English
新闻公告
More
化学进展 2022, Vol. 34 Issue (3): 557-567 DOI: 10.7536/PC210616 前一篇   后一篇

• 综述 •

超高真空下纳米石墨烯磁性及调控

张辉, 熊玮, 卢建臣*(), 蔡金明*()   

  1. 昆明理工大学材料科学与工程学院 昆明 650093
  • 收稿日期:2021-06-21 修回日期:2021-09-26 出版日期:2021-12-02 发布日期:2021-12-02
  • 通讯作者: 卢建臣, 蔡金明
  • 基金资助:
    国家自然科学基金项目(61901200); 国家高层次人才项目(132310976002); 云南省基础研究计划项目(2019FD041); 云南省基础研究计划项目(202101AV070008); 云南省基础研究计划项目(202101AW070010); 云南省基础研究计划项目(202101AU070043); 中国科学院先导计划项目(XDB30010000); 东莞创新研究团队计划项目资助

Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum

Hui Zhang, Wei Xiong, Jianchen Lu(), Jinming Cai()   

  1. Faculty of Materials Science and Engineering, Kunming University of Science and Technology,Kunming 650093, China
  • Received:2021-06-21 Revised:2021-09-26 Online:2021-12-02 Published:2021-12-02
  • Contact: Jianchen Lu, Jinming Cai
  • Supported by:
    National Natural Science Foundation of China(61901200); National Recruitment Program for Young Professionals(132310976002); Yunnan Province Science and Technology Plan Project(2019FD041); Yunnan Province Science and Technology Plan Project(202101AV070008); Yunnan Province Science and Technology Plan Project(202101AW070010); Yunnan Province Science and Technology Plan Project(202101AU070043); Strategic Priority Research Program of Chinese Academy of Sciences(XDB30010000); Dongguan Innovation Research Team Program.

纳米石墨烯在磁学上的优异表现开始获得了更多的关注和研究。由于不饱和电子的存在,磁性纳米石墨烯的湿法化学法合成难度提高,借助超高真空下的表面催化,可以精确地实现将设计好的前驱体分子向磁性纳米石墨烯转变。相较于过渡金属的磁性,纳米石墨烯拥有更高的自旋波刚度、更弱的自旋-轨道耦合作用、更为精细的耦合作用、更长的自旋寿命,使其在自旋电子器件以及基础研究领域拥有很高的研究潜力。由于不饱和电子的存在,提高了湿法化学法合成出磁性纳米石墨烯的难度。近年来,借助超高真空下的表面催化,可以精确地实现将设计好的前驱体分子制备成磁性纳米石墨烯。进一步地,可以利用通过针尖操纵以及将磁性纳米石墨烯进行连接形成二聚体或者磁性链来进行磁性调控和研究。本综述结合近几年超高真空下纳米石墨烯的磁性研究,介绍了纳米石墨磁性的产生和利用超高真空扫描隧道显微技术对其结构和磁性的表征,以及在此基础上对纳米石墨烯磁性的磁序调控。

Due to the existence of unsaturated electrons, it is difficult to synthesize magnetic nanographene directly by the wet chemical method. With the help of surface catalysis in ultra-high vacuum, designed precursor molecules can be transformed into magnetic nanographene. Magnetism of carbon nanomaterials or nanographene possess high magnitudes of spin-wave stiffness, weak spin-orbit coupling, hyperfine couplings and large spin coherence lifetimes comparing with the transition metal, which hold the promise for spintronics construction and basic research. Due to the existence of unsaturated electrons, it is difficult to synthesize magnetic nanographene directly by the wet chemical method. With the help of surface catalysis in ultra-high vacuum, the synthesis of magnetic nanographene by artificial designed precursor molecules has been exploding. Except for the fabrication the magnetic nanographene, the investigation of magnetic ground state of nanographene itself and the magnetic engineering by tip-manipulation and construction of spin chains have been attracting much attentions. The atomic precise chemical and electronic structure and magnetic ground state could be identified by scanning tunneling spectroscopy and CO-decorated tip scanning tunneling microscope image. In this review, based on the recent research on nanographene, we introduce magnetic generations, structural and magnetism characterizations of nanographene as well as the magnetic order control by scanning tunneling microscopy in ultra-high vacuum.

Contents

1 Introduction

2 Magnetism of nanographene

2.1 Sublattice imbalance

2.2 Non-Kekulé structure due to topology constraints

2.3 Non-Kekulé structure due to size

3 Engineering of magnetic nanographene

3.1 Tip manipulation

3.2 Alternation of homo-coupling positions

4 Conclusion and outlook

()
图1 单磁性杂质通过两个中间态实现自旋翻转产生Kondo共振的示意图[26]
Fig.1 Schematic diagram of Kondo resonance produced by spin flip of single magnetic impurity through two intermediate states[26]
图2 终端融合手性石墨烯纳米带的磁性[28]: (a)前驱体分子的结构式;(b)(3,1)-手性石墨烯纳米带的结构示意图;(c)终端融合的手性石墨烯纳米带的恒高STM图;(d)CO修饰针尖获得的键分辨STM图;(e)图 (d)所对应的结构示意图;(f, g)带交接处电子态两种分布类型 (插图)以及其所对应的高能量分辨率的STS信息;(h)不同温度下所对应的STS信息;(i)不同外加磁场下所对应的STS信息
Fig.2 Magnetic properties of terminal fused chiral graphene nanoribbon[28]. (a) The structure formula of precursor molecule; (b) The structure of (3,1)-chiral graphene nanoribbon; (c) The constant height STM image of terminal fused chiral graphene nanoribbon; (d) BR-STM image obtained by CO modified needle tip; (e) The corresponding structure diagram of (d); (f, g) Two distribution types of electronic states at the junction (illustrations) and the corresponding STS information with high energy resolution; (h) STS information at different temperatures; (i) STS information at different external magnetic fields
图3 纳米石墨烯1a和1b的结构分析[31]: (a)NG 1a和1b的反应示意图;(b)同时含有NG 1a和1b的较大尺寸的STM图;(c)NG 1a的高分辨STM;(d)NG 1a用CO修饰针尖获得的键分辨STM图;(e,f)NG 1a两侧终端的BR-STM图;(g)NG 1b的高分辨STM;(h)NG 1b用CO修饰针尖获得的键分辨STM图;(i,j)NG 1b两侧终端的BR-STM图
Fig.3 Structural analysis of nanographene 1a and 1b[31]. (a) Reaction diagram of NG 1a and 1b; (b) Large scale STM image containing both NG 1a and 1b; (c) High resolution STM image of NG 1a; (d) Bond-resolved STM image of NG 1a modified with CO tip; (e,f) BR-STM image of the terminals on both sides of NG 1a; (g) High resolution STM image of NG 1b; (h) Bond-resolved STM image of NG 1b modified with CO tip; (i,j) BR-STM image of the terminals on both sides of NG 1b
图4 纳米石墨烯1a和1b的磁性分析[31]:(a,b)NG 1b的TB和MFH模型计算的能级分布;(c)前线轨道的波函数分布;(d)计算的自旋态密度分布图;(e)NG 1b的高分辨STM图;(f)不同温度下的小能量区间谱线;(g)(f)中半高峰宽值的一半与所对应温度的变化
Fig.4 Magnetic analysis of nanographene 1a and 1b[31]. (a,b) Energy level distributions of NG 1b calculated by TB and MFH model; (c) Wave function distribution of frontier orbital; (d) Calculated distribution of spin density of states; (e) High resolution STM image of NG 1b; (f) High energy resolution spectra at different temperatures; (g) Half width at half maximum extracted from (f) and the corresponding temperature change
图5 人工设计的亚晶格失衡的结构: (a~c)S = 1[34⇓~36];(d)S = 3/2[37];(e)S = 3[38]
Fig.5 Artificially constructed sublattice imbalanced structure. (a~c) S =1[31,35,37]; (d) S = 3 /2[32]; (e) S = 3[33]
图6 亚晶格失衡的纳米石墨烯[36]:(a)前驱体分子的结构式;(b)含有NG 2a的较大尺寸的STM;(c)CO修饰的恒高STM图;(d)变温的dI/dV谱;(e)变磁场的STS谱
Fig.6 Sublattice imbalanced nanographene[36]. (a) Chemical structural of precursor molecule; (b) Large size STM image containing NG 2a; (c) Constant height STM image with modified CO Tip; (d) dI/dV spectra of variable temperature; (e) dI/dV spectra of variable magnetic field
图7 NA=NB的Clar高脚杯[10]
Fig.7 Clar goblet with NA=NB[10]
图8 尺寸变化对纳米石墨烯磁性的影响[8,48,49]: (a,b)NG 4a和4b结构式以及其前驱体分子合成示意图;(c,d)NG 5a和5b结构式以及其前驱体分子合成示意图;(e,f)分别是NG 5a和5b的高分辨STM图(左)以及BR-STM图(右);(g)NG 5a的dI/dV谱(左),NG 5b的dI/dV谱(中)以及dI2/dV2谱(右)
Fig.8 Size-dependence of the magnetism of NG[8,48,49]. (a, b) Chemical structure of NG 4a, 4b and their precursors synthetic pathway; (c, d) Chemical structure of NG 5a, 5b and their precursors synthetic pathway; (e, f) HR-STM (left) and BR-STM (right) of NG 5a and 5b; (g) dI/dV spectrum of NG 5a (left) and NG 5b (middle) and dI2/dV2 spectrum of NG 5b (right)
图9 NA=NB的铁磁性基态[54]: (a)前驱体分子的结构式以及合成路径;(b)退火后得到的结构PorA2(2H)(左中右分别对应着结构示意图、恒流的STM图以及NC-AFM图);(c)对PorA2(2H)针尖操控后得到的结构PorA2(H)(左中右分别对应着结构示意图、恒流的STM图以及NC-AFM图);(d)PorA2(H)针尖操控后得到的结构PorA2(左中右分别对应着结构示意图、恒流的STM图以及NC-AFM图);(e)PorA2小能量区间的dI/dV谱
Fig.9 Ferromagnetic ground state of NA=NB[54]. (a) Chemical structure and synthesis path of precursor molecule; (b) PorA2 (2H) obtained after annealing (left, middle and right corresponding to chemical structure, constant current STM image and NC-AFM image, respectively); (c) PorA2 (H) obtained after manipulation of PorA2 (2H) (left, middle and right corresponding to structural diagram, constant current STM diagram and NC-AFM diagram respectively); (d) PorA2 after the tip manipulation (left, middle and right corresponding to the structure diagram, constant current STM diagram and NC-AFM diagram); (e) The dI/dV spectra of PorA2 in the small energy range
图10 通过自旋之间的距离调节磁性交换能[42]:(a)前驱体经快速退火形成的五元环缺陷NG 7及进一步退火结合的示意图;(b~e)C1 ~ C4结构的NC-AFM图;(f)C1 ~ C4结构的小能量区间的dI/dV谱线图;(g)自旋交换能J随着两侧自旋距离的变化;(h)6种结构的自旋交换能J随着两侧自旋距离的变化
Fig.10 Adjusting the magnetic exchange energy by the distance between spins[42]. (a) Schematic diagram of the defect NG 7 of the five-membered-ring formed by rapid annealing of precursor molecules for further annealing; (b~e) NC-AFM images of structures C1 ~ C4; (f) Small energy range dI/dV spectra of structures C1 ~ C4; (g) Variation of spin exchange energy J with the distance; (H) The calculated exchange energy J with the spin distance
图11 规则的磁性纳米石墨烯环以及石墨烯链的磁性交换示意图[58]
Fig.11 Diagram of magnetic coupling the regular magnetic NG ring and chain
[1]
Madhavan V, Chen W, Jamneala T, Crommie M F, Wingreen N S. Science, 1998, 280(5363): 567.

pmid: 9554843
[2]
Li J T, Schneider W D, Berndt R, Delley B. Phys. Rev. Lett., 1998, 80(13): 2893.

doi: 10.1103/PhysRevLett.80.2893     URL    
[3]
Nagaoka K, Jamneala T, Grobis M, Crommie M F. Phys. Rev. Lett., 2002, 88(7): 077205.

doi: 10.1103/PhysRevLett.88.077205     URL    
[4]
Gao L, Ji W, Hu Y B, Cheng Z H, Deng Z T, Liu Q, Jiang N, Lin X, Guo W, Du S X, Hofer W A, Xie X C, Gao H J. Phys. Rev. Lett., 2007, 99(10): 106402.

doi: 10.1103/PhysRevLett.99.106402     URL    
[5]
Liu L W, Yang K, Jiang Y H, Song B Q, Xiao W D, Li L F, Zhou H T, Wang Y L, Du S X, Ouyang M, Hofer W A, Castro Neto A H, Gao H J. Sci. Rep., 2013, 3(1): 1210.

doi: 10.1038/srep01210     URL    
[6]
Sánchez-Grande A, Urgel J I, Cahlík A, Santos J, Edalatmanesh S, Rodríguez-Sánchez E, Lauwaet K, Mutombo P, Nachtigallová D, Nieman R, Lischka H, Torre B, Miranda R, Gröning O, Martín N, Jelínek P, Écija D. Angew. Chem. Int. Ed., 2020, 59(40): 17594.

doi: 10.1002/anie.202006276     URL    
[7]
Mishra S, Yao X, Chen Q, Eimre K, Groening O, Ortiz R, Di Giovannantonio M, Sancho-Garcia J C, Fernandez-Rossier J, Pignedoli C A, Muellen K, Ruffieux P, Narita A, Fasel R. Giant magnetic exchange coupling in rhombus-shaped nanographenes with zigzag periphery, 2020, arXiv:2003.03577. https://ui.adsabs.harvard.edu/abs/2020arXiv200303577M (accessed March 01, 2020).
[8]
Mishra S, Melidonie J, Eimre K, Obermann S, Gröning O, Pignedoli C A, Ruffieux P, Feng X L, Fasel R. Chem. Commun., 2020, 56(54): 7467.

doi: 10.1039/D0CC02513E     URL    
[9]
Wang W L, Yazyev O V, Meng S, Kaxiras E. Phys. Rev. Lett., 2009, 102(15): 157201.

doi: 10.1103/PhysRevLett.102.157201     URL    
[10]
Mishra S, Beyer D, Eimre K, Kezilebieke S, Berger R, Gröning O, Pignedoli C A, Müllen K, Liljeroth P, Ruffieux P, Feng X L, Fasel R. Nat. Nanotechnol., 2020, 15(1): 22.

doi: 10.1038/s41565-019-0577-9     URL    
[11]
Yazyev O V. Rep. Prog. Phys., 2010, 73(5): 056501.

doi: 10.1088/0034-4885/73/5/056501     URL    
[12]
Yazyev O V. Nano Lett., 2008, 8(4): 1011.

doi: 10.1021/nl072667q     pmid: 18321077
[13]
Trauzettel B, Bulaev D V, Loss D, Burkard G. Nat. Phys., 2007, 3(3): 192.
[14]
Edwards D M, Katsnelson M I. J. Phys. Condens. Matter, 2006, 18(31): 7209.

doi: 10.1088/0953-8984/18/31/016     URL    
[15]
Yazyev O V, Katsnelson M I. Phys. Rev. Lett., 2008, 100(4): 047209.

doi: 10.1103/PhysRevLett.100.047209     URL    
[16]
Han W, Kawakami R K, Gmitra M, Fabian J. Nat. Nanotechnol., 2014, 9(10): 794.

doi: 10.1038/nnano.2014.214     URL    
[17]
Warner M, Din S, Tupitsyn I S, Morley G W, Stoneham A M, Gardener J A, Wu Z L, Fisher A J, Heutz S, Kay C W M, Aeppli G. Nature, 2013, 503(7477): 504.

doi: 10.1038/nature12597     URL    
[18]
Bader K, Dengler D, Lenz S, Endeward B, Jiang S D, Neugebauer P, van Slageren J. Nat. Commun., 2014, 5(1): 1.
[19]
Atzori M, Tesi L, Morra E, Chiesa M, Sorace L, Sessoli R. J. Am. Chem. Soc., 2016, 138(7): 2154.

doi: 10.1021/jacs.5b13408     URL    
[20]
Zhu L J, Zhao J H. Physics, 2016, 45: 458.
(朱礼军, 赵建华, 物理 2016, 45: 458.).
[21]
Shen J J, Han Y, Dong S Q, Phan H, Herng T S, Xu T T, Ding J, Chi C Y. Angew. Chem. Int. Ed., 2021, 60(9): 4464.

doi: 10.1002/anie.202012328     URL    
[22]
Konishi A, Hirao Y, Nakano M, Shimizu A, Botek E, Champagne B, Shiomi D, Sato K, Takui T, Matsumoto K, Kurata H, Kubo T. J. Am. Chem. Soc., 2010, 132(32): 11021.

doi: 10.1021/ja1049737     URL    
[23]
Konishi A, Hirao Y, Matsumoto K, Kurata H, Kishi R, Shigeta Y, Nakano M, Tokunaga K, Kamada K, Kubo T. J. Am. Chem. Soc., 2013, 135(4): 1430.

doi: 10.1021/ja309599m     URL    
[24]
Hao Z L, Ruan Z L, Yang X T, Cai Y T, Lu J C, Cai J M. Acta Chimica Sinica, 2018, 76(8): 585.

doi: 10.6023/A18040164     URL    
(郝振亮, 阮子林, 杨孝天, 蔡逸婷, 卢建臣, 蔡金明. 化学学报, 2018, 76(8): 585.).

doi: 10.6023/A18040164    
[25]
Zhang H, Cai X M, Hao Z L, Ruan Z L, Lu J C, Cai J M. Acta Physica Sinica, 2017, 66(21):218103.

doi: 10.7498/aps.66.218103     URL    
(张辉, 蔡晓明, 郝振亮, 阮子林, 卢建臣, 蔡金明. 物理学报, 2017, 66(21):218103.).
[26]
Liu L W. Doctoral Dissertation of University of Chinese Academy of Sciences, 2013.
(刘立巍. 中国科学院大学博士论文, 2013.).
[27]
Lieb E H. Phys. Rev. Lett., 1989, 62(10): 1201.

doi: 10.1103/PhysRevLett.62.1201     URL    
[28]
Li J C, Sanz S, Corso M, Choi D J, Peña D, Frederiksen T, Pascual J I. Nat. Commun., 2019, 10(1): 1.

doi: 10.1038/s41467-018-07882-8     URL    
[29]
Zhang Y H, Kahle S, Herden T, Stroh C, Mayor M, Schlickum U, Ternes M, Wahl P, Kern K. Nat. Commun., 2013, 4(1): 1.
[30]
Frota H O. Phys. Rev. B, 1992, 45(3): 1096.

doi: 10.1103/PhysRevB.45.1096     URL    
[31]
Mishra S, Beyer D, Berger R, Liu J Z, Gröning O, Urgel J I, Müllen K, Ruffieux P, Feng X L, Fasel R. J. Am. Chem. Soc., 2020, 142(3): 1147.

doi: 10.1021/jacs.9b09212     URL    
[32]
Cai J M, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X L, Müllen K, Fasel R. Nature, 2010, 466(7305): 470.

doi: 10.1038/nature09211     URL    
[33]
Mishra S, Lohr T G, Pignedoli C A, Liu J Z, Berger R, Urgel J I, Müllen K, Feng X L, Ruffieux P, Fasel R. ACS Nano, 2018, 12(12): 11917.

doi: 10.1021/acsnano.8b07225     URL    
[34]
Su X L, Li C, Du Q Y, Tao K, Wang S Y, Yu P. Nano Lett., 2020, 20(9): 6859.

doi: 10.1021/acs.nanolett.0c02939     URL    
[35]
Pavliček N, Mistry A, Majzik Z, Moll N, Meyer G, Fox D J, Gross L. Nat. Nanotechnol., 2017, 12(4): 308.

doi: 10.1038/nnano.2016.305     pmid: 28192389
[36]
Li J C, Sanz S, Castro-Esteban J, Vilas-Varela M, Friedrich N, Frederiksen T, Peña D, Pascual J I. Phys. Rev. Lett., 2020, 124(17): 177201.

doi: 10.1103/PhysRevLett.124.177201     URL    
[37]
Mishra S, Beyer D, Eimre K, Liu J, Berger R, Groning O, Pignedoli C A, Mullen K, Fasel R, Feng X, Ruffieux P. J. Am. Chem. Soc., 2019, 141(27): 10621.

doi: 10.1021/jacs.9b05319     URL    
[38]
Mishra S, Xu K, Eimre K, Komber H, Ma J, Pignedoli C A, Fasel R, Feng X L, Ruffieux P. Nanoscale, 2021, 13(3): 1624.

doi: 10.1039/D0NR08181G     URL    
[39]
Su J, Fan W, Mutombo P, Peng X N, Song S T, Ondráček M, Golub P, Brabec J, Veis L, Telychko M, Jelínek P, Wu J S, Lu J. Nano Lett., 2021, 21(1): 861.

doi: 10.1021/acs.nanolett.0c04627     URL    
[40]
Friedrich N, Brandimarte P, Li J C, Saito S, Yamaguchi S, Pozo I, Peña D, Frederiksen T, Garcia-Lekue A, Sánchez-Portal D, Pascual J I. Phys. Rev. Lett., 2020, 125(14): 146801.

doi: 10.1103/PhysRevLett.125.146801     URL    
[41]
Sola M. Front. Chem., 2013, (22): 1.
[42]
Zheng Y Q, Li C, Zhao Y, Beyer D, Wang G Y, Xu C Y, Yue X L, Chen Y P, Guan D D, Li Y Y, Zheng H, Liu C H, Luo W D, Feng X L, Wang S Y, Jia J F. Phys. Rev. Lett., 2020, 124(14): 147206.

doi: 10.1103/PhysRevLett.124.147206     URL    
[43]
Mishra S, Beyer D, Eimre K, Ortiz R, Fernández-Rossier J, Berger R, Gröning O, Pignedoli C A, Fasel R, Feng X L, Ruffieux P. Angew. Chem. Int. Ed., 2020, 59(29): 12041.

doi: 10.1002/anie.202002687     URL    
[44]
Zuzak R, Dorel R, Kolmer M, Szymonski M, Godlewski S, Echavarren A M. Angew. Chem. Int. Ed., 2018, 57(33): 10500.

doi: 10.1002/anie.201802040     URL    
[45]
Urgel J I, Mishra S, Hayashi H, Wilhelm J, Pignedoli C A, Di Giovannantonio M, Widmer R, Yamashita M, Hieda N, Ruffieux P, Yamada H, Fasel R. Nat. Commun., 2019, 10(1): 1.

doi: 10.1038/s41467-018-07882-8     URL    
[46]
Tönshoff C, Bettinger H F. Angew. Chem. Int. Ed., 2010, 49(24): 4125.

doi: 10.1002/anie.200906355     URL    
[47]
Rogers C, Chen C, Pedramrazi Z, Omrani A A, Tsai H Z, Jung H S, Lin S, Crommie M F, Fischer F R. Angew. Chem. Int. Ed., 2015, 54(50): 15143.

doi: 10.1002/anie.201507104     URL    
[48]
Mishra S, Yao X L, Chen Q, Eimre K, Gröning O, Ortiz R, Giovannantonio M, Sancho-García J C, Fernández-Rossier J, Pignedoli C A, Müllen K, Ruffieux P, Narita A, Fasel R. Nat. Chem., 2021, 13(6): 581.

doi: 10.1038/s41557-021-00678-2     URL    
[49]
Turco E, Mishra S, Melidonie J, Eimre K, Obermann S, Pignedoli C A, Fasel R, Feng X, Ruffieux P. Synthesis and characterization of super-nonazethrene, 2021, arXiv:2105.12166. https://ui.adsabs.harvard.edu/abs/2021arXiv210512166T (accessed May 01, 2021).
[50]
Wang S Y, Talirz L, Pignedoli C A, Feng X L, Müllen K, Fasel R, Ruffieux P. Nat. Commun., 2016, 7(1): 11507.

doi: 10.1038/ncomms11507     URL    
[51]
Jung J, MacDonald A H. Phys. Rev. B, 2010, 81(19): 195408.

doi: 10.1103/PhysRevB.81.195408     URL    
[52]
Ruffieux P, Wang S Y, Yang B, Sánchez-Sánchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X L, Müllen K, Fasel R. Nature, 2016, 531(7595): 489.

doi: 10.1038/nature17151     URL    
[53]
Ajayakumar M R, Fu Y B, Ma J, Hennersdorf F, Komber H, Weigand J J, Alfonsov A, Popov A A, Berger R, Liu J Z, Müllen K, Feng X L. J. Am. Chem. Soc., 2018, 140(20): 6240.

doi: 10.1021/jacs.8b03711     pmid: 29738244
[54]
Sun Q, Mateo L M, Robles R, Ruffieux P, Lorente N, Bottari G, Torres T, Fasel R. J. Am. Chem. Soc., 2020, 142(42): 18109.

doi: 10.1021/jacs.0c07781     URL    
[55]
van der Lit J, Boneschanscher M P, Vanmaekelbergh D, Ijäs M, Uppstu A, Ervasti M, Harju A, Liljeroth P, Swart I. Nat. Commun., 2013, 4(1): 1.
[56]
Kumar A, Banerjee K, Dvorak M, Schulz F, Harju A, Rinke P, Liljeroth P. ACS Nano, 2017, 11(5): 4960.

doi: 10.1021/acsnano.7b01599     URL    
[57]
Zhao Y, Jiang K, Li C, Liu Y, Xu C, Zheng W, Guan D, Li Y, Zheng H, Liu C, Luo W, Jia J, Zhuang X, Wang S. J. Am. Chem. Soc., 2020, 142(43): 18532.

doi: 10.1021/jacs.0c07791     pmid: 32959653
[58]
Mishra S, Catarina G, Wu F, Ortiz R, Jacob D, Eimre K, Ma J, Pignedoli C A, Feng X, Ruffieux P, Fernandez-Rossier J, Fasel R. Observation of fractional edge excitations in nanographene spin chains, 2021, arXiv:2105.09102. https://ui.adsabs.harvard.edu/abs/2021arXiv210509102M (accessed May 01, 2021).
[59]
Wang S Y, Zhao Y, Jiang K Y, Li C, Liu Y F, Zhu G C, Guan D D, Li Y Y, Zheng H, Liu C H, Jia J F, Zhuang X D. Nature Portfolio, 2021, DOI: 10.21203/rs.3.rs-579482/v1.

doi: 10.21203/rs.3.rs-579482/v1    
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[3] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[4] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[5] 顾顺心, 姜琴, 施鹏飞. 发光铱(Ⅲ)配合物抗肿瘤活性研究及应用[J]. 化学进展, 2022, 34(9): 1957-1971.
[6] 王妍妍, 陈丽敏, 李思扬, 来鲁华. 无序蛋白质在生物分子凝聚相形成与调控中的作用[J]. 化学进展, 2022, 34(7): 1610-1618.
[7] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[8] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[9] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[10] 王许敏, 李书萍, 何仁杰, 余创, 谢佳, 程时杰. 准固相转化机制硫正极[J]. 化学进展, 2022, 34(4): 909-925.
[11] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[12] 卢明龙, 张晓云, 杨帆, 王 练, 王育乔. 表界面调控电催化析氧反应[J]. 化学进展, 2022, 34(3): 547-556.
[13] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[14] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[15] 杨强强, 李川, 于淑娴, 范书华, 王月霞, 洪敏. 纳米载体在共负载siRNA及化疗药物对逆转肿瘤多药耐药性方面的应用[J]. 化学进展, 2021, 33(10): 1900-1916.