English
新闻公告
More
化学进展 2022, Vol. 34 Issue (5): 1181-1190 DOI: 10.7536/PC210449 前一篇   后一篇

• 综述 •

石墨烯/金属-有机框架复合材料制备及其应用

乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普*()   

  1. 兰州交通大学研究院 兰州交通大学化学化工学院 兰州 730070
  • 收稿日期:2021-04-27 修回日期:2021-06-29 出版日期:2022-05-24 发布日期:2021-07-29
  • 通讯作者: 何乃普
  • 基金资助:
    甘肃省科技计划项目(20YF8GA032)

Preparation and Application of Graphene/Metal-Organic Frameworks Composites

Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He()   

  1. Research Institute, School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University,Lanzhou 730070, China
  • Received:2021-04-27 Revised:2021-06-29 Online:2022-05-24 Published:2021-07-29
  • Contact: Naipu He
  • Supported by:
    Science and Technology Programs of Gansu Province(20YF8GA032)

金属-有机框架(Metal-Organic Frameworks,MOFs)是由金属离子与有机配体通过配位键连接而成的高度有序多孔网络框架。MOFs具有比表面积大、孔径可调、结构多样等特性,在材料、环境以及生物医药等领域的应用具有潜在的优势。但是,MOFs存在易水解、稳定性较低、导电性差以及不易加工等缺点,与其他材料复合是改善其性能的有效途径之一。石墨烯具有突出的化学稳定性、良好的导电性、光学特性和力学特性等性能。石墨烯与MOFs的复合可有效提高和改善MOFs光电性能、稳定性以及可回收利用性。本综述介绍了原位生长法、界面生长法和共混成型法等石墨烯/MOFs复合材料的制备方法。进一步论述了其在气体分离与存储、水体净化、化学传感器和催化剂领域的应用。最后,对石墨烯/MOFs复合材料制备技术的开发及其潜在应用进行了总结和展望。

Metal-organic frameworks (MOFs), a novel class of crystalline materials with the ordered porous network frameworks, are formed by the coordination of metal ions and organic bridging ligands. Because of special and unique features such as the large surface area, tunable structure and high porosity, MOFs have attracted a lot of attention in materials, environment, biomedicine and so on. However, MOFs have some disadvantages including of being easily hydrolyzed, low stability, and low electrical conductivity. It is an ideal strategy that MOFs combined with other materials to improve their features and performances. In particular, graphene shows outstanding chemical stability, good electrical conductivity, optical properties and mechanical properties. Graphene compositing with MOFs can effectively improve the photoelectric properties, stability and recyclability of MOFs. Hence, in the current paper, preparation methods of graphene/MOFs composites, including in situ growth method, interfacial growth method and blending molding method, are reviewed. We also discuss their superior performance in the fields of gas separation and storage, water purification, chemical sensors, and catalysts. Moreover, the preparation development and potential applications of graphene/MOFs composites are proposed.

Contents

1 Introduction

2 Preparation methods of graphene/MOFs composite materials

2.1 In situ growth method

2.2 Interfacial growth method

2.3 Blending molding method

3 Applications of graphene/MOFs composite materials

3.1 Gas adsorption and storage

3.2 Water purification

3.3 Chemical sensor

3.4 Catalyst

4 Conclusions and outlook

()
图1 逐步合成法制备Ni-MOFs@GO纳米薄片[25]
Fig. 1 Preparation of Ni-MOFs@GO nanosheets by the step-by-step method[25]. Copyright 2016, ACS
图2 逐步合成法制备石墨烯/ZIF-8杂化气凝胶[28]
Fig. 2 Preparation of graphene/ZIF-8 hybrid aerogels by the step-by-step method[28]. Copyright 2018, ACS
图3 一步合成法制备SGO@HKUST-1复合材料[31]
Fig. 3 Preparation of SGO@HKUST-1 composite material by one-pot method[31]. Copyright 2016, ACS
图4 界面生长法制备Cu3(BTC)2/GO复合材料[35]
Fig. 4 Preparation of Cu3(BTC)2/GO composite material by interfacial growth method[35]. Copyright 2015, ACS
图5 MOFs气体吸附与分离示意图[39]
Fig. 5 Adsorption and separation of gases using MOFs[39]. Copyright 2021, ACS
图6 基于MOFs的硝基爆炸物传感器[65]
Fig. 6 Nitrobenzene recognition based on an MOF Sensor[65]. Copyright 2021, ACS
图7 Ni-MOF-74/G复合材料合成工艺示意图[71]
Fig. 7 A schematic diagram of the synthesis process of Ni-MOF-74/G[71]. Copyright 2018, ACS
[1]
Yaghi O M, Li G M, Li H L. Nature, 1995, 378: 703.

doi: 10.1038/378703a0     URL    
[2]
Liu X F, Zhang H, Yang K L, Huang S, Yang S. Journal Guizhou University, 2015, 32: 15.
(刘晓芳, 张衡, 杨凯丽, 黄珊, 杨松. 贵州大学学报, 2015, 32: 15.).
[3]
Li S Z, Huo F W. Nanoscale, 2015, 7(17): 7482.

doi: 10.1039/C5NR00518C     URL    
[4]
Jiang Z, Zhou P, Xu T, Fan L H, Hu S M, Chen J X, He Y B. CrystEngComm, 2020, 22(20): 3424.

doi: 10.1039/D0CE00475H     URL    
[5]
Jia C, Yuan X, Ma Z F. Prog. Chem., 2009, 21(9): 1954.
(贾超, 原鲜霞, 马紫峰. 化学进展, 2009, 21(9): 1954.)
[6]
Xu J, Liu J, Li Z, Wang X B, Xu Y F, Chen S, Wang Z. New J. Chem., 2019, 43(10): 4092.

doi: 10.1039/C8NJ06362A     URL    
[7]
Wang Y, He M H, Gao X, Li S D, Xiong S, Krishna R, He Y B. ACS Appl. Mater. Interfaces, 2018, 10(24): 20559.

doi: 10.1021/acsami.8b05216     URL    
[8]
Gandara-Loe J, Ortuño-Lizarán I, Fernández-Sanchez L, AliÓ J L, Cuenca N, Vega-Estrada A, Silvestre-Albero J. ACS Appl. Mater. Interfaces, 2019, 11(2): 1924.

doi: 10.1021/acsami.8b20222     URL    
[9]
Wang P, Li X H, Zhang P, Zhang X F, Shen Y, Zheng B, Wu J S, Li S, Fu Y, Zhang W N, Huo F W. ACS Appl. Mater. Interfaces, 2020, 12(21): 23968.

doi: 10.1021/acsami.0c04606     URL    
[10]
Lian X, Yan B. Inorg. Chem., 2017, 56(12): 6802.

doi: 10.1021/acs.inorgchem.6b03009     URL    
[11]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A. Science, 2004, 306(5696): 666.

pmid: 15499015
[12]
Geim A K, Novoselov K S. Nanosci. Technol., 2007, 6: 183.
[13]
Song J G, Wang X Z, Chang C T. J. Nanomater., 2014, 2014: 1.
[14]
Mondloch J E, Katz M J, Planas N, Semrouni D, Gagliardi L, Hupp J T, Farha O K. Chem. Commun., 2014, 50(64): 8944.

doi: 10.1039/C4CC02401J     URL    
[15]
Yilmaz G, Yam K M, Zhang C, Fan H J, Ho G W. Adv. Mater., 2017, 29(26): 1606814.

doi: 10.1002/adma.201606814     URL    
[16]
Shimoni R, He W H, Liberman I, Hod I. J. Phys. Chem. C, 2019, 123(9): 5531.

doi: 10.1021/acs.jpcc.8b12392    
[17]
Li Y H, Qiao Y Y, Li C, He N P, Wen J, Zhao X Z, Zhang X H, Li B Y. Acta Polymerica Sinica, 2021, 21041.
(李禹红, 乔瑶雨, 李超, 何乃普, 闻静, 赵晓竹, 张学辉, 黎白钰. 高分子学报, 2021, 21041.).
[18]
Li C, Qiao Y Y, Li Y H, Wen J, He N P, Li B Y. Progress in Chemistry, 2021, 33 (11): 1964.
(李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. 化学进展, 2021, 33 (11): 1964.)
[19]
Zheng Y, Zheng S, Xue H G, Pang H. Adv. Funct. Mater., 2018, 28(47): 1804950.

doi: 10.1002/adfm.201804950     URL    
[20]
Park J S, Goo N I, Kim D E. Langmuir, 2014, 30(42): 12587.

doi: 10.1021/la503401d     URL    
[21]
Yang Y Z, Li Z, Huang Y F, Gong J X, Qiao C S, Zhang J F. Progress in Chemistry, 2021, 33(5): 726.
(杨宇州, 李政, 黄艳凤, 巩继贤, 乔长晟, 张健飞. 化学进展, 2021, 33(5): 726.)

doi: 10.7536/PC200694    
[22]
Sun Y F, Ma M, Tang B, Li S, Jiang L, Sun X H, Que M L, Tao C B, Wu Z T. J. Alloys Compd., 2019, 808: 151721.

doi: 10.1016/j.jallcom.2019.151721     URL    
[23]
Zhang Y, Zhang L X. J. Nanjing Tech Univ. Nat. Sci. Ed., 2018, 40(6): 124.
(张迎亚, 张利雄. 南京工业大学学报(自然科学版), 2018, 40(6): 124.)
[24]
Shekhah O. Materials, 2010, 3(2): 1302.

doi: 10.3390/ma3021302     URL    
[25]
Zhou Y J, Mao Z M, Wang W, Yang Z K, Liu X. ACS Appl. Mater. Interfaces, 2016, 8(42): 28904.

doi: 10.1021/acsami.6b10640     URL    
[26]
Wang Z H, Yu G, Xia J F, Zhang F, Liu Q Y. Microchimica Acta, 2018, 185(5): 1.

doi: 10.1007/s00604-017-2562-z     URL    
[27]
Liu L, Yan Y, Cai Z H, Lin S X, Hu X B. Adv. Mater. Interfaces, 2018, 5(8): 1701548.

doi: 10.1002/admi.201701548     URL    
[28]
Jiang M, Li H Z, Zhou L J, Xing R F, Zhang J M. ACS Appl. Mater. Interfaces, 2018, 10(1): 827.

doi: 10.1021/acsami.7b17728     URL    
[29]
Patel D G D, Walton I M, Cox J M, Gleason C J, Butzer D R, Benedict J B. Chem. Commun., 2014, 50(20): 2653.

doi: 10.1039/C3CC49666J     URL    
[30]
Radwan D R, Matloob A, Mikhail S, Mikhail L, Guirguis D. J. Hazard. Mater., 2019, 373: 447.

doi: S0304-3894(19)30380-2     pmid: 30939427
[31]
Wang Q X, Yang Y Z, Gao F, Ni J C, Zhang Y H, Lin Z Y. ACS Appl. Mater. Interfaces, 2016, 8(47): 32477.

doi: 10.1021/acsami.6b11965     URL    
[32]
Li L, Liu Y N, Sun K, He Y Q, Liu L. Mater. Lett., 2017, 197: 196.

doi: 10.1016/j.matlet.2017.03.004     URL    
[33]
Qiu X, Wang X, Li Y W. Chem. Commun., 2015, 51(18): 3874.

doi: 10.1039/C4CC09933H     URL    
[34]
He Y Q, Wu F, Sun X Y, Li R Q, Guo Y Q, Li C B, Zhang L, Xing F B, Wang W, Gao J P. ACS Appl. Mater. Interfaces, 2013, 5(11): 4843.

doi: 10.1021/am400582n     URL    
[35]
Bian Z J, Xu J, Zhang S P, Zhu X M, Liu H L, Hu J. Langmuir, 2015, 31(26): 7410.

doi: 10.1021/acs.langmuir.5b01171     URL    
[36]
Zhang F Y, Liu L F, Tan X N, Sang X, Zhang J L, Liu C, Zhang B X, Han B X, Yang G Y. Soft Matter, 2017, 13(40): 7365.

doi: 10.1039/C7SM01567D     URL    
[37]
Zhao S Q. Master Dissertation of Hunan University, 2018.
(赵帅奇. 湖南大学硕士论文, 2018.).
[38]
Wei N, Zheng X D, Li Q, Gong C X, Ou H X, Li Z Y. J. Colloid Interface Sci., 2020, 565: 337.

doi: 10.1016/j.jcis.2020.01.031     URL    
[39]
Li Y Z, Wang G D, Ma L N, Hou L, Wang Y, Zhu Z H. ACS Appl. Mater. Interfaces, 2021, 13(3): 4102.

doi: 10.1021/acsami.0c21554     URL    
[40]
Liu J, Wei Y J, Li P Z, Zhao Y L, Zou R Q. J. Phys. Chem. C, 2017, 121(24): 13249.

doi: 10.1021/acs.jpcc.7b04465     URL    
[41]
Szczęśniak B, Choma J, Jaroniec M. J. Colloid Interface Sci., 2018, 514: 801.

doi: 10.1016/j.jcis.2017.11.049     URL    
[42]
Kumar R, Raut D, Ramamurty U, Rao C N R. Angew. Chem., 2016, 128(27): 7988.

doi: 10.1002/ange.201603320     URL    
[43]
Petit C, Mendoza B, Bandosz T J. ChemPhysChem, 2010, 11(17): 3678.

doi: 10.1002/cphc.201000689     URL    
[44]
Huang Z H, Liu G Q, Kang F Y. ACS Appl. Mater. Interfaces, 2012, 4(9): 4942.

doi: 10.1021/am3013104     URL    
[45]
Assen A H, Yassine O, Shekhah O, Eddaoudi M, Salama K N. ACS Sens., 2017, 2(9): 1294.

doi: 10.1021/acssensors.7b00304     URL    
[46]
Petit C, Bandosz T J. J. Mater. Chem., 2009, 19(36): 6521.

doi: 10.1039/b908862h     URL    
[47]
Petit C, Mendoza B, Bandosz T J. Langmuir, 2010, 26(19): 15302.

doi: 10.1021/la1021092     URL    
[48]
Li J S, Sha J Q, Du B, Tang B. Chem. Commun., 2017, 53(93): 12576.

doi: 10.1039/C7CC06660K     URL    
[49]
Liu S, Sun L X, Xu F, Zhang J, Jiao C L, Li F, Li Z B, Wang S, Wang Z Q, Jiang X, Zhou H Y, Yang L N, Schick C. Energy Environ. Sci., 2013, 6(3): 818.

doi: 10.1039/c3ee23421e     URL    
[50]
Dastbaz A, Karimi-Sabet J, Moosavian M A. Int. J. Hydrog. Energy, 2019, 44(48): 26444.

doi: 10.1016/j.ijhydene.2019.08.116     URL    
[51]
Flügel E A, Ranft A, Haase F, Lotsch B V. J. Mater. Chem., 2012, 22(20): 10119.

doi: 10.1039/c2jm15675j     URL    
[52]
Abdi J, Vossoughi M, Mahmoodi N M, Alemzadeh I. Chem. Eng. J., 2017, 326: 1145.

doi: 10.1016/j.cej.2017.06.054     URL    
[53]
Jabbari V, Veleta J M, Zarei-Chaleshtori M, Gardea-Torresdey J, Villagrán D. Chem. Eng. J., 2016, 304: 774.

doi: 10.1016/j.cej.2016.06.034     URL    
[54]
Liu H M, Fan H, Dang S H, Li M D, Gu A, Yu H. Chromatographia, 2020, 83(9): 1065.

doi: 10.1007/s10337-020-03930-y     URL    
[55]
Yang Q F, Wang J, Zhang W T, Liu F B, Yue X Y, Liu Y N, Yang M, Li Z H, Wang J L. Chem. Eng. J., 2016, 313: 19.

doi: 10.1016/j.cej.2016.12.041     URL    
[56]
Zhang S L, Du Z, Li G K. Talanta, 2013, 115: 32.

doi: 10.1016/j.talanta.2013.04.029     URL    
[57]
Yang P P, Liu Q, Liu J Y, Zhang H S, Li Z S, Li R M, Liu L H, Wang J. J. Mater. Chem. A, 2017, 5(34): 17933.

doi: 10.1039/C6TA10022H     URL    
[58]
Mao J J, Ge M Z, Huang J Y, Lai Y K, Lin C J, Zhang K Q, Meng K, Tang Y X. J. Mater. Chem. A, 2017, 5(23): 11873.

doi: 10.1039/C7TA01343D     URL    
[59]
Rao Z, Feng K, Tang B B, Wu P Y. ACS Appl. Mater. Interfaces, 2017, 9(3): 2594.

doi: 10.1021/acsami.6b15873     URL    
[60]
Rahimi E, Mohaghegh N. Environ. Sci. Pollut. Res., 2017, 24(28): 22353.

doi: 10.1007/s11356-017-9823-6     URL    
[61]
Sun H Z, Tang B B, Wu P Y. ACS Appl. Mater. Interfaces, 2017, 9(31): 26077.

doi: 10.1021/acsami.7b07651     URL    
[62]
Kreno L E, Leong K, Farha O K, Allendorf M, van Duyne R P, Hupp J T. Chem. Rev., 2012, 112(2): 1105.

doi: 10.1021/cr200324t     URL    
[63]
Yang L J, Tang B B, Wu P Y. J. Mater. Chem. A, 2015, 3(31): 15838.

doi: 10.1039/C5TA03507D     URL    
[64]
Pumera M, Ambrosi A, Bonanni A, Chng E L K, Poh H L. Trac Trends Anal. Chem., 2010, 29(9): 954.

doi: 10.1016/j.trac.2010.05.011     URL    
[65]
Sun B Q, Tao T Y, Liu L, Ding R, Mao Y Y. J. Phys. Chem. C, 2021, 125(22): 12433.

doi: 10.1021/acs.jpcc.1c02942     URL    
[66]
Travlou N A, Singh K, Rodríguez-CastellÓn E, Bandosz T J. J. Mater. Chem. A, 2015, 3(21): 11417.

doi: 10.1039/C5TA01738F     URL    
[67]
Lee J H, Kang S, Jaworski J, Kwon K Y, Seo M L, Lee J Y, Jung J H. Chem. Eur. J., 2012, 18(3): 765.

doi: 10.1002/chem.201102603     URL    
[68]
Wang Y, Zhang Y, Hou C, Liu M Z. RSC Adv., 2015, 5(119): 98260.

doi: 10.1039/C5RA20996J     URL    
[69]
Tung T T, Tran M T, Feller J F, Castro M, van Ngo T, Hassan K, Nine M J, Losic D. Carbon, 2020, 159: 333.

doi: 10.1016/j.carbon.2019.12.010     URL    
[70]
Ding D G, Xue Q Z, Lu W B, Xiong Y, Zhang J Q, Pan X L, Tao B S. Sens. Actuat. B: Chem., 2018, 259: 289.

doi: 10.1016/j.snb.2017.12.074     URL    
[71]
Zhang Y X, Xu J Y, Xia J F, Zhang F F, Wang Z H. ACS Appl. Mater. Interfaces, 2018, 10(45): 39151.

doi: 10.1021/acsami.8b11867     URL    
[72]
Wang Y, Hou C, Zhang Y, He F, Liu M Z, Li X L. J. Mater. Chem. B, 2016, 4(21): 3695.

doi: 10.1039/C6TB00276E     URL    
[73]
Xu G L, Gang F L, Dong T S, Fu Y, Du Z Y. Chinese Journal of Organic Chemistry, 2016, 36: 1513.

doi: 10.6023/cjoc201601028     URL    
(徐光利, 刚芳莉, 董涛生, 傅颖, 杜正银. 有机化学, 2016, 36: 1513.).
[74]
Kang Y S, Lu Y, Chen K, Zhao Y, Wang P, Sun W Y. Coord. Chem. Rev., 2019, 378: 262.

doi: 10.1016/j.ccr.2018.02.009     URL    
[75]
Solomon M B, Church T L, D’Alessandro D M. CrystEngComm, 2017, 19(29): 4049.

doi: 10.1039/C7CE00215G     URL    
[76]
Klauson D, Babkina J, Stepanova K, Krichevskaya M, Preis S. Catal. Today, 2010, 151(1/2): 39.

doi: 10.1016/j.cattod.2010.01.015     URL    
[77]
Wu Y, Luo H J, Zhang L. Environ. Sci. Pollut. Res., 2015, 22(21): 17238.

doi: 10.1007/s11356-015-5364-z     URL    
[78]
Yang Y F, Wang W J, Li H, Jin X G, Wang H F, Zhang L, Zhang Y. Mater. Lett., 2017, 197: 17.

doi: 10.1016/j.matlet.2017.03.041     URL    
[79]
Zhao X H, Liu X, Zhang Z Y, Liu X, Zhang W. RSC Adv., 2016, 6(94): 92011.

doi: 10.1039/C6RA18140F     URL    
[80]
Yang C, You X, Cheng J H, Zheng H D, Chen Y C. Appl. Catal. B: Environ., 2017, 200: 673.

doi: 10.1016/j.apcatb.2016.07.057     URL    
[81]
Wei D, Tang W, Gan Y D, Xu X Q. Catal. Sci. Technol., 2020, 10(16): 5666.

doi: 10.1039/D0CY00842G     URL    
[82]
Uddin N, Zhang H Y, Du Y P, Jia G H, Wang S B, Yin Z Y. Adv. Mater., 2020, 32(9): 1905739.

doi: 10.1002/adma.201905739     URL    
[83]
Zhuang S, Lei L, Nunna B, Lee E S. ECS Trans., 2016, 72(8): 149.
[84]
Jahan M, Bao Q L, Loh K P. J. Am. Chem. Soc., 2012, 134(15): 6707.

doi: 10.1021/ja211433h     URL    
[85]
Sohrabi S, Dehghanpour S, Ghalkhani M. ChemCatChem, 2016, 8(14): 2356.

doi: 10.1002/cctc.201600298     URL    
[86]
Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M. Chem. Soc. Rev., 2017, 46(2): 337.

doi: 10.1039/C6CS00328A     URL    
[87]
Chen C, Wang J Z, Li P, Tian Q F, Xiao Z W, Li S J, Cai N, Xue Y N, Chen W M, Yu F Q. ChemCatChem, 2021, 13(1): 346.

doi: 10.1002/cctc.202001326     URL    
[88]
Khiarak B N, Hasanzadeh M, Mojaddami M, Shahriyar Far H, Simchi A. Chem. Commun., 2020, 56(21): 3135.

doi: 10.1039/C9CC09908E     URL    
[89]
Chen Z L, Qing H L, Zhou K, Sun D L, Wu R B. Prog. Mater. Sci., 2020, 108: 100618.

doi: 10.1016/j.pmatsci.2019.100618     URL    
[90]
Li J S, Sha J Q, Du B, Tang B. Chem. Commun., 2017, 53(93): 12576.

doi: 10.1039/C7CC06660K     URL    
[91]
He J, Wang J Q, Chen Y J, Zhang J P, Duan D L, Wang Y, Yan Z Y. Chem. Commun., 2014, 50(53): 7063.

doi: 10.1039/C4CC01086H     URL    
[92]
Hao X Q, Jin Z L, Yang H, Lu G X, Bi Y P. Appl. Catal. B: Environ., 2017, 210: 45.
[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[3] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[4] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[5] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[6] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[7] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[8] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[9] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[10] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[11] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[12] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[13] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.
[14] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[15] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.