English
新闻公告
More
化学进展 2015, Vol. 27 Issue (4): 404-415 DOI: 10.7536/PC141024 前一篇   后一篇

• 综述与评价 •

超级电容器用石墨烯/金属氧化物复合材料

李丹1, 刘玉荣1,2, 林保平*1, 孙莹1, 杨洪1, 张雪勤1   

  1. 1. 东南大学化学化工学院 南京 211189;
    2. 重庆文理学院新材料技术研究院 永川 402160
  • 收稿日期:2014-10-01 修回日期:2015-01-01 出版日期:2015-04-15 发布日期:2015-02-04
  • 通讯作者: 林保平 E-mail:lbp@seu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No. 21304018, 21374016)资助

Graphene/Metal Oxide Composites as Electrode Material for Supercapacitors

Li Dan1, Liu Yurong1,2, Lin Baoping*1, Sun Ying1, Yang Hong1, Zhang Xueqin1   

  1. 1. School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China;
    2. Research Institute for New Materials Technology, Chongqing University of Arts and Science, Yongchuan 402160, China
  • Received:2014-10-01 Revised:2015-01-01 Online:2015-04-15 Published:2015-02-04
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21304018, 21374016).
超级电容器是一种具有高功率密度和长循环寿命的新型储能装置,碳材料、金属氧化物和导电聚合物是常见的三种超级电容器电极材料。在石墨烯/金属氧化物复合材料中,石墨烯和金属氧化物可以发挥各自的优点,结合石墨烯优异的循环稳定性能和金属氧化物的高容量特性,纳米复合材料的综合性能可以得到很大地提升。因此,石墨烯/金属氧化物复合物的研究是超级电容器领域的热点研究方向之一。本文以金属氧化物的种类、石墨烯的结构和复合物的制备方法为线索,综述了国内外应用于超级电容器方面的石墨烯/金属氧化物复合材料的研究进展,归纳总结出与石墨烯复合最优的金属氧化物类型和制备方法,并进一步对该类复合材料的发展趋势进行了展望。
Supercapacitor has been recognized as a very promising new energy storage device due to its high power density and long cycle life. Carbon materials, metal oxides and conductive polymers are three more commonly utilized electrode materials for supercapacitors. The combination of the cycling stability of graphene and high capacity of metal oxide provides the graphene/metal oxide composite superiors performance. Consequently, significant research interest has been directed into the research of the graphene/metal oxide composite. In this paper, we present a review on the research progress of the graphene/metal oxide composite for supercapacitor application in term of the types of metal oxides, grapheme structure and preparation methods. Furthermore, the optimum synthesizing conditions and an outlook of the developing trend for the graphene/metal oxide composite are summarized.

Contents
1 Introduction
2 MnO2/graphene composites
2.1 Solvothermal (hydrothermal) method
2.2 Electrochemical deposition
2.3 Chemical reaction
2.4 Self-assembly method
3 RuO2/graphene composites
3.1 Sol-gel method
3.2 Solvothermal (hydrothermal) method
4 NiO/graphene composites
4.1 Chemical precipitation
4.2 Solvothermal (hydrothermal) method
4.3 Other methods
5 Co3O4/graphene composites
5.1 Chemical precipitation
5.2 Solvothermal (hydrothermal) method
5.3 Other methods
6 ZnO/graphene composites
7 Other metal oxides
8 Binary metal oxides
9 Conclusion

中图分类号: 

()
[1] Wang H L, Casalongue H S, Liang Y Y, Dai H J. J. Am. Chem. Soc., 2010, 132: 7472.
[2] Wang H L, Liang Y Y, Mirfakhrai T, Chen Z, Casalongue H S, Dai H J. Nano Res., 2011, 4: 729.
[3] Wang Y, Gai S L, Niu N, He F, Yang P P. J. Mater. Chem. A, 2013, 1: 9083.
[4] Min S D, Zhao C J, Chen G R, Qian X Z. Electrochim. Acta, 2014, 115: 155.
[5] Li L, Seng K H, Liu H, Nevirkovets I P, Guo Z P. Electrochim. Acta, 2013, 87: 801.
[6] Dubal D P, Kim J G, Kim Y, Holze R, Lokhande C D, Kim W B. Energy Technol., 2014, 2: 325.
[7] 徐斌(Xu B), 张浩(Zhang H), 曹高萍(Cao G P), 张文峰(Zhang W F), 杨裕生(Yang Y S). 化学进展(Progress in Chemistry), 2011, 605.
[8] Liu W J, Kao T W, Dai Y M, Jehng J M. J. Solid State Electrochem., 2014, 18: 189.
[9] 万厚钊(Wan H Z), 缪灵(Miao L), 徐葵(Xu K), 亓同(Qi T), 江建军 (Jiang J J). 化工学报(Journal of Chemical Industry), 2013, 64: 801.
[10] Zhu J W, Chen S, Zhou H, Wang X. Nano Res., 2011, 5: 11.
[11] Chen S, Duan J J, Jaroniec M, Qiao S Z. J. Mater. Chem. A, 2013, 1: 9409.
[12] Zhang H T, Zhang X, Zhang D C, Sun X Z, Lin H, Wang C H, Ma Y W. J. Phys. Chem. B, 2013, 117: 1616.
[13] Wang B, Park J, Wang C Y, Ahn H, Wang G X. Electrochim. Acta, 2010, 55: 6812.
[14] Liu C L, Chang K H, Hu C C, Wen W C. J. Power Sources, 2012, 217: 184.
[15] Rakhi R B, Chen W, Cha D, Alshareef H N. J. Mater. Chem., 2011, 21 : 16197.
[16] Wang H W, Hu Z A, Chang Y Q, Chen Y L, Lei Z Q, Zhang Z Y, Yan Y Y. Electrochim. Acta, 2010, 55: 8974.
[17] Pendashteh A, Mousavi M F, Rahmanifar M S. Electrochim. Acta, 2013, 88: 347.
[18] Xia X H, Chao D L, Fan Z X, Guan C, Cao X H, Zhang H, Fan H J. Nano Lett., 2014, 14: 1651.
[19] Lee J S, Lee C, Jun J, Shin D H, Jang J. J. Mater. Chem. A, 2014, 2: 11922.
[20] 柏嵩(Bai S), 沈小平(Shen X P). 化学进展(Progress in Chemistry), 2010, 22: 2106.
[21] 徐秀娟(Xu X J), 秦金贵(Qing J G), 李振(Li Z). 化学进展(Progress in Chemistry), 2009, 21: 2559.
[22] 李健(Li J), 官亦标(Guan Y B), 傅凯(Fu K), 苏岳锋(Su Y F), 包丽颖(Bao L Y), 吴锋(Wu F). 化学进展(Progress in Chemistry), 2014, 26(07): 1233.
[23] 来常伟(Lai C W), 孙莹(Sun Y), 杨洪(Yang H), 张雪勤(Zhang X Q), 林保平(Lin B P). 化学学报(Acta Chimica Sinica), 2013, 1201.
[24] Huang Y, Liang J J, Chen Y S. Small, 2012, 8(12): 1805.
[25] Tan Y B, Lee J M. J. Mater. Chem. A, 2013, 1(47): 14814.
[26] 康怡然(Kang Y R), 蔡锋(Cai F), 陈宏源(Chen H Y), 陈名海(Chen M H), 张锐(Zhang R), 李清文(Li Q W). 化学进展(Progress in Chemistry), 2014, 26: 1562.
[27] Lake J R, Cheng A, Selverston S, Tanaka Z, Koehne J, Meyyappan M, Chen B. J. Vac. Sci. Technol. B, 2012, 30: 03D118.
[28] Xu Y X, Huang X Q, Lin Z Y, Zhong X, Huang Y, Duan X F. Nano Res., 2012, 6: 65.
[29] Zhu L X, Zhang S, Cui Y H, Song H H, Chen X H. Electrochim. Acta, 2013, 89: 18.
[30] Guo G L, Huang L, Chang Q H, Ji L C, Liu Y, Xie Y Q, Shi W Z, Jia N Q. Appl. Phys. Lett., 2011, 99: 083111.
[31] Zhu Y G, Wang Y, Shi Y, Huang Z X, Fu L, Yang H Y. Adv. Energy Mater., 2014, 4(9): 1301788.
[32] Purushothaman K K, Saravanakumar B, Babu I M, Sethuraman B, Muralidharan G. RSC Adv., 2014, 4: 23485.
[33] Liu M M, Sun J. J. Mater. Chem. A, 2014, 2: 12068.
[34] Liu Y, Ying Y L, Mao Y Y, Gu L, Wang Y W, Peng X S. Nanoscale, 2013, 5: 9134.
[35] Chen S, Xing W, Duan J J, Hu X J, Qiao S Z. J. Mater. Chem. A, 2013, 1: 2941.
[36] Li Y, Zhao N Q, Shi C S, Liu E Z, He C N. J. Phys. Chem. C, 2012, 116: 25226.
[37] Wei W F, Cui X W, Chen W X, Ivey D G. Chem. Soc. Rev., 2011, 40: 1697.
[38] Chang J, Jin M H, Yao F, Kim T H, Le V T, Yue H Y, Gunes F, Li B, Ghosh A, Xie S, Lee Y H. Adv. Funct. Mater., 2013, 23: 5074.
[39] Li X C, Xu X Y, Xia F L, Bu L X, Qiu H X, Chen M X, Zhang L, Gao J P. Electrochim. Acta, 2014, 130: 305.
[40] Yu A P, Sy A, Davies A. Synth. Met., 2011, 161: 2049.
[41] Zhao X, Zhang L L, Murali S, Stoller M D, Zhang Q H, Zhu Y W, Ruoff R S. ACS Nano, 2012, 6: 5404.
[42] Yang W L, Gao Z, Wang J, Wang B, Liu Q, Li Z S, Mann T, Yang P P, Zhang M L, Liu L H. Electrochim. Acta, 2012, 69: 112.
[43] Kim M, Yoo M, Yoo Y, Kim J. Microelectron. Reliab., 2014, 54: 587.
[44] Dong X C, Wang X W, Wang J, Song H, Li X G, Wang L H, Chan-Park M B, Li C M, Chen P. Carbon, 2012, 50: 4865.
[45] Zhu X L, Zhang P, Xu S, Yan X B, Xue Q J. ACS Appl. Mater. Interfaces, 2014, 6: 11665.
[46] Dai X J, Shi W M, Cai H Q, Li R, Yang G C. Solid State Sci., 2014, 27: 17.
[47] Chan P Y, Rusi Majid S R. Solid State Ionics, 2014, 262: 226.
[48] Li Y J, Wang G L, Ye K, Cheng K, Pan Y, Yan P, Yin J L, Cao D X. J. Power Sources, 2014, 271: 582.
[49] He Y M, Chen W J, Li X D, Zhang Z X, Fu J C, Zhao C H, Xie E Q. ACS Nano, 2013, 7: 174.
[50] Zhao Y Q, Zhao D D, Tang P Y, Wang Y M, Xu C L, Li H L. Mater. Lett., 2012, 76: 127.
[51] Zhang Z Y, Xiao F, Qian L H, Xiao J W, Wang S, Liu Y Q. Adv. Energy Mater., 2014, 4: 1400064.
[52] Liu T T, Shao G J, Ji M T, Wang G L. J. Solid State Chem., 2014, 215: 160.
[53] Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin L C. Carbon, 2011, 49: 2917.
[54] Yu G H, Hu L B, Vosgueritchian M, Wang H L, Xie X, McDonough J R, Cui X, Cui Y, Bao Z A. Nano Lett., 2011, 11: 2905.
[55] Li Z P, Wang J Q, Liu S, Liu X H, Yang S R. J. Power Sources, 2011, 196: 8160.
[56] Qian Y, Lu S B, Gao F L. J. Mater. Sci., 2011, 46: 3517.
[57] Choi B G, Yang M, Hong W H, Choi J W, Huh Y S. ACS Nano, 2012, 6: 4020.
[58] Ge J, Yao H B, Hu W, Yu X F, Yan Y X, Mao L B, Li H H, Li S S, Yu S H. Nano Energy, 2013, 2: 505.
[59] Mao L, Zhang K, Chan H S O, Wu J S. J. Mater. Chem., 2012, 22: 1845.
[60] Patil U M, Sohn J S, Kulkarni S B, Park H G, Jung Y, Gurav K V, Kim J H, Jun S C. Mater. Lett., 2014, 119: 135.
[61] Li Z P, Wang J Q, Liu X H, Liu S, Ou J F, Yang S R. J. Mater. Chem., 2011, 21: 3397.
[62] Cheng H H, Long L, Shu D, Wu J Q, Gong Y B, He C, Kang Z X, Zou X P. Int. J. Hydrogen Energy, 2014, 39: 16151.
[63] Feng X M, Chen N N, Zhang Y, Yan Z Z, Liu X F, Ma Y W, Shen Q M, Wang L H, Huang W. J. Mater. Chem. A, 2014, 2: 9178.
[64] Wu Z S, Ren W C, Wang D W, Li F, Liu B L, Cheng H M. ACS Nano, 2010, 4: 5835.
[65] Chen H, Zhou S X, Chen M, Wu L M. J. Mater. Chem., 2012, 22: 25207.
[66] Wu S S, Chen W F, Yan L F. J. Mater. Chem. A, 2014, 2: 2765.
[67] Fan Z J, Yan J, Wei T, Zhi L J, Ning G Q, Li T Y, Wei F. Adv. Funct. Mater., 2011, 21: 2366.
[68] Zhang C Y, Zhu X H, Wang Z X, Sun P, Ren Y J, Zhu J L, Zhu J G, Xiao D Q. Nanoscale Res. Lett., 2014, 9: 490.
[69] Lee M T, Fan C Y, Wang Y C, Li H Y, Chang J K, Tseng C M. J. Mater. Chem. A, 2013, 1: 3395.
[70] Lee K G, Jeong J M, Lee S J, Yeom B, Lee M K, Choi B G. Ultrason. Sonochem., 2015, 22: 42.
[71] Mishra A K, Ramaprabhu S. J. Phys. Chem. C, 2011, 115: 14006.
[72] Chen Y, Zhang X, Zhang D C, Ma Y W. J. Alloys Compd., 2012, 511: 251.
[73] Kim J Y, Kim K H, Yoon S B, Kim H K, Park S H, Kim K B. Nanoscale, 2013, 5: 6804.
[74] Shen J F, Li T, Huang W S, Long Y, Li N, Ye M X. Electrochim. Acta, 2013, 95: 155.
[75] Lin N, Tian J H, Shan Z Q, Chen K A, Liao W M. Electrochim. Acta, 2013, 99: 219.
[76] Bu Y F, Wang S N, Jin H L, Zhang W M, Lin J J, Wang J C. J. Electrochem. Soc., 2012, 159: A990.
[77] Zhao B, Song J S, Liu P, Xu W W, Fang T, Jiao Z, Zhang H J, Jiang Y. J. Mater. Chem., 2011, 21: 18792.
[78] Zhu X J, Dai H L, Hu J, Ding L, Jiang L. J. Power Sources, 2012, 203: 243.
[79] Wu C H, Deng S X, Wang H, Sun Y X, Liu J B, Yan H. ACS Appl. Mater. Interfaces, 2014, 6: 1106.
[80] Huang M L, Gu C D, Ge X, Wang X L, Tu J P. J. Power Sources, 2014, 259: 98.
[81] Su X H, Chai H, Jia D Z, Bao S J, Zhou W Y, Zhou M L. New J. Chem., 2013, 37: 439.
[82] Jiang Y, Chen D D, Song J S, Jiao Z, Ma Q L, Zhang H J, Cheng L L, Zhao B, Chu Y L. Electrochim. Acta, 2013, 91: 173.
[83] Yang Y Y, Hu Z A, Zhang Z Y, Zhang F H, Zhang Y J, Liang P J, Zhang H Y, Wu H Y. Mater. Chem. Phys., 2012, 133: 363.
[84] Ge C Y, Hou Z H, He B H, Zeng F Y, Cao J G, Liu Y M, Kuang Y F. J. Sol-Gel Sci. Technol., 2012, 63: 146.
[85] Zhao B, Zhuang H, Fang T, Jiao Z, Liu R Z, Ling X T, Lu B, Jiang Y. J. Alloys Compd. , 2014, 597: 291.
[86] Lee G H, Cheng Y W, Varanasi C V, Liu J. J. Phys. Chem. C, 2014, 118(5): 2281.
[87] Dam D T, Wang X, Lee J M. ACS Appl. Mater. Interfaces, 2014, 6: 8246.
[88] Cao X H, Shi Y M, Shi W H, Lu G, Huang X, Yan Q Y, Zhang Q C, Zhang H. Small, 2011, 7: 3163.
[89] Xie L J, Wu J F, Chen C M, Zhang C M, Wan l, Wang J L, Kong Q Q, Lv C X, Li K X, Sun G H. J. Power Sources, 2013, 242: 148.
[90] Yan J, Wei T, Qiao W M, Shao B, Zhao Q K, Zhang L J, Fan Z J. Electrochim. Acta, 2010, 55: 6973.
[91] Park S, Kim S. Electrochim. Acta, 2013, 89: 516.
[92] Kumar R, Kim H J, Park S, Srivastava A, Oh I K. Carbon, 2014, 79: 192.
[93] Yuan C Z, Zhang L H, Hou L R, Pang G, Oh W C. RSC Adv., 2014, 4: 14408.
[94] Wang X W, Liu S Q, Wang H Y, Tu F Y, Fang D, Li Y H. J. Solid State Electrochem., 2012, 16: 3593.
[95] Guan Q, Cheng J L, Wang B, Ni W, Gu G F, Li X D, Huang L, Yang G C, Nie F D. ACS Appl. Mater. Interfaces, 2014, 6: 7626.
[96] Dong X C, Xu H, Wang X W, Huang Y X, Chan-Park M B, Zhang H, Wang L H, Huang W, Chen P. ACS Nano, 2012, 6: 3206.
[97] Zhou W W, Liu J P, Chen T, Tan K S, Jia X T, Luo Z Q, Cong C X, Yang H P, Li H M, Yu T. Phys. Chem. Chem. Phys., 2011, 13: 14462.
[98] Wang H Z, Shi Y L, Li Z X, Zhang W G, Yao S W. Chem. Res. Chin. Univ., 2014, 30: 650.
[99] Prakash A, Bahadur D. ACS Appl. Mater. Interfaces, 2014, 6: 1394.
[100] Ramadoss A, Kim S J. Mater. Chem. Phys., 2013, 140: 405.
[101] Zhang L D, Du G X, Zhou B, Wang L. Ceram. Int., 2014, 40: 1241.
[102] Chen Y L, Hu Z A, Chang Y Q, Wang H W, Zhang Z Y, Yang Y Y, Wu H Y. J. Phys. Chem. C, 2011, 115: 2563.
[103] Haldorai Y, Voit W, Shim J J. Electrochim. Acta, 2014, 120: 65.
[104] Li Z J, Liu P, Yun G Q, Shi K, Lv X W, Li K, Xing J H, Yang B C. Energy, 2014, 69: 266.
[105] Dong X C, Cao Y F, Wang J, Chan-Park M B, Wang L H, Huang W, Chen P. RSC Adv., 2012, 2: 4364.
[106] Wang Q H, Jiao L F, Du H M, Wang Y J, Yuan H T. J. Power Sources, 2014, 245: 101.
[107] Wang Z, Ma C Y, Wang H L, Liu Z H, Hao Z P. J. Alloys Compd. , 2013, 552: 486.
[108] Zhao P H, Li W L, Wang G, Yu B Z, Li X J, Bai J T, Ren Z Y. J. Alloys Compd. , 2014, 604: 87.
[109] Ma Z L, Huang X B, Dou S, Wu J H, Wang S Y. J. Phys. Chem. C, 2014, 118: 17231.
[110] Low Q X, Ho G W. Nano Energy, 2014, 5: 28.
[111] Wang H W, Xu Z J, Yi H, Wei H G, Guo Z H, Wang X F. Nano Energy, 2014, 7: 86.
[112] Hsieh C T, Lee W Y, Lee C E, Teng H S. J. Phys. Chem. C, 2014, 118: 15146.
[113] Chen M X, Wang H, Li L Z, Zhang Z, Wang C, Liu Y, Wang W, Gao J P. ACS Appl. Mater. Interfaces, 2014, 6: 14327.
[114] Hu X N, Yan Z, Li Q, Yang Q, Kang L P, Lei Z B, Liu Z H. Colloids Surf. A, 2014, 461: 105.
[115] Nagaraju D H, Wang Q X, Beaujuge P, Alshareef H N. J. Mater. Chem. A, 2014, 2: 17146.
[116] Shen J F, Li X F, Li N, Ye M X. Electrochimica Acta, 2014, 141: 126.
[117] Luo Y Z, Zhang H M, Guo D, Ma J M, Li Q H, Chen L B, Wang T H. Electrochim. Acta, 2014, 132: 332.
[118] Wei Y Y, Chen S Q, Su D W, Sun B, Zhu J G, Wang G X. J. Mater. Chem. A, 2014, 2: 8103.
[119] Wang L, Wang X H, Xiao X P, Xu F G, Sun Y J, Li Z. Electrochim. Acta, 2013, 111: 937.
[120] Xu X W, Shen J F, Li N, Ye M X. J. Alloys Compd. , 2014, 616: 58.
[121] Wang Z, Zhang X, Li Y, Liu Z T, Hao Z P. J. Mater. Chem. A, 2013, 1: 6393.
[122] Wang Y H, He P, Lei W, Dong F Q, Zhang T H. Composites Sci. Technol., 2014, 103: 16.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[3] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[4] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[5] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[6] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[7] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[8] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[9] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[10] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[11] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[12] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[13] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[14] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[15] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.