kawakami H. J. Mater. Chem., 2012, 22(45):23767.
[85]
Kowsari E, Zare A, Ansari V. Int. J. Hydrog. Energy, 2015, 40(40):13964.
[86]
Guo Z B, Xu X, Xiang Y, Lu S F, Jiang S P. J. Mater. Chem. A, 2015, 3(1):148.
[87]
Dai Y, Wang J, Tao P P, He R H. J. Colloid Interface Sci., 2019, 553:503.
[88]
Bai H J, Wang H I N, Zhang J, Wu C X, Zhang J J, Xiang Y, Lu S F. J. Membr. Sci., 2018, 558:26.
[89]
Tu C H, Hsu S L C, Bulycheva E, Belomoina N. Polym. Eng. Sci., 2019, 59(10):2169.
[90]
Mecerreyes D, Grande H, Miguel O, Ochoteco E, Marcilla R, Cantero I. Chem. Mater., 2004, 16(4):604.
[91]
Zarrin H, Jiang G P, Lam G Y Y, Fowler M, Chen Z W. Int. J. Hydrog. Energy, 2014, 39(32):18405.
[92]
Jheng L C, Chang W J Y, Hsu S L C, Cheng P Y. J. Power Sources, 2016, 323:57.
[93]
Maurya S, Shin S H, Lee J Y, Kim Y, Moon S H. RSC Adv., 2016, 6(7):5198.
[94]
Li J, Li X J, Yu S C, Hao J K, Lu W T, Shao Z G, Yi B L. Energy Convers. Manag., 2014, 85:323.
[95]
Das A, Ghosh P, Ganguly S, Banerjee D, Kargupta K. J. Appl. Polym. Sci., 2018, 135(5):45773.
[96]
Shen C H, Jheng L C, Hsu S L C, Tse-Wei Wang J. J. Mater. Chem., 2011, 21(39):15660.
[97]
Wang S, Zhao C J, Ma W J, Zhang G, Liu Z G, Ni J, Li M Y, Zhang N, Na H. J. Membr. Sci., 2012, 411/412:54.
[98]
Zeng L, Zhao T S, An L, Zhao G, Yan X H. Energy Environ. Sci., 2015, 8(9):2768.
[99]
Barati S, Abdollahi M, Khoshandam B, Mehdipourghazi M. Int. J. Hydrog. Energy, 2018, 43(42):19681.
[100]
Cai Y B, Yue Z Y, Teng X, Xu S A. Eur. Polym. J., 2018, 103:207.
[101]
Escorihuela J, Sahuquillo Ó, García-BernabÉ A, GimÉnez E, Compañ V. Nanomaterials, 2018, 8(10):775.
[102]
Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, Kapteijn F, LlabrÉs i Xamena F X, Gascon J. Nat. Mater., 2015, 14(1):48.
[103]
Filak L K, Mühlgassner G, Bacher F, Roller A, Galanski M, Jakupec M A, Keppler B K, Arion V B. Organometallics, 2011, 30(2):273.
[104]
Xu Z Q, Meng W, Li H J, Hou H W, Fan Y T. Inorg. Chem., 2014, 53(7):3260.
[105]
Na K, Choi K M, Yaghi O M, Somorjai G A. Nano Lett., 2014, 14(10):5979.
[106]
Ponomareva V G, Kovalenko K A, Chupakhin A P, Dybtsev D N, Shutova E S, Fedin V P. J. Am. Chem. Soc., 2012, 134(38):15640.
[107]
Yang F, Huang H L, Wang X Y, Li F, Gong Y H, Zhong C L, Li J R. Cryst. Growth Des., 2015, 15(12):5827.
[108]
Xu G, Otsubo K, Yamada T, Sakaida S, Kitagawa H. J. Am. Chem. Soc., 2013, 135(20):7438.
[109]
Panda T, Kundu T, Banerjee R. Chem. Commun., 2013, 49(55):6197.
[110]
Nagarkar S S, Unni S M, Sharma A, Kurungot S, Ghosh S K. Angew. Chem. Int. Ed., 2014, 53(10):2638.
[111]
Bazaga-García M, Colodrero R M P, Papadaki M, Garczarek P, Zoń J, Olivera-Pastor P, Losilla E R, LeÓn-Reina L, Aranda M A G, Choquesillo-Lazarte D, Demadis K D, Cabeza A. J. Am. Chem. Soc., 2014, 136(15):5731.
[112]
Sadakiyo M, Yamada T, Kitagawa H. J. Am. Chem. Soc., 2009, 131(29):9906.
[113]
Umeyama D, Horike S, Inukai M, Hijikata Y, Kitagawa S. Angew. Chem. Int. Ed., 2011, 50(49):11706.
[114]
Hurd J A, Vaidhyanathan R, Thangadurai V, Ratcliffe C I, Moudrakovski I L, Shimizu G K H. Nat. Chem., 2009, 1(9):705.
[115]
Ramaswamy P, Wong N E, Gelfand B S, Shimizu G K H. J. Am. Chem. Soc., 2015, 137(24):7640.
[116]
Phang W J, Jo H, Lee W R, Song J H, Yoo K, Kim B, Hong C S. Angew. Chem. Int. Ed., 2015, 54(17):5142.
[117]
Escorihuela J, Narducci R, Compañ V, Costantino F. Adv. Mater. Interfaces, 2019, 6(2):1801146.
[118]
Inukai M, Horike S, Itakura T, Shinozaki R, Ogiwara N, Umeyama D, Nagarkar S, Nishiyama Y, Malon M, Hayashi A, Ohhara T, Kiyanagi R, Kitagawa S. J. Am. Chem. Soc., 2016, 138(27):8505.
[119]
Li Z, He G W, Zhang B, Cao Y, Wu H, Jiang Z Y, Zhou T T. ACS Appl. Mater. Interfaces, 2014, 6(12):9799.
[120]
Dong X Y, Li J J, Han Z, Duan P G, Li L K, Zang S Q. J. Mater. Chem. A, 2017, 5(7):3464.
[121]
Sánchez-Laínez J, Zornoza B, TÉllez C, Coronas J. J. Membr. Sci., 2018, 563:427.
[122]
Sánchez-Laínez J, Zornoza B, Carta M, Malpass-Evans R, McKeown N B, TÉllez C, Coronas J. Ind. Eng. Chem. Res., 2018, 57(49):16909.
[123]
Sánchez-Laínez J, Zornoza B, Friebe S, Caro J, Cao S, Sabetghadam A, Seoane B, Gascon J, Kapteijn F, Le Guillouzer C, Clet G, Daturi M, TÉllez C, Coronas J. J. Membr. Sci., 2016, 515:45.
[124]
Mendoza-Corteés J L, Han S S, Furukawa H, Yaghi O M, Goddard W A III. J. Phys. Chem. A, 2010, 114(40):10824.
[125]
Xu H, Gao J, Jiang D L. Nat. Chem., 2015, 7(11):905.
[126]
Montoro C, Rodríguez-San-miguel D, Polo E, Escudero-Cid R, Ruiz-González M L, Navarro J A R, OcÓn P, Zamora F. J. Am. Chem. Soc., 2017, 139(29):10079.
[127]
Zhong H, Fu Z H, Taylor J M, Xu G, Wang R H. Adv. Funct. Mater., 2017, 27(32):1701465.
[128]
Shinde D B, Aiyappa H B, Bhadra M, Biswal B P, Wadge P, Kandambeth S, Garai B, Kundu T, Kurungot S, Banerjee R. J. Mater. Chem. A, 2016, 4(7):2682.
[129]
Chandra S, Kundu T, Kandambeth S, BabaRao R, Marathe Y, Kunjir S M, Banerjee R. J. Am. Chem. Soc., 2014, 136(18):6570.
[130]
Ma H P, Liu B L, Li B, Zhang L M, Li Y G, Tan H Q, Zang H Y, Zhu G S. J. Am. Chem. Soc., 2016, 138(18):5897.
[131]
Chandra S, Kundu T, Dey K, Addicoat M, Heine T, Banerjee R. Chem. Mater., 2016, 28(5):1489.
[132]
Li Y, Wu H, Yin Y, Cao L, He X, Shi B, Li J, Xu M, Jiang Z. J. Membr. Sci., 2018, 568:1.
[133]
Sasmal H S, Aiyappa H B, Bhange S N, Karak S, Halder A, Kurungot S, Banerjee R. Angew. Chem. Int. Ed., 2018, 57(34):10894.
[134]
Biswal B P, Chaudhari H D, Banerjee R, Kharul U K. Chem. Eur. J., 2016, 22(14):4695.
[135]
Han S Y, Yue B H, Yan L M. Acta Phis-Chim. Sinica, 2014, 30(1):8.
韩帅元, 岳宝华, 严六明. 物理化学学报, 2014, 30(1):8.
[1] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[2] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[3] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[4] 张旸, 张敏, 赵海雷. 双钙钛矿型固体氧化物燃料电池阳极材料[J]. 化学进展, 2022, 34(2): 272-284.
[5] 王雨萌, 杨蓉, 邓七九, 樊潮江, 张素珍, 燕映霖. 双金属MOFs及其衍生物在电化学储能领域中的应用[J]. 化学进展, 2022, 34(2): 460-473.
[6] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[7] 唐向春, 陈家祥, 刘利娜, 廖世军. 具有三维特殊形貌/纳米结构的Pt基电催化剂[J]. 化学进展, 2021, 33(7): 1238-1248.
[8] 杨宇州, 李政, 黄艳凤, 巩继贤, 乔长晟, 张健飞. MOF基水凝胶材料的制备及其应用[J]. 化学进展, 2021, 33(5): 726-739.
[9] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[10] 黄振宇, 涂正凯. 质子交换膜燃料电池电流密度分布特性和研究展望[J]. 化学进展, 2020, 32(7): 943-949.
[11] 宁鹏, 程云辉, 许宙, 丁利, 陈茂龙. 金属-有机框架材料在活性肽富集中的应用[J]. 化学进展, 2020, 32(4): 497-504.
[12] 张瑞, 吴云, 王鲁天, 吴强, 张宏伟. 微生物燃料电池阴极脱氮[J]. 化学进展, 2020, 32(12): 2013-2021.
[13] 封啸, 任颜卫, 江焕峰. 金属-有机框架材料在光催化二氧化碳还原中的应用[J]. 化学进展, 2020, 32(11): 1697-1709.
[14] 姚东梅, 张玮琦, 徐谦, 徐丽, 李华明, 苏华能. 磷酸掺杂聚苯并咪唑高温膜燃料电池膜电极[J]. 化学进展, 2019, 31(2/3): 455-463.
[15] 叶跃坤, 池滨, 江世杰, 廖世军. 质子交换膜燃料电池膜电极耐久性的提升[J]. 化学进展, 2019, 31(12): 1637-1652.
阅读次数
全文


摘要

燃料电池用高温质子交换膜