English
新闻公告
More
化学进展 2021, Vol. 33 Issue (9): 1571-1585 DOI: 10.7536/PC200812 前一篇   后一篇

• 综述 •

外场强化电解水析氢

谢尹, 张立阳, 应佩晋, 王佳程, 孙宽, 李猛*()   

  1. 重庆大学能源与动力工程学院 低品位能源利用技术及系统教育部重点实验室 CQU-NUS新能源材料与器件联合实验室 重庆 400044
  • 收稿日期:2020-08-05 修回日期:2020-09-29 出版日期:2021-09-20 发布日期:2020-12-28
  • 通讯作者: 李猛
  • 基金资助:
    国家自然科学基金项目(52173235); 重庆市自然科学基金项目(cstc2018jcyjAX0375); 中央高校基础研究基金(2020CDJQY-A055); 中央高校基础研究基金(2019CDXYDL0007)

Intensified Field-Effect of Hydrogen Evolution Reaction

Yin Xie, Liyang Zhang, Peijin Ying, Jiacheng Wang, Kuan Sun, Meng Li()   

  1. MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University,Chongqing 400044, China
  • Received:2020-08-05 Revised:2020-09-29 Online:2021-09-20 Published:2020-12-28
  • Contact: Meng Li
  • Supported by:
    National Natural Science Foundation of China(52173235); Natural Science Foundation of Chongqing(cstc2018jcyjAX0375); Fundamental Research Funds for the Central Universities(2020CDJQY-A055); Fundamental Research Funds for the Central Universities(2019CDXYDL0007)

电解水析氢过程中的能量消耗及析氢效率有很多影响因素,其中,电荷转移电阻和催化剂表面气泡覆盖率是最为重要的两个因素。研究发现,在电解水析氢过程中利用外场进行强化,可以有效减小电荷转移电阻和催化剂表面气泡覆盖率,如温度场能为反应过程中电荷的转移注入能量,从而降低电荷转移电阻,降低过电位;而电场能直接调整催化剂电子结构或诱导电解液离子重新分布,从而促进界面电荷转移;光场则可以诱导水分子极化,增大剩余电场,同时拉伸水分子中氢键,有利于水分解产生氢气和氧气。因此,在电解池中引入温度场、磁场、超声场、电场、超重力场和光场等外场也是降低能耗、提高析氢效率的有效策略。近年来,关于外场强化电解水的研究工作虽有报道,但研究偏少且未见系统性的归纳总结。本文即综述了近年来在电解水析氢过程中利用外场强化的研究进展。介绍各种外场强化电解水析氢的基本原理,同时通过实验案例分析各外场手段的效果,并总结外场强化电解水析氢面临的挑战及发展方向。

There are many factors affecting energy consumption and hydrogen evolution efficiency in the process of hydrogen evolution by water electrolysis, among which interface resistance and bubble coverage are two of the most significant factors. It's found that the interface resistance and bubble coverage of the catalyst can be effectively reduced by strengthening external field-effect in the process of water electrolysis. For instance, thermal field can introduce energy into the charge transfer during the reaction process, thereby reducing the charge transfer resistance and overpotential. Besides, it is able to directly adjust the electronic structure of the catalyst or induce the redistribution of electrolyte ions by using the electric field, which promotes the interfacial charge transfer. What's more, polarization of water molecules can be induced in a optical field. Therefore, the introduction of thermal field, magnetic field, ultrasonic field, electric field, high-gravity field and optical field into the electrolytic cell are effective strategies to reduce energy consumption and hence improve the efficiency of hydrogen evolution. In recent years, although some works focusing on the field-effect of water electrolysis are reported, there are few reviews to systematically introduce the field-effect in water electrolysis. In this paper, the research progress of field-effect in hydrogen evolution reaction in recent years is reviewed. Moreover, this paper introduces the basic principles of various field-effect of water electrolysis, analyzes the effects of various fields through experimental cases, and summarizes the challenges as well as prospect of field enhanced water electrolysis hydrogen evolution.

Contents

Contents

1 Introduction

2 Hydrogen evolution reaction

3 Intensified field-effect of HER

3.1 Thermal field

3.2 Magnetic field

3.3 Ultrasonic field

3.4 Electric field

3.5 Gravitational field

3.6 Optical field

3.7 Multiple field

4 Conclusion and outlook

()
图1 (a)酸性溶液中电极表面析氢的机理[47];(b)M—H键合作用与氢析出反应电流之间的“火山型效应”[50]
Fig.1 (a) The mechanism of hydrogen evolution on the electrode surface in acid solution[47]; (b) “volcanic effect” between M—H bond and hydrogen evolution reaction current[50]
表1 不同外场强化电解水析氢的机理
Table 1 The mechanism of hydrogen evolution from water electrolysis enhanced by different external fields
图2 (a)(FexNi1-x)9S8(x= 0~1)催化剂在析氢反应中反应温度对反应效率的影响示意图;(b)不同温度下Fe4.5Ni4.5S8在0.5 M H2SO4中的线性扫描伏安图(图中标明各温度下在10 mA/cm2的过电位);(c)Fe4.5 Ni 4 . 5S8在不同温度下的EIS的Nyquist图和相应的Bode图(插图);(d)在不同温度下的Tafel图[32];(e)在不同温度下的Ni-MoO2/RGO极化曲线;(f)在不同温度下的Ni-MoO2/RGO的Nyquist图[31]
Fig.2 (a) The influence of reaction temperature on reaction efficiency of (FexNi1-x) 9S8 (x= 0~1) catalyst in hydrogen evolution reaction. (b) Linear sweep voltammograms of Fe4.5Ni4.5S8 in 0.5 M H2SO4 at different temperatures (The figure shows the overpotential at 10 mA/cm2 at each temperature). (c) Temperature-dependent Nyquist plots of EIS for Fe4.5Ni4.5S8 and corresponding Bode plots (inset). (d) Tafel plot at different temperatures[32]. (e) Polarization curves at different temperatures of Ni-MoO2/RGO. (f) Nyquist curves at different temperatures of Ni-MoO2/RGO[31]
图3 (a)电解产生的气泡附近电磁感应(B)、电流密度(j)及洛伦兹力(F)在电法向磁场中的分布示意图[65];(b)在B = 0 T,j = 1000 A/m2的情况下,铜泡沫电极产生的H2气泡状态;(c)在B = 0.9 T,j = 1000 A/m2的情况下,铜泡沫电极产生的H2气泡状态;(d)由分布不均的洛伦兹力(FL)引起的电解池一侧循环流动(蓝色箭头)示意图;(e)大气泡数(N1,d ≥ 0.9 mm)和小气泡数(N2,d < 0.9 mm)随电流密度的变化曲线[35];(f)电极间电压降与电流密度之比[34]
Fig.3 (a) Sketch of the distribution of magnetic induction (B), current density (j), and Lorentz-force (F) in the vicinity of an electrolytic bubble in an electrode-normal magnetic field[65].(b) H2 bubble state produced by copper foam electrode (B = 0 T, j = 1000 A/m2). (c) H2 bubble state produced by copper foam electrode (B = 0.9 T, j = 1000 A/m2). (d) Diagrammatic sketch of the circulating ?ow (blue arrows) on one side of the electrolyzer, which is caused by the uneven distributed Lorentz force (FL). (e) The curve of the number of larger bubbles (N1, d ≥ 0.9 mm) and smaller bubbles (N2, d < 0.9 mm) with the current density[35]. (f) Voltage drop between electrodes vs. current density[34]
图4 (a)实验装置外观示意图(1进口、2出口水流、3工作电极的位置、4对电极的位置、5参考电极的位置、6超声场的产生);(b)实验装置的横截面(7隔膜);(c)在工作温度为30 ℃、扫描速率为2 mV·s-1时,不同NaOH浓度下施加或不施加超声的电解池电压线性扫描电位曲线;(d)未应用超声场和(e)应用超声场的不同浓度NaOH电解液中H2的生成效率[36]
Fig.4 Exterior appearance of the experimental cell. (1) Inlet and (2) outlet water ?ows, (3) location of the working electrode, (4) location of the counter electrode, (5) location of the reference electrode, (6) generation of the ultrasonic field. (b) A cross section of the experimental cell. (7) Diaphragm. (c) Linear sweep potential curves of the cell voltage for different NaOH concentrations at an operating temperature of 30 ℃ with scan rate of 2 mV·s-1. The efficiency of H2 production (d) without and (e) with application of the ultrasonic field in NaOH solution[36]
图5 (a)(1)设备在闭合电路无任何栅电压下的正常状态,(2)带正极栅压偏的器件能带,(3)带负极栅压偏的器件能带[66];(b)MoS2工作电极的横截面图(VBG为背栅偏置);(c)单层MoS2的电荷密度差图(图中红色圆圈表示硫空位附近Mo原子的过量电荷)[68];(d)背栅对起始过电位和Tafel斜率的基于统计学的影响(方形点代表平均值,误差条代表标准误差);(e)Rct和Rp的图线;(f)正电荷和负电荷的浓度(实线表示H+,点线表示 SO 4 2 -)和不同附加电位偏差(0、-0.1、-0.2、-0.3、-0.8 V)下的净电荷(插图)[39]
Fig.5 (a) (1) The normal state of device under closed circuit without any gate voltage. (2) The energy band of the device with the positive gate voltage bias, (3) with the negative gate voltage bias[66]. (b) Cross-sectional view of MoS2 working electrode (VBG is back-gate bias). (c) Charge density difference map of monolayer MoS2 (The map shows localization of excess charge on the Mo atoms near the sulfur vacancy denoted by red circles)[68]. (d) Statistic-based influence of the back gate on the onset overpotential and Tafel slope (The square dots are the average values, and the error bar represents standard error). (e) Plot of Rct and Rp. (f) Concentration of positive and negative charges (line represents H+, and dots represent SO 4 2 -, respectively) and the net charge (inset) under different additional potential biases induced (0, - 0.1, - 0.2, - 0.3, - 0.8 V)[39]
图6 正常重力条件下(a)和超重力场条件下(b)电极表面气泡运动轨迹[40];(c)在不同重力条件下,计时电流法测量电解液中氢泡的状态;(d)在不同的重力系数G值下电解水时的欧姆电阻(RG)[41]
Fig.6 Moving track of bubbles on electrode surface under normal gravity condition (a) and high-gravity field (b)[40]. (c) The states of hydrogen foam in electrolyte after chronoamperometry measurement under various gravity conditions. (d) The ohmic resistance (RG) during water electrolysis under various gravity conditions[41]
图7 (a)(1)剩余电场效应形成示意图(Eion是在离子化合物之间产生的电场,它与电极产生的电场方向相反;ECA是电极产生的电场);(2)准直阳光的极化和无限特性对增强电解水中电场的重要作用;(b)太阳光对电解水析氢的影响实验装置图;(c)电导率随激光功率的变化[43];(d)在不同的光学光源下,氢产率随时间的变化[73]
Fig.7 (a) (1) Residue electric field effect causes the lack of efficiency in water electrolysis (Eion, is electric field induced between ionic compounds which is antiparallel to the field induced by electrode. Meanwhile ECA, is the electric field from the electrodes). (2) The polarization and the infinite behaviour of collimated sunlight attribute to strengthening the electric field in water electrolysis. (b) Experimental setup chart of the effect of sunlight in hydrogen production from water electrolysis. (c) The electrical Conductivity as a function of laser power[43]. (d) Hydrogen yields with respect to time at different optical light sources[73]
图8 (a)光热效应促进Ni/RGO催化剂HER和OER活性示意图;(b)300 W(强度为 850 mW·cm-2)氙灯辐照1M KOH电解液中Ni/RGO温度随时间变化曲线(插图为辐照前(左)和辐照15 min后(右)Ni/RGO的红外图像)[74];(c)光场和磁场强化电解水析氢实验装置示意图;(d)不同条件下的制氢率:电解(E);光场电解(EL);磁场电解(EM);光场磁场电解(ELM)[73]
Fig.8 (a) Schematic illustration of the photothermal-effect-driven strategy for enhancing electrocatalytic HER and OER activities over Ni/RGO. (b) Time-dependent temperature curve of Ni/RGO in 1 M KOH electrolyte under the irradiation of 300 W Xenon lamp (intensity = 850 mW·cm-2) (Inset: Infrared images of Ni/RGO before irradiation (left) and after irradiation (right) for 15 min)[74]. (c)Schematic diagram of experimental device of the effect of magnetic and optic field in water electrolysis. (d) The percentage of Hydrogen yield under different conditions; electrolysis (E) only; electrolysis with laser (EL) electrolysis with magnetic (EM) only; electrolysis with laser-magnet (ELM)[73]
[1]
Li T F, Luo G, Liu K H, Li X, Sun D M, Xu L, Li Y F, Tang Y W. Adv. Funct. Mater., 2018, 28(51): 1805828.

doi: 10.1002/adfm.v28.51     URL    
[2]
Pu Z, Wei S, Chen Z, Mu S. Appl. Catal. B, 2016, 196:193.

doi: 10.1016/j.apcatb.2016.05.027     URL    
[3]
Wei R B, Huang Z L, Gu G H, Wang Z, Zeng L X, Chen Y B, Liu Z Q. Appl. Catal. B: Environ., 2018, 231: 101.

doi: 10.1016/j.apcatb.2018.03.014     URL    
[4]
Yu L, Zhou H Q, Sun J Y, Qin F, Yu F, Bao J M, Yu Y, Chen S, Ren Z F. Energy Environ. Sci., 2017, 10(8): 1820.

doi: 10.1039/C7EE01571B     URL    
[5]
Luo X, Ji P X, Wang P Y, Cheng R L, Chen D, Lin C, Zhang J N, He J W, Shi Z H, Li N, Xiao S Q, Mu S C. Adv. Energy Mater., 2020, 10(17): 1903891.

doi: 10.1002/aenm.v10.17     URL    
[6]
Zhao Y, Hoivik N, Wang K Y. Nano Energy, 2016, 30: 728.

doi: 10.1016/j.nanoen.2016.09.027     URL    
[7]
Zou X X, Zhang Y. Chem. Soc. Rev., 2015, 44(15): 5148.

doi: 10.1039/C4CS00448E     URL    
[8]
Zhang Y L, Luo M C, Yang Y, Li Y J, Guo S J. ACS Energy Lett., 2019, 4(7): 1672.

doi: 10.1021/acsenergylett.9b01045     URL    
[9]
Zhou H Q, Yu F, Huang Y F, Sun J Y, Zhu Z, Nielsen R J, He R, Bao J M, Goddard III W A, Chen S, Ren Z F. Nat. Commun., 2016, 7(1): 1.
[10]
Hai X, Zhou W, Wang S Y, Pang H, Chang K, Ichihara F, Ye J H. Nano Energy, 2017, 39: 409.

doi: 10.1016/j.nanoen.2017.07.021     URL    
[11]
Wakisaka T, Kusada K, Wu D S, Yamamoto T, Toriyama T, Matsumura S, Akiba H, Yamamuro O, Ikeda K, Otomo T, Palina N, Chen Y N, Kumara L S R, Song C, Sakata O, Xie W, Koyama M, Kubota Y, Kawaguchi S, Arevalo R L, Aspera S M, Arguelles E F, Nakanishi H, Kitagawa H. J. Am. Chem. Soc., 2020, 142(3): 1247.

doi: 10.1021/jacs.9b09219     pmid: 31750648
[12]
Yang Y Q, Zhang K, Lin H L, Li X, Chan H C, Yang L C, Gao Q S. ACS Catal., 2017, 7(4): 2357.

doi: 10.1021/acscatal.6b03192     URL    
[13]
Zhao Y G, Mavrokefalos C K, Zhang P, Erni R, Li J G, Triana C A, Patzke G R. Chem. Mater., 2020, 32(4): 1371.

doi: 10.1021/acs.chemmater.9b02933     URL    
[14]
Liu D, Tong R, Qu Y J, Zhu Q, Zhong X W, Fang M L, Ho Lo K, Zhang F F, Ye Y C, Tang Y X, Chen S, Xing G C, Pan H. Appl. Catal. B: Environ., 2020, 267: 118721.

doi: 10.1016/j.apcatb.2020.118721     URL    
[15]
Zhao Y Q, Jin B, Zheng Y, Jin H Y, Jiao Y, Qiao S Z. Adv. Energy Mater., 2018, 8(29): 1801926.

doi: 10.1002/aenm.v8.29     URL    
[16]
Wang G X, Chen W, Chen G L, Huang J, Song C S, Chen D L, Du Y, Li C R, Ostrikov K K. Nano Energy, 2020, 71: 104637.

doi: 10.1016/j.nanoen.2020.104637     URL    
[17]
Jiang K, Liu B Y, Luo M, Ning S C, Peng M, Zhao Y, Lu Y R, Chan T S, Groot F M F, Tan Y W. Nat. Commun., 2019, 10(1): 1.

doi: 10.1038/s41467-018-07882-8     URL    
[18]
Wu H, Lu X, Zheng G F, Ho G W. Adv. Energy Mater., 2018, 8(14): 1870064.

doi: 10.1002/aenm.v8.14     URL    
[19]
Xia C, Liang H F, Zhu J J, Schwingenschlögl U, Alshareef H N. Adv. Energy Mater., 2017, 7(9): 1602089.

doi: 10.1002/aenm.201602089     URL    
[20]
Wu X Q, Guo Y R, Wang T, Sun B X, Liu Z L, Wu Y, Zhang S J, Zheng J, Li X G. Chem. Commun., 2019, 55(29): 4202.

doi: 10.1039/C9CC00527G     URL    
[21]
Xiao P, Chen W, Wang X. Adv. Energy Mater., 2015, 5(24): 1500985.

doi: 10.1002/aenm.201500985     URL    
[22]
Wang Y, Liu L N, Zhang X, Yan F, Zhu C L, Chen Y J. J. Mater. Chem. A, 2019, 7(39): 22412.

doi: 10.1039/c9ta07859b    
[23]
Ha D H, Han B H, Risch M, Giordano L, Yao K P C, Karayaylali P, Shao-Horn Y. Nano Energy, 2016, 29: 37.

doi: 10.1016/j.nanoen.2016.04.034     URL    
[24]
Xiao P, Ge X M, Wang H B, Liu Z L, Fisher A, Wang X. Adv. Funct. Mater., 2015, 25(10): 1520.

doi: 10.1002/adfm.201403633     URL    
[25]
Li J S, Wang Y, Liu C H, Li S L, Wang Y G, Dong L Z, Dai Z H, Li Y F, Lan Y Q. Nat. Commun., 2016, 7(1): 1.
[26]
Tang C Y, Wang W, Sun A K, Qi C K, Zhang D Z, Wu Z Z, Wang D Z. ACS Catal., 2015, 5(11): 6956.

doi: 10.1021/acscatal.5b01803     URL    
[27]
Theerthagiri J, Lee S J, Murthy A P, Madhavan J, Choi M Y. Curr. Opin. Solid State Mater. Sci., 2020, 24(1): 100805.

doi: 10.1016/j.cossms.2020.100805     URL    
[28]
Zhou P, Xing D N, Liu Y Y, Wang Z Y, Wang P, Zheng Z K, Qin X Y, Zhang X Y, Dai Y, Huang B B. J. Mater. Chem. A, 2019, 7(10): 5513.

doi: 10.1039/C8TA12043A     URL    
[29]
Zhang Y Q, Ouyang B, Xu J, Chen S, Rawat R S, Fan H J. Adv. Energy Mater., 2016, 6(11): 1600221.

doi: 10.1002/aenm.201600221     URL    
[30]
Yu L, Song S W, McElhenny B, Ding F Z, Luo D, Yu Y, Chen S, Ren Z F. J. Mater. Chem. A, 2019, 7(34): 19728.

doi: 10.1039/c9ta05455c    
[31]
Sharma L, Khushwaha H S, Mathur A, Halder A. J. Solid State Chem., 2018, 265: 208.

doi: 10.1016/j.jssc.2018.06.005     URL    
[32]
Piontek S, Andronescu C, Zaichenko A, Konkena B junge Puring K, Marler B, Antoni H, Sinev I, Muhler M, Mollenhauer D, Roldan Cuenya B, Schuhmann W, Apfel U P. ACS Catal., 2018, 8(2): 987.

doi: 10.1021/acscatal.7b02617     URL    
[33]
Diao Z, Dunne P A, Zangari G, Coey J M D. Electrochem. Commun., 2009, 11(4): 740.

doi: 10.1016/j.elecom.2009.01.020     URL    
[34]
Liu H B, Xu H T, Pan L M, Zhong D H, Liu Y. Int. J. Hydrog. Energy, 2019, 44(41): 22780.

doi: 10.1016/j.ijhydene.2019.07.024     URL    
[35]
Liu Y, Pan L M, Liu H B, Chen T M, Yin S Y, Liu M M. Int. J. Hydrog. Energy, 2019, 44(3): 1352.

doi: 10.1016/j.ijhydene.2018.11.103     URL    
[36]
Li S D, Wang C C, Chen C Y. Electrochimica Acta, 2009, 54(15): 3877.

doi: 10.1016/j.electacta.2009.01.087     URL    
[37]
Hung C Y, Li S D, Wang C C, Chen C Y. J. Membr. Sci., 2012, 389: 197.

doi: 10.1016/j.memsci.2011.10.050     URL    
[38]
Ling F L, Zhou T W, Liu X Q, Kang W, Zeng W, Zhang Y X, Fang L, Lu Y, Zhou M. Nanotechnology, 2018, 29(3): 03LT01.

doi: 10.1088/1361-6528/aa9eb5     URL    
[39]
Yan M Y, Pan X L, Wang P Y, Chen F, He L, Jiang G P, Wang J H, Liu J Z, Xu X, Liao X B, Yang J H, Mai L Q. Nano Lett., 2017, 17(7): 4109.

doi: 10.1021/acs.nanolett.7b00855     URL    
[40]
Wang M Y, Wang Z, Guo Z C. Int. J. Hydrog. Energy, 2009, 34(13): 5311.

doi: 10.1016/j.ijhydene.2009.05.043     URL    
[41]
Wang M Y, Wang Z, Guo Z C. Int. J. Hydrog. Energy, 2010, 35(8): 3198.

doi: 10.1016/j.ijhydene.2010.01.128     URL    
[42]
Lao L, Ramshaw C, Yeung H. J. Appl. Electrochem., 2011, 41(6): 645.

doi: 10.1007/s10800-011-0275-2     URL    
[43]
Bidin N, Azni S R, Abu Bakar M A, Johari A R, Abdul Munap D H F, Salebi M F, Abd Razak S N, Sahidan N S, Sulaiman S N A. Int. J. Hydrog. Energy, 2017, 42(1): 133.

doi: 10.1016/j.ijhydene.2016.11.203     URL    
[44]
Tuomi S M, Guil-Lopez R, Kallio T. J. Catal., 2016, 334: 102.

doi: 10.1016/j.jcat.2015.11.018     URL    
[45]
Niether C, Faure S, Bordet A, Deseure J, Chatenet M, Carrey J, Chaudret B, Rouet A. Nat. Energy, 2018, 3(6): 476.

doi: 10.1038/s41560-018-0132-1     URL    
[46]
Feng W S, Pang W B, Xu Y, Guo A M, Gao X H, Qiu X Q, Chen W. ChemElectroChem, 2020, 7(1): 31.

doi: 10.1002/celc.v7.1     URL    
[47]
Morales-Guio C G, Stern L A, Hu X L. Chem. Soc. Rev., 2014, 43(18): 6555.

doi: 10.1039/c3cs60468c     pmid: 24626338
[48]
Strmcnik D, Lopes P P, Genorio B, Stamenkovic V R, Markovic N M. Nano Energy, 2016, 29: 29.

doi: 10.1016/j.nanoen.2016.04.017     URL    
[49]
Ledezma-Yanez I, Wallace W D Z, Sebastián-Pascual P, Climent V, Feliu J M, Koper M T M. Nat. Energy, 2017, 2(4): 1.

doi: 10.1038/ng0992-1     URL    
[50]
Conway B E, Jerkiewicz G. Electrochimica Acta, 2000, 45(25/26): 4075.

doi: 10.1016/S0013-4686(00)00523-5     URL    
[51]
Ma Q, Ba J Z, Jiang Y X, Li J, Wu W H, Chem. Defenc. Ships, 2007, 6.
(马强, 巴俊洲, 蒋亚雄, 李军, 吴文宏. 舰船防化, 2007, 6.).
[52]
Aldas K. Appl. Math. Comput., 2004, 154(2): 507.
[53]
Wang M Y, Wang Z, Gong X Z, Guo Z C. Renew. Sustain. Energy Rev., 2014, 29: 573.

doi: 10.1016/j.rser.2013.08.090     URL    
[54]
Zhang B B, Daniel Q, Cheng M, Fan L Z, Sun L C. Faraday Discuss., 2017, 198: 169.

doi: 10.1039/C6FD00206D     URL    
[55]
Zou Y J, Xiao Z A, Fei X M. Chin. J. Rare Metal, 2004, 954.
(邹勇进, 肖作安, 费锡明. 稀有金属, 2004, 954.).
[56]
Padhy G K, Ramasubbu V, Parvathavarthini N, Wu C S, Albert S K. Int. J. Hydrog. Energy, 2015, 40(20): 6714.

doi: 10.1016/j.ijhydene.2015.03.153     URL    
[57]
Conway B E, Tilak B V. Electrochimica Acta, 2002, 47(22/23): 3571.

doi: 10.1016/S0013-4686(02)00329-8     URL    
[58]
Li T H, Kang S, Zhang X, Fu X, Feng S L, Hu Z F, Zhu D L, Lu W Q. J. Phys. D: Appl. Phys., 2020, 53(18): 185302.

doi: 10.1088/1361-6463/ab732b     URL    
[59]
Lai Y S,Del Rosario M A J V G, Chen W F, Yen S C, Pan F, Ren Q, Su Y H. ACS Appl. Energy Mater., 2019, 2: 7092.

doi: 10.1021/acsaem.9b01010     URL    
[60]
Monzon L M A, Coey J M D. Electrochem. Commun., 2014, 42: 38.

doi: 10.1016/j.elecom.2014.02.006     URL    
[61]
Lin M Y, Hourng L W, Kuo C W. Int. J. Hydrog. Energy, 2012, 37(2): 1311.

doi: 10.1016/j.ijhydene.2011.10.024     URL    
[62]
Kaya M F, Demir N, Albawabiji M S, Tas M. Int. J. Hydrog. Energy, 2017, 42(28): 17583.

doi: 10.1016/j.ijhydene.2017.02.039     URL    
[63]
Koza J A, Mühlenhoff S, Uhlemann M, Eckert K, Gebert A, Schultz L. Electrochem. Commun., 2009, 11(2): 425.

doi: 10.1016/j.elecom.2008.12.010     URL    
[64]
Darband G B, Aliofkhazraei M, Shanmugam S. Renew. Sustain. Energy Rev., 2019, 114: 109300.

doi: 10.1016/j.rser.2019.109300     URL    
[65]
Weier T, Baczyzmalski D, Massing J, Landgraf S, Cierpka C. Int. J. Hydrog. Energy, 2017, 42(33): 20923.

doi: 10.1016/j.ijhydene.2017.07.034     URL    
[66]
Wang J H, Yan M Y, Zhao K N, Liao X B, Wang P Y, Pan X L, Yang W, Mai L Q. Adv. Mater., 2017, 29(7): 1604464.

doi: 10.1002/adma.201604464     URL    
[67]
Voiry D, Fullon R,Yang J, de Carvalho Castro e Silva C, Kappera R, Bozkurt I, Kaplan D, Lagos M J, Batson P E, Gupta G, Mohite A D, Dong L, Er D Q, Shenoy V B, Asefa T, Chhowalla M. Nat. Mater., 2016, 15(9): 1003.

doi: 10.1038/nmat4660     URL    
[68]
Wang Y, Udyavara S, Neurock M, Frisbie C D. Nano Lett., 2019, 19(9): 6118.

doi: 10.1021/acs.nanolett.9b02079     pmid: 31434483
[69]
Pell W G, Conway B E, Marincic N. J. Electroanal. Chem., 2000, 491(1/2): 9.

doi: 10.1016/S0022-0728(00)00207-2     URL    
[70]
Wang M Y, Xing H Q, Wang Z, Guo Z C. Acta Phys.- Chim. Sin., 2008, 24:520.

doi: 10.3866/PKU.WHXB20080330     URL    
[71]
Zhao L X, Guo Z C, Wang Z, Wang M Y. Metall. Mater. Trans. B, 2010, 41(3): 505.

doi: 10.1007/s11663-010-9376-2     URL    
[72]
Shahid M, Bt Bidin N, Rehman A. Optoelectron. Adv. Mat., 2010, 4:1670.
[73]
Bidin N, Azni S R, Islam S, Abdullah M, Ahmad M F S, Krishnan G, Johari A R, Bakar M A A, Sahidan N S, Musa N, Salebi M F, Razali N, Sanagi M M. Int. J. Hydrog. Energy, 2017, 42(26): 16325.

doi: 10.1016/j.ijhydene.2017.05.169     URL    
[74]
Gu L, Zhang C, Guo Y M, Gao J, Yu Y F, Zhang B. ACS Sustainable Chem. Eng., 2019, 7(4): 3710.

doi: 10.1021/acssuschemeng.8b06117     URL    
[1] 岳长乐, 鲍文静, 梁吉雷, 柳云骐, 孙道峰, 卢玉坤. 多酸基硫化态催化剂的加氢脱硫和电解水析氢应用[J]. 化学进展, 2022, 34(5): 1061-1075.
[2] 薛世翔, 吴攀, 赵亮, 南艳丽, 雷琬莹. 钴铁水滑石基材料在电催化析氧中的应用[J]. 化学进展, 2022, 34(12): 2686-2699.
[3] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[4] 曹军文, 张文强, 李一枫, 赵晨欢, 郑云, 于波. 中国制氢技术的发展现状[J]. 化学进展, 2021, 33(12): 2215-2244.
[5] 杨良嵘, 邢慧芳, 屈虹男, 于杰淼, 刘会洲. 外场强化环境响应固相萃取技术[J]. 化学进展, 2019, 31(11): 1615-1622.
[6] 刘亚迪, 刘锋, 王诚, 赵波, 王建龙. 固体聚合物电解池析氧催化剂[J]. 化学进展, 2018, 30(9): 1434-1444.
[7] 吕宪伟, 胡忠攀, 赵挥, 刘玉萍, 袁忠勇. 自支撑型过渡金属磷化物电催化析氢反应研究[J]. 化学进展, 2018, 30(7): 947-957.
[8] 彭立山, 魏子栋*. 高性能电解水电极催化材料的设计及产品工程[J]. 化学进展, 2018, 30(1): 14-28.
[9] 赵冲, 徐芬*, 孙立贤*, 范明慧, 邹勇进, 褚海亮. 铝基材料水解制氢技术[J]. 化学进展, 2016, 28(12): 1870-1879.
[10] 王诚, 王树博, 张剑波, 李建秋, 王建龙, 欧阳明高. 车用燃料电池耐久性研究[J]. 化学进展, 2015, 27(4): 424-435.
[11] 王诚, 王树博, 张剑波, 李建秋, 欧阳明高, 王建龙. 车用质子交换膜燃料电池材料部件[J]. 化学进展, 2015, 27(2/3): 310-320.
[12] 李雪, 张伊放, 齐卫宏, 曹晓武, 王渊, 李浩华. 纳米储氢合金[J]. 化学进展, 2013, 25(07): 1122-1130.
[13] 何非, 彭冉冉, 杨上峰. 质子型可逆固体氧化物电池的材料与反应机理[J]. 化学进展, 2011, 23(0203): 477-486.
[14] 王诚,毛宗强,陈荣华,王革华,谢晓峰. 小型燃料电池的研究现状与应用前景分析[J]. 化学进展, 2006, 18(01): 30-35.
阅读次数
全文


摘要

外场强化电解水析氢