English
新闻公告
More
化学进展 2022, Vol. 34 Issue (2): 272-284 DOI: 10.7536/PC201205 前一篇   后一篇

• 综述 •

双钙钛矿型固体氧化物燃料电池阳极材料

张旸1, 张敏1, 赵海雷1,2,*()   

  1. 1 北京科技大学材料科学与工程学院 北京 100083
    2 新能源材料与技术北京市重点实验室 北京 100083
  • 收稿日期:2020-12-02 修回日期:2020-12-25 出版日期:2022-02-20 发布日期:2021-03-04
  • 通讯作者: 赵海雷
  • 基金资助:
    国家重点研发计划(2018YFB1502202); 全球能源互联网研究院有限公司(SGGR0000WLJS1900863)

Double Perovskite Material as Anode for Solid Oxide Fuel Cells

Yang Zhang1, Min Zhang1, Hailei Zhao1,2()   

  1. 1 School of Materials Science and Engineering, University of Science and Technology Beijing,Beijing 100083, China
    2 Beijing Municipal Key Lab for Advanced Energy Materials and Technologies,Beijing 100083, China
  • Received:2020-12-02 Revised:2020-12-25 Online:2022-02-20 Published:2021-03-04
  • Contact: Hailei Zhao
  • Supported by:
    National Key R&D Program of China(2018YFB1502202); Global Energy Interconnection Research Institute Co. Ltd(SGGR0000WLJS1900863)

固体氧化物燃料电池(solid oxide fuel cell,SOFC)是一种能量转化装置,具有转换效率高、环境友好、燃料适应性强等优点,其中,阳极作为燃料气的电化学反应场所,对SOFC性能起关键作用。相比于传统Ni-YSZ阳极,钙钛矿阳极材料结构稳定性好,具有较强的抗碳沉积、硫中毒能力。双钙钛矿结构由于具有晶格位置的多样化,因而材料结构和性能具有更强的可调控性,受到人们的广泛关注,成为新型阳极材料的重要研究方向。但相较于传统Ni-YSZ阳极材料,双钙钛矿阳极仍存在催化活性差,电导率低等问题。本文综述了近十几年双钙钛矿阳极材料的研究进展,首先对A位和B位双钙钛矿结构特征和形成原因进行了简单介绍,然后对两种双钙钛矿结构的典型阳极材料性能特点、改性方法和改性机理进行了分类总结,包括Sr2MgMoO6、Sr2CoMoO6、Sr2NiMoO6、Sr2FeMoO6、PrBaMn2O5+δ等材料。最后对双钙钛矿阳极材料未来的研究方向提出了建议。

Solid oxide fuel cell (SOFC) is an energy conversion device with advantages of high conversion efficiency, eco-friendliness, fuel flexibility, etc. The anode is one of the key components of SOFC, where the fuel oxidation reaction takes place. Compared to the traditional anode Ni-YSZ, perovskite oxides show strong resistance to carbon deposition and sulfur poisoning. Due to the diversity of ion occupancy site in the lattice, double perovskite oxides exhibit a more tailorable feature in terms of lattice structure and electrochemical properties and therefore have attracted extensive attention as SOFC anode material. However, their poor catalytic activity and low electrical conductivity, compared with the traditional Ni-YSZ anode, limit the practical application. This work summaries the recent research work and advancement of double perovskite oxides as SOFC anode in the past decade. With a brief introduction of the structure characteristics and formation origins of A-site and B-site perovskite, the properties and modification strategies of the two kinds of double perovskite anode materials are reviewed, including Sr2MgMoO6, Sr2CoMoO6, Sr2NiMoO6, Sr2FeMoO6, PrBaMn2O5+δ, etc. In the end, we propose the main future research directions.

Contents

1 Introduction

2 Double perovskite anode materials

2.1 Crystal structure of double perovskite oxides

2.2 B-site double perovskite anode materials Sr2MMoO6-δ

2.3 A-site double perovskite anode materials LnBaM2O5+δ

3 Conclusion and outlook

()
图1 单钙钛矿ABO3晶体结构示意图
Fig. 1 Schematic diagram of simple perovskite structure.
图2 B位双钙钛矿A2BB'O6的晶体结构示意图
Fig. 2 Schematic diagram of B-site double perovskite A2BB'O6
图3 A位双钙钛矿晶体结构示意图:(a)AA'B2O6,(b)AA'B2O5
Fig. 3 Schematic diagrams of A-site double perovskite: (a) AA'B2O6, (b) AA'B2O5
图4 Sr2FeMo2/3Mg1/3O6全电池的I-V曲线(a),晶体结构示意图(b)及高分辨率透射电镜图(c,d),晶格中的反位缺陷结构(d)[61]
Fig. 4 I-V curves of single cell (a), schematic diagram of crystal structure (b), HRTEM images of Sr2FeMo2/3Mg1/3O6 (c, d), anti-site defect in the lattice (d)[61]
图5 原位析出纳米金属电极的SEM照片与电池I-V曲线:Sr2FeMo0.65Ni0.35O6(a, c)与Sr2Fe1.3Co0.2Mo0.5O6(b, d)[105,106]
Fig. 5 SEM images and I-V curves of Sr2FeMo0.65Ni0.35O6 (a, c) and Sr2Fe1.3Co0.2Mo0.5O6 (b, d) electrode with in-situ exsolved metal nanoparticles[105,106]
表1 B位双钙钛矿阳极材料电导率比较
Table 1 Comparison of electrical conductivity of B-site double perovskite anode materials
表2 B位双钙钛矿阳极材料极化阻抗比较
Table 2 Comparison of polarization resistance of B-site double perovskite anode materials
表3 B位双钙钛矿材料作为SOFC阳极的全电池最大功率密度比较
Table 3 Comparison of maximum power density (MPD) of single-cell with B-site double perovskite as SOFC anodes
图6 (a)Pr0.5Ba0.5MnO3向层状PrBaMn2O5+δ转变的热重曲线,(b)浸渍Co-Fe催化剂的PBM阳极使用C3H8为燃料时的长期稳定性结果[110]
Fig. 6 (a) TGA curves of transition from Pr0.5Ba0.5MnO3 to layered PrBaMn2O5+δ, (b) Long-term stability of PBM anode with Co-Fe catalyst using C3H8 as fuel[110]
表4 A位双钙钛矿阳极材料电导率比较
Table 4 Comparison of electrical conductivity of A-site double perovskite anode materials
表5 A位双钙钛矿阳极材料极化阻抗比较
Table 5 Comparison of polarization resistance of A-site double perovskite anode materials
表6 A位双钙钛矿材料作为SOFC阳极的全电池最大功率密度比较
Table 6 Comparison of MPD of single-cell with A-site double perovskite as SOFC anodes
[1]
Joon K. J. Power Sources, 1998, 71(1/2): 12.

doi: 10.1016/S0378-7753(97)02765-1     URL    
[2]
Choudhury A, Chandra H, Arora A. Renew. Sustain. Energy Rev., 2013, 20: 430.

doi: 10.1016/j.rser.2012.11.031     URL    
[3]
van Biert L, Godjevac M, Visser K, Aravind P V. J. Power Sources, 2016, 327: 345.

doi: 10.1016/j.jpowsour.2016.07.007     URL    
[4]
Sun C W, Hui R, Roller J. J. Solid State Electrochem., 2010, 14(7): 1125.

doi: 10.1007/s10008-009-0932-0     URL    
[5]
Fergus J W. J. Power Sources, 2006, 162(1): 30.

doi: 10.1016/j.jpowsour.2006.06.062     URL    
[6]
Mogensen M, Jensen K V, Jørgensen M J, Primdahl S. Solid State Ionics, 2002, 150(1/2): 123.

doi: 10.1016/S0167-2738(02)00269-2     URL    
[7]
Atkinson A, Barnett S, Gorte R J, Irvine J T S, McEvoy A J, Mogensen M, Singhal S C, Vohs J. Nat. Mater., 2004, 3(1): 17.

pmid: 14704781
[8]
Service R F. Science, 2007, 315(5809): 172.

pmid: 17218499
[9]
Setoguchi T, Okamoto K, Eguchi K, Arai H. J. Electrochem. Soc., 1992, 139(10): 2875.

doi: 10.1149/1.2068998     URL    
[10]
Spacil H S. US3503809A, 1970.
[11]
Simwonis D, Tietz F, Stöver D. Solid State Ionics, 2000, 132(3/4): 241.

doi: 10.1016/S0167-2738(00)00650-0     URL    
[12]
Edwards J H, Maitra A M. Fuel Process. Technol., 1995, 42(2/3): 269.

doi: 10.1016/0378-3820(94)00105-3     URL    
[13]
Zhan Z, Barnett S A. Science, 2005, 308(5723): 844.

doi: 10.1126/science.1109213     URL    
[14]
Sun C W, Sun J, Yang W, Ma C H, Li S, Xian C N, Wang S F, Xiao R J, Shi S Q, Li H, Chen L Q. Strategic Study of CAE, 2013, 15(2): 77.
( 孙春文, 孙杰, 杨伟, 马朝晖, 李帅, 仙存妮, 王少飞, 施思齐, 李泓, 陈立泉. 中国工程科学, 2013, 15(2): 77.)
[15]
Zheng Y, Zhou W, Ran R, Shao Z P. Prog. Chem., 2008, 20(2): 413.
( 郑尧, 周嵬, 冉然, 邵宗平. 化学进展, 2008, 20(2): 413.)
[16]
Shu L N, Sunarso J, Hashim S S, Mao J K, Zhou W, Liang F L. Int. J. Hydrog. Energy, 2019, 44(59): 31275.

doi: 10.1016/j.ijhydene.2019.09.220     URL    
[17]
Ishihara T.. Perovskite Oxide for Solid Oxide Fuel Cells. Boston, MA: Springer US, 2009: 1/16.
[18]
Jonker G H, van Santen J H. Physica, 1950, 16(3): 337.

doi: 10.1016/0031-8914(50)90033-4     URL    
[19]
Shannon R D. Acta Crystallogr. Sect. A, 1976, 32(5): 751.

doi: 10.1107/S0567739476001551     URL    
[20]
Ullmann H, Trofimenko N. J. Alloys Compd., 2001, 316(1/2): 153.

doi: 10.1016/S0925-8388(00)01448-1     URL    
[21]
Cook R L, Sammells A F. Solid State Ion., 1991, 45(3/4): 311.

doi: 10.1016/0167-2738(91)90167-A     URL    
[22]
Anderson M T, Greenwood K B, Taylor G A, Poeppelmeier K R. Prog. Solid State Chem., 1993, 22(3): 197.

doi: 10.1016/0079-6786(93)90004-B     URL    
[23]
King G, Woodward P M. J. Mater. Chem., 2010, 20(28): 5785.

doi: 10.1039/b926757c     URL    
[24]
Taskin A A, Lavrov A N, Ando Y. Appl. Phys. Lett., 2005, 86(9): 091910.

doi: 10.1063/1.1864244     URL    
[25]
Taskin A A, Lavrov A N, Ando Y. Prog. Solid State Chem., 2007, 35(2/4): 481.

doi: 10.1016/j.progsolidstchem.2007.01.014     URL    
[26]
Yamazoe N, Teraoka Y. Catal. Today, 1990, 8(2): 175.

doi: 10.1016/0920-5861(90)87017-W     URL    
[27]
Danilovic N, Vincent A, Luo J L, Chuang K T, Hui R, Sanger A R. Chem. Mater., 2010, 22(3): 957.

doi: 10.1021/cm901875u     URL    
[28]
Huang Y H, Dass R I, Denyszyn J C, Goodenough J B. J. Electrochem. Soc., 2006, 153(7): A1266.

doi: 10.1149/1.2195882     URL    
[29]
Marrero-LÓpez D, Peña-Martínez J, Ruiz-Morales J C, Martín-Sedeño M C, Núñez P. J. Solid State Chem., 2009, 182(5): 1027.

doi: 10.1016/j.jssc.2009.01.018     URL    
[30]
Nielsen T H, Leipold M H. J. Am. Ceram. Soc., 1964, 47(3): 155.

doi: 10.1111/jace.1964.47.issue-3     URL    
[31]
Vasylechko L, Vashook V, Savytskii D, Senyshyn A, Niewa R, Knapp M, Ullmann H, Berkowski M, Matkovskii A, Bismayer U. J. Solid State Chem., 2003, 172(2): 396.

doi: 10.1016/S0022-4596(03)00016-1     URL    
[32]
Hayashi H, Kanoh M, Quan C J, Inaba H, Wang S R, Dokiya M, Tagawa H. Solid State Ionics, 2000, 132(3/4): 227.

doi: 10.1016/S0167-2738(00)00646-9     URL    
[33]
Huang Y H, Dass R I, Xing Z L, Goodenough J B. Science, 2006, 312(5771): 254.

doi: 10.1126/science.1125877     URL    
[34]
Marrero-LÓpez D, Peña-Martínez J, Ruiz-Morales J C, Gabás M, Núñez P, Aranda M A G, Ramos-Barrado J R. Solid State Ion., 2010, 180(40): 1672.

doi: 10.1016/j.ssi.2009.11.005     URL    
[35]
Bi Z H, Zhu J H. J. Electrochem. Soc., 2011, 158(6): B605.

doi: 10.1149/1.3569754     URL    
[36]
Li C, Wang W D, Zhao N, Liu Y X, He B, Hu F C, Chen C S. Appl. Catal. B: Environ., 2011, 102(1/2): 78.

doi: 10.1016/j.apcatb.2010.11.027     URL    
[37]
Dorai A K, Masuda Y, Joo J H, Woo S K, Kim S D. Mater. Chem. Phys., 2013, 139(2/3): 360.

doi: 10.1016/j.matchemphys.2013.02.039     URL    
[38]
Xie Z X, Zhao H L, Chen T, Zhou X, Du Z H. Int. J. Hydrog. Energy, 2011, 36(12): 7257.

doi: 10.1016/j.ijhydene.2011.03.075     URL    
[39]
Dager P K, Mogni L V, Zampieri G, Caneiro A. ECS Trans., 2017, 78(1): 1367.

doi: 10.1149/07801.1367ecst     URL    
[40]
Xie Z X, Zhao H L, Du Z H, Chen T, Chen N. J. Phys. Chem. C, 2014, 118(33): 18853.

doi: 10.1021/jp502503e     URL    
[41]
Xie Z X, Zhao H L, Du Z H, Chen T, Chen N, Liu X T, Skinner S J. J. Phys. Chem. C, 2012, 116(17): 9734.

doi: 10.1021/jp212505c     URL    
[42]
Vasala S, Lehtimäki M, Haw S C, Chen J M, Liu R S, Yamauchi H, Karppinen M. Solid State Ion., 2010, 181(15/16): 754.

doi: 10.1016/j.ssi.2010.03.037     URL    
[43]
Escudero M J, GÓmez de Parada I, Fuerte A, Daza L. J. Power Sources, 2013, 243: 654.

doi: 10.1016/j.jpowsour.2013.05.198     URL    
[44]
Aguadero A, Alonso J A, Martínez-Coronado R, Martínez-Lope M J, Fernández-Díaz M T. J. Appl. Phys., 2011, 109(3): 034907.

doi: 10.1063/1.3544068     URL    
[45]
Filonova E A, Dmitriev A S. Eurasian Chem. Technol. J., 2012, 14(2): 139.

doi: 10.18321/ectj107     URL    
[46]
Wei T, Ji Y, Meng X W, Zhang Y L. Electrochem. Commun., 2008, 10(9): 1369.

doi: 10.1016/j.elecom.2008.07.005     URL    
[47]
Huang Y H, Liang G, Croft M, Lehtimäki M, Karppinen M, Goodenough J B. Chem. Mater., 2009, 21(11): 2319.

doi: 10.1021/cm8033643     URL    
[48]
Zhang P, Huang Y H, Cheng J G, Mao Z Q, Goodenough J B. J. Power Sources, 2011, 196(4): 1738.

doi: 10.1016/j.jpowsour.2010.10.007     URL    
[49]
Kumar P, Singh N K, Singh R K, Singh P. Appl. Phys. A, 2015, 121(2): 635.

doi: 10.1007/s00339-015-9448-x     URL    
[50]
Wei T, Zhang Q, Huang Y H, Goodenough J B. J. Mater. Chem., 2012, 22(1): 225.

doi: 10.1039/C1JM14756K     URL    
[51]
Zheng K, Świerczek K, Zajᶏc W, Klimkowicz A. Solid State Ion., 2014, 257: 9.

doi: 10.1016/j.ssi.2014.01.030     URL    
[52]
Zheng K, Świerczek K. J. Eur. Ceram. Soc., 2014, 34(16): 4273.

doi: 10.1016/j.jeurceramsoc.2014.06.032     URL    
[53]
Wei T, Zhang Q, Huang Y H. J. Electrochem. Soc., 2012 (6): 332.
[54]
Zhang L L, Zhou Q J, He Q, He T M. J. Power Sources, 2010, 195(19): 6356.

doi: 10.1016/j.jpowsour.2010.04.021     URL    
[55]
Wang Z M, Tian Y, Li Y D. J. Power Sources, 2011, 196(15): 6104.

doi: 10.1016/j.jpowsour.2011.03.053     URL    
[56]
Liu G Y, Rao G H, Feng X M, Yang H F, Ouyang Z W, Liu W F, Liang J K. J. Alloys Compd., 2003, 353(1/2): 42.

doi: 10.1016/S0925-8388(02)01316-6     URL    
[57]
Li H J, Zhao Y C, Wang Y C, Li Y D. Catal. Today, 2016, 259: 417.

doi: 10.1016/j.cattod.2015.04.025     URL    
[58]
Rager J, Zipperle M, Sharma A, Macmanus-Driscoll J L. J. Am. Ceram. Soc., 2004, 87(7): 1330.

doi: 10.1111/j.1151-2916.2004.tb07730.x     URL    
[59]
Xiao G L, Liu Q, Dong X H, Huang K, Chen F L. J. Power Sources, 2010, 195(24): 8071.

doi: 10.1016/j.jpowsour.2010.07.036     URL    
[60]
Xiao G, Liu Q, Nuansaeng S, Chen F. ECS Trans., 2012, 45(1): 355.
[61]
Du Z H, Zhao H L, Li S M, Zhang Y, Chang X W, Xia Q, Chen N, Gu L, Świerczek K, Li Y, Yang T R, An K. Adv. Energy Mater., 2018, 8(18): 1800062.

doi: 10.1002/aenm.v8.18     URL    
[62]
Dai N N, Feng J, Wang Z H, Jiang T Z, Sun W, Qiao J S, Sun K N. J. Mater. Chem. A, 2013, 1(45): 14147.

doi: 10.1039/c3ta13607h     URL    
[63]
Liu Q, Dong X H, Xiao G L, Zhao F, Chen F L. Adv. Mater., 2010, 22(48): 5478.

doi: 10.1002/adma.v22.48     URL    
[64]
Liu Q, Bugaris D E, Xiao G L, Chmara M, Ma S G, zur Loye H C, Amiridis M D, Chen F L. J. Power Sources, 2011, 196(22): 9148.

doi: 10.1016/j.jpowsour.2011.06.085     URL    
[65]
Zheng K, Świerczek K, Polfus J M, Sunding M F, Pishahang M, Norby T. J. Electrochem. Soc., 2015, 162(9): F1078.

doi: 10.1149/2.0981509jes     URL    
[66]
Himmel M E, Ding S Y, Johnson D K, Adney W S, Nimlos M R, Brady J W, Foust T D. Science, 2007, 315(5813): 804.

doi: 10.1126/science.1137016     URL    
[67]
Li H J, Tian Y, Wang Z M, Qie F C, Li Y D. RSC Adv., 2012, 2(9): 3857.

doi: 10.1039/c2ra01256a     URL    
[68]
Bode G L, McIntyre M D, Neuberger D M, Walker R A, Thorstensen B P, Eigenbrodt B C. ChemElectroChem, 2018, 5(21): 3162.

doi: 10.1002/celc.201800827     URL    
[69]
Gou M L, Ren R Z, Sun W, Xu C M, Meng X G, Wang Z H, Qiao J S, Sun K N. Ceram. Int., 2019, 45(12): 15696.

doi: 10.1016/j.ceramint.2019.03.130     URL    
[70]
Zhang L L, Zhou Q J, He Q, He T M. J. Power Sources, 2010, 195(19): 6356.

doi: 10.1016/j.jpowsour.2010.04.021     URL    
[71]
Cowin P I, Lan R, Petit C T G, Tao S W. Mater. Chem. Phys., 2015, 168: 50.

doi: 10.1016/j.matchemphys.2015.10.056     URL    
[72]
Osinkin D A, Zabolotskaya E V, Kellerman D G, Suntsov A Y. J. Solid State Electrochem., 2018, 22(4): 1209.

doi: 10.1007/s10008-017-3868-9     URL    
[73]
Osinkin D A, Beresnev S M, Khodimchuk A V, Korzun I V, Lobachevskaya N I, Suntsov A Y. J. Solid State Electrochem., 2019, 23(2): 627.

doi: 10.1007/s10008-018-04169-2     URL    
[74]
Xu Z Q, Hu X Y, Wan Y H, Xue S S, Zhang S W, Zhang L J, Zhang B Z, Xia C R. Electrochimica Acta, 2020, 341: 136067.

doi: 10.1016/j.electacta.2020.136067     URL    
[75]
Qi H, Thomas T, Li W Y, Li W, Liu X B. ACS Appl. Energy Mater., 2019, 2(6): 4244.

doi: 10.1021/acsaem.9b00494     URL    
[76]
Kumar P, Jena P, Patro P K, Lenka R K, Sinha A S K, Singh P, Singh R K. ACS Appl. Mater. Interfaces, 2019, 11(27): 24659.

doi: 10.1021/acsami.9b03481     URL    
[77]
Xie Z X, Chen T, Zhao H L, Du Z H, Li Y M. J. Chin. Ceram. Soc., 2016, 44(6): 817.
( 谢志翔, 陈婷, 赵海雷, 杜志鸿, 李月明. 硅酸盐学报, 2016, 44(6): 817.)
[78]
Yang X, Chen J, Panthi D, Niu B B, Lei L B, Yuan Z H, Du Y H, Li Y F, Chen F L, He T M. J. Mater. Chem. A, 2019, 7(2): 733.

doi: 10.1039/c8ta10061f    
[79]
Ji Y, Huang Y H, Ying J R, Goodenough J B. Electrochem. Commun., 2007, 9(8): 1881.

doi: 10.1016/j.elecom.2007.04.006     URL    
[80]
Howell T G, Kuhnell C P, Reitz T L, Eigenbrodt B C, Singh R N. J. Am. Ceram. Soc., 2014, 97(11): 3636.

doi: 10.1111/jace.13208     URL    
[81]
Wang Y, Li P, Li H, Zhao Y, Li Y. Fuel Cells, 2014, 14(6): 973.

doi: 10.1002/fuce.201300250     URL    
[82]
Zhang L L, He T M. J. Power Sources, 2011, 196(20): 8352.

doi: 10.1016/j.jpowsour.2011.06.064     URL    
[83]
Hou S E, Aguadero A, Alonso J A, Goodenough J B. J. Power Sources, 2011, 196(13): 5478.

doi: 10.1016/j.jpowsour.2010.11.122     URL    
[84]
Sugahara T, Araki T, Ohtaki M, Suganuma K. J. Ceram. Soc. Japan, 2012, 120(1402): 211.

doi: 10.2109/jcersj2.120.211     URL    
[85]
Cowin P I, Lan R, Petit C T G, Wang H T, Tao S W. J. Mater. Sci., 2016, 51(8): 4115.

doi: 10.1007/s10853-016-9734-9     URL    
[86]
Yao G B, Cai H D, Zhang L L, Xu J S, Song Z Y. J. Liaoning Shihua Univ., 2019, 39(4): 28.
( 姚桂彬, 蔡洪东, 张磊磊, 徐璟升, 宋昭远. 辽宁石油化工大学期刊社, 2019, 39(4): 28.)
[87]
Jiang L, Liang G, Han J T, Huang Y H. J. Power Sources, 2014, 270: 441.

doi: 10.1016/j.jpowsour.2014.07.079     URL    
[88]
He B B, Zhao L, Song S X, Liu T, Chen F L, Xia C R. J. Electrochem. Soc., 2012, 159(5): B619.

doi: 10.1149/2.020206jes     URL    
[89]
Osinkin D A, Lobachevskaya N I, Kuz’min A V. Russ. J. Appl. Chem., 2017, 90(1): 41.

doi: 10.1134/S1070427217010074     URL    
[90]
Osinkin D A, Beresnev S M, Lobachevskaya N I. Russ. J. Electrochem., 2017, 53(6): 665.

doi: 10.1134/S1023193517060131     URL    
[91]
Osinkin D A, Lobachevskaya N I, Suntsov A Y. J. Alloys Compd., 2017, 708: 451.

doi: 10.1016/j.jallcom.2017.03.057     URL    
[92]
Gansor P, Xu C C, Sabolsky K, Zondlo J W, Sabolsky E M. J. Power Sources, 2012, 198: 7.

doi: 10.1016/j.jpowsour.2011.09.069     URL    
[93]
Guo Y Y, Guo T M, Zhou S J, Wu Y J, Chen H, Ou X M, Ling Y H. Ceram. Int., 2019, 45(8): 10969.

doi: 10.1016/j.ceramint.2019.02.179     URL    
[94]
Xie Z X, Zhao H L, Lei Y M, Chen T. J. Ceram., 2016, 37(1): 53.
( 谢志翔, 赵海雷, 李月明, 陈婷. 陶瓷学报, 2016, 37(1): 53.)
[95]
Suthirakun S, Ammal S C, Muñoz-García A B, Xiao G L, Chen F L, zur Loye H C, Carter E A, Heyden A. J. Am. Chem. Soc., 2014, 136(23): 8374.

doi: 10.1021/ja502629j     pmid: 24826843
[96]
Jiang S P. Mater. Sci. Eng.: A, 2006, 418(1/2): 199.
[97]
Jiang S P. Int. J. Hydrog. Energy, 2012, 37(1): 449.

doi: 10.1016/j.ijhydene.2011.09.067     URL    
[98]
Xiao G L, Chen F L. Electrochem. Commun., 2011, 13(1): 57.

doi: 10.1016/j.elecom.2010.11.012     URL    
[99]
Xiao G L, Jin C, Liu Q, Heyden A, Chen F L. J. Power Sources, 2012, 201: 43.

doi: 10.1016/j.jpowsour.2011.10.103     URL    
[100]
Rath M K, Lee K T. Electrochimica Acta, 2016, 212: 678.

doi: 10.1016/j.electacta.2016.07.037     URL    
[101]
Han Z Y, Wang Y H, Yang Y R, Li L L, Yang Z B, Han M F. J. Alloys Compd., 2017, 703: 258.

doi: 10.1016/j.jallcom.2017.01.341     URL    
[102]
Liu J, Lei Y, Li Y M, Gao J, Han D, Zhan W T, Huang F Q, Wang S R. Electrochem. Commun., 2017, 78: 6.

doi: 10.1016/j.elecom.2017.02.019     URL    
[103]
Neagu D, Tsekouras G, Miller D N, MÉnard H, Irvine J T S. Nat. Chem., 2013, 5(11): 916.

doi: 10.1038/nchem.1773     URL    
[104]
Sun Y F, Li J H, Cui L, Hua B, Cui S H, Li J, Luo J L. Nanoscale, 2015, 7(25): 11173.

doi: 10.1039/C5NR02518D     URL    
[105]
Du Z H, Zhao H L, Yi S, Xia Q, Swierczek K. ACS Nano, 2016, 10(9): 8660.

doi: 10.1021/acsnano.6b03979     URL    
[106]
Yang Y R, Wang Y R, Yang Z B, Lei Z, Jin C, Liu Y D, Wang Y H, Peng S P. J. Power Sources, 2019, 438: 226989.

doi: 10.1016/j.jpowsour.2019.226989     URL    
[107]
Trukhanov S V, Trukhanov A V, Szymczak H, Szymczak R, Baran M. J. Phys. Chem. Solids, 2006, 67(4): 675.

doi: 10.1016/j.jpcs.2005.09.099     URL    
[108]
Nakajima T, Yoshizawa H, Ueda Y. J. Phys. Soc. Jpn., 2004, 73(8): 2283.

doi: 10.1143/JPSJ.73.2283     URL    
[109]
Rykov A I, Ueda Y, Nomura K. J. Solid State Chem., 2009, 182(8): 2157.

doi: 10.1016/j.jssc.2009.05.029     URL    
[110]
Sengodan S, Choi S, Jun A, Shin T H, Ju Y W, Jeong H Y, Shin J, Irvine J T S, Kim G. Nat. Mater., 2015, 14(2): 205.

doi: 10.1038/nmat4166     URL    
[111]
Jeamjumnunja K, Gong W Q, Makarenko T, Jacobson A J. J. Solid State Chem., 2016, 239: 36.

doi: 10.1016/j.jssc.2016.04.006     URL    
[112]
Pineda O L, Moreno Z L, Roussel P, Świerczek K, Gauthier G H. Solid State Ion., 2016, 288: 61.

doi: 10.1016/j.ssi.2016.01.022     URL    
[113]
Zhang Y, Zhao H L, Du Z H, Świerczek K, Li Y Y. Chem. Mater., 2019, 31(10): 3784.

doi: 10.1021/acs.chemmater.9b01012    
[114]
Sun Y F, Zhang Y Q, Hua B, Behnamian Y, Li J, Cui S H, Li J H, Luo J L. J. Power Sources, 2016, 301: 237.

doi: 10.1016/j.jpowsour.2015.09.127     URL    
[115]
Zhang Y, Zhang B, Zhao H, Świerczek K, Li H. Catal. Today, 2020.
[116]
Ding H P, Xue X J. J. Power Sources, 2010, 195(20): 7038.

doi: 10.1016/j.jpowsour.2010.05.010     URL    
[117]
He Z P, Xia L N, Chen Y H, Yu J C, Huang X W, Yu Y. RSC Adv., 2015, 5(71): 57592.

doi: 10.1039/C5RA09762B     URL    
[118]
Ding H P, Xue X J. J. Power Sources, 2010, 195(15): 4718.

doi: 10.1016/j.jpowsour.2010.02.027     URL    
[119]
Chen Y H, Cheng Z X, Yang Y, Gu Q W, Tian D, Lu X Y, Yu W L, Lin B. J. Power Sources, 2016, 310: 109.

doi: 10.1016/j.jpowsour.2016.02.013     URL    
[120]
Dong G H, Yang C Y, He F, Jiang Y M, Ren C L, Gan Y, Lee M, Xue X J. RSC Adv., 2017, 7(37): 22649.

doi: 10.1039/C7RA03143B     URL    
[121]
Lee D, Kim D, Son S J, Kwon Y I, Lee Y, Ahn J H, Joo J H. J. Power Sources, 2019, 434: 226743.

doi: 10.1016/j.jpowsour.2019.226743     URL    
[122]
Ding H P, Tao Z T, Liu S, Zhang J J. Sci. Rep., 2015, 5(1): 1.
[123]
Miyake M, Iwami M, Takeuchi M, Nishimoto S, Kameshima Y. J. Power Sources, 2018, 390: 181.

doi: 10.1016/j.jpowsour.2018.04.051     URL    
[124]
Ding G C, Gan T, Yu J, Li P, Yao X L, Hou N J, Fan L J, Zhao Y C, Li Y D. Catal. Today, 2017, 298: 250.

doi: 10.1016/j.cattod.2017.03.060     URL    
[125]
Kim S, Kim C, Lee J H, Shin J, Lim T H, Kim G. Electrochimica Acta, 2017, 225: 399.

doi: 10.1016/j.electacta.2016.12.178     URL    
[126]
Choi S, Sengodan S, Park S, Ju Y W, Kim J, Hyodo J, Jeong H Y, Ishihara T, Shin J, Kim G. J. Mater. Chem. A, 2016, 4(5): 1747.

doi: 10.1039/C5TA08878J     URL    
[127]
Hua B, Li M, Sun Y F, Zhang Y Q, Yan N, Li J, Etsell T, Sarkar P, Luo J L. Appl. Catal. B: Environ., 2017, 200: 174.

doi: 10.1016/j.apcatb.2016.07.001     URL    
[128]
Kwon O, Sengodan S, Kim K, Kim G, Jeong H Y, Shin J, Ju Y W, Han J W, Kim G,. Nat. Commun., 2017, 8(1): 1.

doi: 10.1038/s41467-016-0009-6     URL    
[129]
Sengodan S, Ju Y W, Kwon O, Jun A, Jeong H Y, Ishihara T, Shin J, Kim G. ACS Sustainable Chem. Eng., 2017, 5(10): 9207.

doi: 10.1021/acssuschemeng.7b02156     URL    
[130]
Bahout M, Managutti P B, Dorcet V, Le Gal la Salle A, Paofai S, Hansen T C. J. Mater. Chem. A, 2020, 8(7): 3590.

doi: 10.1039/C9TA10159D     URL    
[131]
Xue S S, Shi N, Wan Y H, Xu Z Q, Huan D M, Zhang S W, Xia C R, Peng R R, Lu Y L. J. Mater. Chem. A, 2019, 7(38): 21783.

doi: 10.1039/C9TA07027C     URL    
[132]
Li J W, Wei B, Yue X, Li H, Lü Z. Electrochimica Acta, 2019, 304: 30.

doi: 10.1016/j.electacta.2019.02.113     URL    
[1] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[2] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[3] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[4] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[5] 谢超, 周波, 周灵, 吴雨洁, 王双印. 缺陷与催化[J]. 化学进展, 2020, 32(8): 1172-1183.
[6] 姚国英, 刘清路, 赵宗彦. 局域表面等离子体共振效应在光催化技术中的应用[J]. 化学进展, 2019, 31(4): 516-535.
[7] 李亚琦, 左朋建*, 李睿楠, 马玉林, 尹鸽平*. 镁硫二次电池电解液[J]. 化学进展, 2017, 29(5): 553-562.
[8] 李炎平, 於黄忠, 董一帆, 黄欣欣. 溶液法制备有机太阳电池阳极界面修饰层MoO3[J]. 化学进展, 2016, 28(8): 1170-1185.
[9] 张贺, 张驰, 宋晔. 阳极氧化钛纳米管阵列膜可控制备[J]. 化学进展, 2016, 28(6): 773-783.
[10] 张文锐, 张智慧, 高立国, 马廷丽. 双钙钛矿型电极材料在中低温固体氧化物燃料电池中的应用[J]. 化学进展, 2016, 28(6): 961-974.
[11] 李力成, 方东, 李广忠, 刘瑞娜, 刘素琴, 徐卫林. 阳极氧化法制备阀金属氧化物纳米管的机理及影响因素[J]. 化学进展, 2016, 28(4): 589-606.
[12] 王晶, 范昊雯, 张贺, 陈群, 刘仪, 马卫华. 钛的阳极氧化过程与TiO2纳米管的形成机理[J]. 化学进展, 2016, 28(2/3): 284-295.
[13] 刘少名, 于波, 张文强, 朱建新, 翟玉春, 陈靖. 原子尺度研究固体氧化物池氧电极中氧迁移规律[J]. 化学进展, 2014, 26(09): 1570-1585.
[14] 常定明, 张海芹, 卢智昊, 黄光团, 蔡兰坤, 张乐华. 金属离子在微生物燃料电池中的行为[J]. 化学进展, 2014, 26(07): 1244-1254.
[15] 王桂强, 段彦栋, 张娟, 林原, 禚淑萍. 染料敏化太阳能电池掺杂TiO2纳晶光阳极[J]. 化学进展, 2014, 26(07): 1255-1264.