English
新闻公告
More
化学进展 2021, Vol. 33 Issue (7): 1238-1248 DOI: 10.7536/PC210218 前一篇   

• 综述 •

具有三维特殊形貌/纳米结构的Pt基电催化剂

唐向春, 陈家祥, 刘利娜, 廖世军*()   

  1. 华南理工大学化学与化工学院 广州 510641
  • 收稿日期:2021-02-20 修回日期:2021-04-05 出版日期:2021-07-20 发布日期:2021-06-12
  • 通讯作者: 廖世军
  • 基金资助:
    国家重点研发计划项目(2017YFB0102900); 国家重点研发计划项目(2016YFB0101201); 国家自然科学基金项目(51971094); 国家自然科学基金项目(21476088); 国家自然科学基金项目(21776104); 广东省自然科学基金项目(2015A030312007)

Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure

Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao*()   

  1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
  • Received:2021-02-20 Revised:2021-04-05 Online:2021-07-20 Published:2021-06-12
  • Contact: Shijun Liao
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Key Research and Development Program of China(2017YFB0102900); National Key Research and Development Program of China(2016YFB0101201); National Natural Science Foundation of China(51971094); National Natural Science Foundation of China(21476088); National Natural Science Foundation of China(21776104); Guangdong Provincial Department of Science and Technology(2015A030312007)

近年来我国的燃料电池技术及产业发展迅猛,然而大量使用Pt基贵金属催化剂所带来的高成本问题仍然是制约其发展最为重要的因素之一。开发和研究具有更高催化效率的Pt基贵金属催化剂对于促进燃料电池技术和产业的发展具有十分重要的意义。具有三维特殊形貌/纳米结构的Pt基催化剂是近年来出现的一类极其重要的低Pt催化剂,这类催化剂由于具有特殊的形貌和结构,其Pt质量比活性可以数倍数十倍地高于目前广泛使用的Pt碳类催化剂。本文着重介绍了近年来具有三维特殊形貌的Pt基催化剂(如纳米框架结构、花状结构、纳米笼结构、海胆结构等)的研究进展以及这类催化剂在燃料电池中的应用的研究进展。同时,指出了这类催化剂尚存在的不足和面临的挑战,并对这类催化剂的未来的研究和应用作了展望。

Fuel cell technology and its industrialization have been developed rapidly in China in recent years. However, the high cost of the fuel cell caused mainly by the using of precious Pt catalysts is still one of the most important factors restricting the development of fuel cell commercialization. It is of great significance to develop low Pt catalysts with much higher catalytic efficiency and lower Pt loadings. In recent years, Pt-based catalysts with three-dimensional morphology or/nanostructures have been emerged as a type of ultra-important low Pt catalysts, due to their special morphology/structures, their catalytic activity are usually much higher than that of the widely used Pt/C catalysts. In this paper, the research progress of Pt-based catalysts with special three-dimensional morphology(such as nanoframe structure, flower-like structure, nanocage structure, sea urchin structure, etc.) and their applications in fuel cells are reviewed. Meanwhile, some weaknesses and challenges of these catalysts are concluded. Furthermore, the future development and application of these catalysts are prospected.

Contents

1 Introduction

2 Pt-based electrocatalysts with three-dimensional nanoframe structures

3 Pt-based electrocatalysts with three-dimensional nanoflower morphologies

4 Pt-based electrocatalysts with other three-dimensional structures

5 Conclusions and outlooks

()
图1 贵金属纳米框架的两种常用合成方法[21]
Fig. 1 Two usually used methods for the synthesis of metal nanoframes[21]. Copyright 2016, Oxford Univ Press
图2 Pt立方体纳米框架合成示意图[26]
Fig.2 Schematic diagram of synthesis of Pt cube nanoframe[26]. Copyright 2016, Wiley
图3 PtNi3纳米多面体演变成Pt3Ni NFs/C-with Pt-skin的结构示意图及对应的TEM图[16]
Fig. 3 Structural schematic diagram of PtNi3nanometer polyhedron evolving into Pt3Ni NFs/C-With Pt-Skin and corresponding TEM images[16]. Copyright 2014, AAAS
图4 (a,b)Pt/C,solid PtNi/C,Pt3Ni/C 纳米框架,Pt3Ni/C 纳米框架/IL在0.95V下的面积比活性与质量比活性比较(c)Pt3Ni NFs/C-with Pt-skin催化剂的电化学稳定性测试及(d,e)Pt3Ni NFs/C-with Pt-skin的HRTEM图[16]
Fig. 4 (a,b) Comparison of specific activity and mass activity of Pt/C, solid PtNi/C, Pt3Ni/C nanoframe, Pt3Ni/C nanoframes /IL at 0.95V (c) Electrochemical stability test of Pt3Ni NFS /C-with Pt-Skin catalyst and (d,e)HRTEM images of Pt3Ni NFS/C- with Pt-Skin catalyst[16]. Copyright 2014, AAAS
图5 PtCu八角纳米框架的(a)TEM图;(b)a的放大图;(c)球差TEM图;(d)HAADF-STEM图EDS mapping图[33]
Fig. 5 (a) TEM image of the PtCu octagonal nanoframe; (b) An enlarged view of image a; (c) Spherical aberration TEM image; (d) Images of the HAADF-STEM and EDS mapping[33]. Copyright 2016, Wiley
图6 PtCu菱形十二面体纳米框架的TEM图[34]
Fig. 6 TEM image of PtCu rhombus dodecahedron nanoframe[34]. Copyright 2015, RSC
图7 PtCu@PtCuNi核壳纳米框架的合成示意图[35]
Fig. 7 Synthesis schematic diagram of PtCu@PtCuNi core-shell nanoframe[35]. Copyright 2017, ACS
图8 PtCu@PtCuNi催化剂的电化学性能图[35]
Fig. 8 Electrochemical performance diagram of PtCu@PtCuNi catalyst[35]. Copyright 2017, ACS
图9 O-PtCu NFs/C的合成示意图(a)及对应不同阶段的TEM图(b~d)[39]
Fig. 9 Synthesis diagram of O-PtCu NFs/C (a) and corresponding TEM images of different stages (b~d)[39]. Copyright 2020, ACS
图10 Pt、D-PtCu NFs/C及O-PtCu NFs/C的(a)CV曲线,(b)ORR极化曲线,(c,d)ADT测试前后的SA和MA比较[39]
Fig. 10 (a)CV curves, (b) ORR polarization curves, (c,d) SA and MA comparison of Pt, D-PtCu NFs/C and O-PtCu NFs/C before and after ADT test[39]. Copyright 2020, ACS
图11 Pt66Ni34 NFs的合成示意图[50]
Fig. 11 Schematic illustration of the formation mechanism of Pt66Ni34 NFs[50]. Copyright 2018, Elsevier
图12 Pt66Ni34 NFs的(a)低倍率TEM图(b)中倍率TEM图(c)高倍率TEM图(d,e)高分辨透射电镜图(f)对应的选区电子衍射(SAED)图[50]
Fig. 12 Low- (a) medium- (b) high- (c) magnification and high-resolution (d,e) TEM images of Pt66Ni34 NFs (f) The corresponding SAED pattern[50]. Copyright 2018, Elsevier
图13 Pd@Pt核壳纳米粒子的(a)HAADF 图,(b)BF图,(c)Pd,和(d)Pd的EDX分布图,以及(e)Pd-Pt界面的原子分辨率的HAADF-STEM 图[68]
Fig. 13 Simultaneously acquired (a) HAADF and (b) BF images of Pd-Pt core-shell nanoparticles. (c) Pd and (d) Pt signal of EDX mapping. (e) Atomically resolved HAADF-STEM image of Pd-Pt interface[68]. Copyright 2016, ACS
图14 G-PtNi NS的形成过程示意图[78]
Fig. 14 Synthesis schematic diagram of G-PtNi NS[78]. Copyright 2018, RSC
表1 不同形貌的Pt基催化剂的ORR活性及ECSA
Table 1 ORR activity and ECSA of Pt-based catalysts with different morphologies
[1]
Li M F, Zhao Z P, Cheng T, Huang Y, Duan X F. Science, 2016, 354:1414.

doi: 10.1126/science.aaf9050     URL    
[2]
Peng X Y, Lu D T, Qin Y N, Li M M, Guo Y J, Guo S J. ACS Appl. Mater. Interfaces, 2020, 12(27):30336.

doi: 10.1021/acsami.0c05868     URL    
[3]
Yang Q, Shi L J, Yu B B, Xu J, Wei C, Wang Y W, Chen H Y. J. Mater. Chem. A, 2019, 7(32):18846.

doi: 10.1039/C9TA03945G     URL    
[4]
Tian X L, Tang H B, Luo J M, Nan H X, Shu T, Du L, Zeng J H, Liao S J, Adzic R R. ACS Catal., 2017, 7(6):3810.

doi: 10.1021/acscatal.7b00366     URL    
[5]
Huang X Q, Li M F, Duan X F, Mueller T, Huang Y. Science, 2015, 348:1230.

doi: 10.1126/science.aaa8765     URL    
[6]
Xia B Y, Wu H B, Li N, Yan Y, Lou X W D, Wang X. Angew. Chem. Int. Ed., 2015, 54(12):3797.

doi: 10.1002/anie.201411544     URL    
[7]
Lu J J, Luo L, Yin S B, Hasan S W, Tsiakaras P. ACS Sustainable Chem. Eng., 2019, 7(19):16209.

doi: 10.1021/acssuschemeng.9b03176     URL    
[8]
Gamler J T L, Leonardi A, Sang X H, Koczkur K M, Unocic R R, Engel M, Skrabalak S E. Nanoscale Adv., 2020, 2(3):1105.

doi: 10.1039/D0NA00061B     URL    
[9]
Bu L Z, Zhang N, Ma J Y, Su D, Huang X Q. Science, 2016, 354:1410.

doi: 10.1126/science.aah6133     URL    
[10]
Sun Y J, Liang Y X, Luo M C, Lv F, Qin Y N, Guo S J. Small, 2018, 14:1.
[11]
Zhu J W, Huang Y P, Mei W C, Zhao C Y, Zhang C T, Zhang J, Amiinu I S, Mu S C. Angew. Chem. Int. Ed., 2019, 58(12):3859.

doi: 10.1002/anie.v58.12     URL    
[12]
Alinezhad A, Benedetti T M, Gloag L, Cheong S, Watt J, Chen H S, Gooding J J, Tilley R D. ACS Appl. Nano Mater., 2020, 3(6):5995.

doi: 10.1021/acsanm.0c01159     URL    
[13]
Fichtner J, Watzele S, Garlyyev B, Kluge R M, Wang W, Wang D, Bandarenka A S. ACS Catalysis, 2020, 10:3131.

doi: 10.1021/acscatal.9b04974     URL    
[14]
Stamenkovic V R, Ben F, Bongjin S M, Wang G F, Ross P N, A. L C, Markovic N M. Science, 2007, 315:493.

pmid: 17218494
[15]
Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L. Science, 2007, 316(5825):732.

pmid: 17478717
[16]
Chen C, Kan Y J, Yang P D, Stamenkovic V R. Science, 2014, 343:1339.

doi: 10.1126/science.1249061     pmid: 24578531
[17]
Luo M C, Sun Y J, Zhang X, Qin Y N, Li M Q, Li Y J, Guo S J. Adv. Mater., 2018, 30:1.
[18]
Zhu J W, Elnabawy A O, Lyu Z H, Xie M H, Murray E A, Chen Z T, Jin W Q, Mavrikakis M, Xia Y N. Mater. Today, 2020, 35:69.

doi: 10.1016/j.mattod.2019.11.002     URL    
[19]
Tian X L, Luo J M, Nan H X, Zou H B, Chen R, Shu T, Li X H, Li Y W, Song H Y, Liao S J, Adzic R R. J. Am. Chem. Soc., 2016, 138(5):1575.

doi: 10.1021/jacs.5b11364     URL    
[20]
Ma Z, Li S, Wu L J, Song L, Jiang G P, Liang Z X, Su D, Zhu Y M, Adzic R R, Wang J X, Chen Z W. Nano Energy, 2020, 69:104455.

doi: 10.1016/j.nanoen.2020.104455     URL    
[21]
Wang X, Ruditskiy A, Xia Y N. Natl. Sci. Rev., 2016, 3(4):520.

doi: 10.1093/nsr/nww062     URL    
[22]
Becknell N, Son Y, Kim D, Li D G, Yu Y, Niu Z Q, Lei T, Sneed B T, More K L, Markovic N M, Stamenkovic V R, Yang P D. J. Am. Chem. Soc., 2017, 139(34):11678.

doi: 10.1021/jacs.7b05584     pmid: 28787139
[23]
Park J, Kwon T, Kim J, Jin H, Kim H Y, Kim B, Joo S H, Lee K. Chem. Soc. Rev., 2018, 47(22):8173.

doi: 10.1039/C8CS00336J     URL    
[24]
Kwon H, Kabiraz M K, Park J, Oh A, Baik H, Choi S I, Lee K. Nano Lett., 2018, 18(5):2930.

doi: 10.1021/acs.nanolett.8b00270     URL    
[25]
Luo S P, Shen P K. ACS Nano, 2017, 11(12):11946.

doi: 10.1021/acsnano.6b04458     URL    
[26]
Park J, Wang H L, Vara M, Xia Y N. ChemSusChem, 2016, 9(19):2855.

doi: 10.1002/cssc.201600984     URL    
[27]
Wang Q, Tao H L, Li Z Q, Wang G X. J. Alloys Compd., 2020, 814:152212.

doi: 10.1016/j.jallcom.2019.152212     URL    
[28]
Khan I A, Qian Y H, Badshah A, Nadeem M A, Zhao D. ACS Appl. Mater. Interfaces, 2016, 8(27):17268.

doi: 10.1021/acsami.6b04548     URL    
[29]
Xiong Y, Yang Y, DiSalvo F J, Abruña H D. ACS Nano, 2020, 14(10):13069.

doi: 10.1021/acsnano.0c04559     URL    
[30]
Wang J, Xue Q, Li B, Yang D J, Lv H, Xiao Q F, Ming P W, Wei X Z, Zhang C M. ACS Appl. Mater. Interfaces, 2020, 12(6):7047.

doi: 10.1021/acsami.9b17248     URL    
[31]
Shang C S, Guo Y X, Wang E K. J. Mater. Chem. A, 2019, 7(6):2547.

doi: 10.1039/C9TA00191C     URL    
[32]
Wang Z, Huang L, Tian Z Q, Shen P K. J. Mater. Chem. A, 2019, 7(31):18619.

doi: 10.1039/C9TA06119C     URL    
[33]
Luo S, Tang M, Shen P K, Ye S. Adv Mater, 2017,29.
[34]
Ding J B, Zhu X, Bu L Z, Yao J L, Guo J, Guo S J, Huang X Q. Chem. Commun., 2015, 51(47):9722.

doi: 10.1039/C5CC03190G     URL    
[35]
Park J, Kanti Kabiraz M, Kwon H, Park S, Baik H, Choi S I, Lee K. ACS Nano, 2017, 11(11):10844.

doi: 10.1021/acsnano.7b04097     URL    
[36]
Kwon T, Jun M, Kim H Y, Oh A, Park J, Baik H, Joo S H, Lee K. Adv. Funct. Mater., 2018, 28(13):1706440.

doi: 10.1002/adfm.v28.13     URL    
[37]
Wu Z, Dang D, Tian X. ACS Appl. Mater Interfaces, 2019, 11:9117.

doi: 10.1021/acsami.8b21459     URL    
[38]
Liang J S, Zhao Z L, Li N, Wang X M, Li S Z, Liu X, Wang T Y, Lu G, Wang D L, Hwang B J, Huang Y H, Su D, Li Q. Adv. Energy Mater., 2020, 10(29):2000179.

doi: 10.1002/aenm.v10.29     URL    
[39]
Kim H Y, Kwon T, Ha Y, Jun M, Baik H, Jeong H Y, Kim H, Lee K, Joo S H. Nano Lett., 2020, 20(10):7413.

doi: 10.1021/acs.nanolett.0c02812     URL    
[40]
Chen S P, Li M F, Gao M Y, Jin J B, van Spronsen M A, Salmeron M B, Yang P D. Nano Lett., 2020, 20(3):1974.

doi: 10.1021/acs.nanolett.9b05251     URL    
[41]
Zhu X X, Huang L, Wei M, Tsiakaras P, Shen P K. Appl. Catal. B: Environ., 2021, 281:119460.

doi: 10.1016/j.apcatb.2020.119460     URL    
[42]
Yoo S, Cho S, Kim D, Ih S, Lee S, Zhang L Q, Li H, Lee J Y, Liu L C, Park S. Nanoscale, 2019, 11(6):2840.

doi: 10.1039/C8NR08231F     URL    
[43]
Ye C M, Huang H W, Zeng J. Chin. J. Chem. Phys., 2017, 30(5):581.

doi: 10.1063/1674-0068/30/cjcp1705100     URL    
[44]
Qin Y C, Zhang W L, Guo K, Liu X B, Liu J Q, Liang X Y, Wang X P, Gao D W, Gan L Y, Zhu Y T, Zhang Z C, Hu W P. Adv. Funct. Mater., 2020, 30(11):1910107.

doi: 10.1002/adfm.v30.11     URL    
[45]
Gruzeł G, Arabasz S, Pawlyta M, Parlinska-Wojtan M. Nanoscale, 2019, 11(12):5355.

doi: 10.1039/C9NR01359H     URL    
[46]
Saleem F, Ni B, Yong Y, Gu L, Wang X. Small, 2016, 12(38):5261.

doi: 10.1002/smll.v12.38     URL    
[47]
Wei L, Fan Y J, Wang H H, Tian N, Zhou Z Y, Sun S G. Electrochimica Acta, 2012, 76:468.

doi: 10.1016/j.electacta.2012.05.063     URL    
[48]
Wang H J, Li Y H, Yang D D, Qian X Q, Wang Z Q, Xu Y, Li X N, Xue H R, Wang L. Nanoscale, 2019, 11(12):5499.

doi: 10.1039/C8NR10398D     URL    
[49]
Zheng J N, He L L, Chen C, Wang A J, Ma K F, Feng J J. J. Power Sources, 2014, 268:744.

doi: 10.1016/j.jpowsour.2014.06.109     URL    
[50]
Huang X Y, Zhu X Y, Zhang X F, Zhang L, Feng J J, Wang A J. Electrochimica Acta, 2018, 271:397.

doi: 10.1016/j.electacta.2018.03.169     URL    
[51]
Liu S, Wang Y, Liu L W, Li M L, Lv W, Zhao X S, Qin Z L, Zhu P, Wang G X, Long Z Y, Huang F M. J. Power Sources, 2017, 365:26.

doi: 10.1016/j.jpowsour.2017.08.073     URL    
[52]
Nguyen A T N, Shim J H. Appl. Surf. Sci., 2018, 458:910.

doi: 10.1016/j.apsusc.2018.07.161     URL    
[53]
You S L, Luo P, Fang L, Gao J J, Liu L, Xu H T, Zhang H J, Wang Y. Electrochimica Acta, 2019, 294:406.

doi: 10.1016/j.electacta.2018.10.121     URL    
[54]
Lv J J, Feng J X, Li S S, Wang Y Y, Wang A J, Zhang Q L, Chen J R, Feng J J. Electrochimica Acta, 2014, 133:407.

doi: 10.1016/j.electacta.2014.04.077     URL    
[55]
Chen H Y, Niu H J, Ma X H, Feng J J, Weng X X, Huang H, Wang A J. J. Colloid Interface Sci., 2020, 561:372.

doi: 10.1016/j.jcis.2019.10.122     URL    
[56]
Dhanasekaran P, Lokesh K, Ojha P K, Sahu A K, Bhat S D, Kalpana D. J. Colloid Interface Sci., 2020, 572:198.

doi: 10.1016/j.jcis.2020.03.078     URL    
[57]
Li H Y, Liu S J, Wang X X, Zu G N, Li D D, Wang J S, Zhao J L. Sustain. Mater. Technol., 2019, 20:e00093.
[58]
Guo D J, Cui S K, Cheng D, Zhang P, Jiang L, Zhang C C. J. Power Sources, 2014, 255:157.

doi: 10.1016/j.jpowsour.2013.12.117     URL    
[59]
Wu F X, Zhang L, Lai J P, Niu W X, Luque R, Xu G B. J. Mater. Chem. A, 2019, 7(14):8568.

doi: 10.1039/C9TA01236B     URL    
[60]
Zhang J W, Li H Q, Ye J Y, Cao Z M, Chen J Y, Kuang Q, Zheng J, Xie Z X. Nano Energy, 2019, 61:397.

doi: 10.1016/j.nanoen.2019.04.093     URL    
[61]
Li Z J, Jiang X, Wang X R, Hu J R, Liu Y Y, Fu G T, Tang Y W. Appl. Catal. B: Environ., 2020, 277:119135.

doi: 10.1016/j.apcatb.2020.119135     URL    
[62]
Song P P, Cui X N, Shao Q, Feng Y G, Zhu X, Huang X Q. J. Mater. Chem. A, 2017, 5(47):24626.

doi: 10.1039/C7TA08467F     URL    
[63]
Guo N K, Xue H, Bao A, Wang Z H, Sun J, Song T S, Ge X, Zhang W, Huang K K, He F, Wang Q. Angew. Chem. Int. Ed., 2020, 59(33):202083361.
[64]
Wu L, Luo Y Y, Liu C, Li J, Li D. J. Electrochem. Soc., 2020, 167(6):066518.

doi: 10.1149/1945-7111/ab86c6     URL    
[65]
Kong F, Liu S, Li J, Du L, Yin G, Zhao Z, Sun X. Nano Energy, 2019,64.
[66]
Wang J X, Ma C, Choi Y, Su D, Zhu Y M, Liu P, Si R, Vukmirovic M B, Zhang Y, Adzic R R. J. Am. Chem. Soc., 2011, 133(34):13551.

doi: 10.1021/ja204518x     pmid: 21780827
[67]
Arenz M, Mayrhofer K J J, Stamenkovic V, Blizanac B B, Tomoyuki T, Ross P N, Markovic N M. J. Am. Chem. Soc., 2005, 127(18):6819.

doi: 10.1021/ja043602h     URL    
[68]
He D S, He D P, Wang J, Lin Y, Yin P Q, Hong X, Wu Y E, Li Y D. J. Am. Chem. Soc., 2016, 138(5):1494.

doi: 10.1021/jacs.5b12530     URL    
[69]
Yao W Q, Jiang X, Li M, Li Y L, Liu Y Y, Zhan X, Fu G T, Tang Y W. Appl. Catal. B: Environ., 2021, 282:119595.

doi: 10.1016/j.apcatb.2020.119595     URL    
[70]
Zhou X W, Gan Y L, Du J J, Tian D N, Zhang R H, Yang C Y, Dai Z X. J. Power Sources, 2013, 232:310.

doi: 10.1016/j.jpowsour.2013.01.062     URL    
[71]
Fu S F, Zhu C Z, Song J H, Engelhard M H, He Y, Du D, Wang C M, Lin Y H. J. Mater. Chem. A, 2016, 4(22):8755.

doi: 10.1039/C6TA01801G     URL    
[72]
Liu W, Haubold D, Rutkowski B, Oschatz M, Hübner R, Werheid M, Ziegler C, Sonntag L, Liu S H, Zheng Z K, Herrmann A K, Geiger D, Terlan B, Gemming T, Borchardt L, Kaskel S, Czyrska-Filemonowicz A, Eychmüller A. Chem. Mater., 2016, 28(18):6477.

doi: 10.1021/acs.chemmater.6b01394     URL    
[73]
Wang A J, Liu L, Lin X X, Yuan J H, Feng J J. Electrochimica Acta, 2017, 245:883.

doi: 10.1016/j.electacta.2017.06.013     URL    
[74]
Fan Y, Liu P F, Zhang Z W, Cui Y, Zhang Y. J. Power Sources, 2015, 296:282.

doi: 10.1016/j.jpowsour.2015.07.078     URL    
[75]
Xu C, Wang R, Chen M, Zhang Y, Ding Y. Phys. Chem. Chem. Phys., 2010, 12:239.

doi: 10.1039/B917788D     URL    
[76]
Nguyen V T, Nguyen N A, Ali Y, Tran Q C, Choi H S. Carbon, 2019, 146:116.

doi: 10.1016/j.carbon.2019.01.087     URL    
[77]
Xiao M L, Feng L G, Zhu J B, Liu C P, Xing W. Nanoscale, 2015, 7(21):9467.

doi: 10.1039/C5NR00639B     URL    
[78]
Tran Q C, An H, Ha H, Nguyen V T, Quang N D, Kim H Y, Choi H S. J. Mater. Chem. A, 2018, 6(18):8259.

doi: 10.1039/C8TA01847B     URL    
[79]
Lu Q Q, Huang J S, Han C, Sun L T, Yang X R. Electrochimica Acta, 2018, 266:305.

doi: 10.1016/j.electacta.2018.02.021     URL    
[80]
Hsieh C T, Wei J M, Lin J S, Chen W Y. Catal. Commun., 2011, 16(1):220.

doi: 10.1016/j.catcom.2011.09.030     URL    
[81]
Chou S W, Chen H C, Zhang Z Y, Tseng W H, Wu C I, Yang Y Y, Lin C Y, Chou P T. Chem. Mater., 2014, 26(24):7029.

doi: 10.1021/cm5033628     URL    
[82]
You H J, Zhang F L, Liu Z, Fang J X. ACS Catal., 2014, 4(9):2829.

doi: 10.1021/cs500390s     URL    
[83]
Xu G R, Si R, Liu J Y, Zhang L Y, Gong X, Gao R, Liu B C, Zhang J. J. Mater. Chem. A, 2018, 6(26):12759.

doi: 10.1039/C8TA03196G     URL    
[84]
Eid K, Wang H J, Malgras V, Alothman Z A, Yamauchi Y, Wang L. J. Phys. Chem. C, 2015, 119(34):19947.

doi: 10.1021/acs.jpcc.5b05867     URL    
[85]
Yang Y, Luo L M, Zhang R H, Du J J, Shen P C, Dai Z X, Sun C H, Zhou X W. Electrochimica Acta, 2016, 222:1094.

doi: 10.1016/j.electacta.2016.11.080     URL    
[86]
Yu S C, Li F Q, Yang H S, Li G P, Zhu G H, Li J, Zhang L H, Li Y P. Int. J. Hydrog. Energy, 2017, 42(50):29971.

doi: 10.1016/j.ijhydene.2017.06.228     URL    
[87]
Lokanathan M, Patil I M, Kakade B. Int. J. Hydrog. Energy, 2018, 43(18):8983.

doi: 10.1016/j.ijhydene.2018.03.157     URL    
[88]
Huang L, Han Y J, Dong S J. Chem. Commun., 2016, 52(56):8659.

doi: 10.1039/C6CC03073D     URL    
[89]
Chalgin A, Shi F L, Li F, Xiang Q, Chen W L, Song C Y, Tao P, Shang W, Deng T, Wu J B. CrystEngComm, 2017, 19(46):6964.

doi: 10.1039/C7CE01721A     URL    
[90]
Kong F P, Liu S H, Li J J, Du L, Banis M N, Zhang L, Chen G Y, Doyle-Davis K, Liang J N, Wang S Z, Zhao F P, Li R Y, Du C Y, Yin G P, Zhao Z J, Sun X L. Nano Energy, 2019, 64:103890.

doi: 10.1016/j.nanoen.2019.103890     URL    
[91]
Kuo C S, Lyu L M, Sia R F, Lin H M, Sneed B T, Chen C F, Chang J, Chiu T W, Chuang Y C, Kuo C H. ACS Sustainable Chem. Eng., 2020, 8(28):10544.

doi: 10.1021/acssuschemeng.0c03256     URL    
[1] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[2] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[3] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[4] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[5] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[6] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[7] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[8] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[9] 张旸, 张敏, 赵海雷. 双钙钛矿型固体氧化物燃料电池阳极材料[J]. 化学进展, 2022, 34(2): 272-284.
[10] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[11] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[12] 郭俊兰, 梁英华, 王欢, 刘利, 崔文权. 光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114.
[13] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[14] 颜高杰, 吴琼, 谈玲华. 富氮唑类金属配合物的设计合成及应用[J]. 化学进展, 2021, 33(4): 689-712.
[15] 白钰, 王拴紧, 肖敏, 孟跃中, 王成新. 燃料电池用高温质子交换膜[J]. 化学进展, 2021, 33(3): 426-441.