English
新闻公告
More
化学进展 2022, Vol. 34 Issue (8): 1784-1795 DOI: 10.7536/PC211033 前一篇   后一篇

• 综述 •

金属氧化物半导体气敏材料抗湿性能提升策略

谭依玲1,2, 李诗纯1, 杨希1, 金波2, 孙杰1,*()   

  1. 1 中国工程物理研究院化工材料研究所 绵阳 621900
    2 西南科技大学环境友好能源材料国家重点实验室 绵阳 621010
  • 收稿日期:2021-10-28 修回日期:2022-01-25 出版日期:2022-08-20 发布日期:2022-04-01
  • 通讯作者: 孙杰
  • 作者简介:

    作者简介:孙杰 1994年获得东北师范大学学士学位,1997年获中国科学院化学研究所硕士学位,2004年获北京理工大学博士学位,现任中国工程物理研究院化工材料研究所研究员。研究领域包括含能材料的设计、制备和表征。

  • 基金资助:
    国家自然科学基金项目(U1930205)

Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials

Yiling Tan1,2, Shichun Li1, Xi Yang1, Bo Jin2, Jie Sun1()   

  1. 1 Institute of Chemical Materials, China Academy of Engineering Physics,Mianyang 621900, China
    2 State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology,Mianyang 621010, China
  • Received:2021-10-28 Revised:2022-01-25 Online:2022-08-20 Published:2022-04-01
  • Contact: Jie Sun
  • Supported by:
    National Natural Science Foundation of China(U1930205)

金属氧化物半导体气体传感器是目前研究和应用最为广泛的气体传感器之一,具有高灵敏、长寿命和低成本等优点。然而,金属氧化物半导体气敏材料在湿润环境中会与水蒸气发生相互作用,导致传感器的基线电阻发生漂移,气敏性能受到显著影响,成为传感器应用中面临的瓶颈问题。针对该问题,研究者们从抑制水的表面吸附、水与氧的竞争吸附及调控水与吸附氧的反应三个方面开发了一些金属氧化物半导体气敏材料的抗湿性能提升策略,从而提升金属氧化物半导体气敏材料的抗湿性。本文对水蒸气的影响机理进行了分析,对三类抗湿提升策略的未来发展提出展望,有望为金属氧化物半导体气敏材料抗湿性能的提升提供解决思路与方法指导。

Metal oxide semiconductors-based chemiresistive gas sensors have been extensively researched and applied to detect gas molecules due to their advantages of high sensitivity, long service life, and low cost. However, the interactions between the sensing layer and water molecules cause variations of the baseline resistance and surface state, and thus the gas sensing performance is significantly affected by ambient water molecules, resulting in a bottleneck in applications. To solve this problem, researchers have developed many strategies to improve the anti-humidity performance of metal oxides based on these concepts of inhibiting the surface adsorption of water, suppressing the competitive adsorption between water molecules and oxygen species, or regulating the chemical reactions between water molecules and adsorbed oxygen. The specific approaches of the mentioned strategies are summarized as follows. (1) Introducing the hydrophobic and breathable coating on the surface of the gas sensing layer, which can physically prevent water molecules from touching the surface of sensing layers and directly eliminate the damage. (2) By doping the gas-sensitive material with hydroxyl absorbents, the water molecules will preferentially adsorb on the surface of hydroxyl absorbents, thereby inhibiting the competition adsorption between vapor and oxygen at active reaction sites. (3) Adjust the chemical adsorption characteristics of oxygen anions on the surface, change the chemical and electronic effects of the surface, or reduce the adsorbed oxygen that has formed hydroxyl groups with water, inhibit the reaction process of water and oxygen, and maintain the concentration of adsorbed oxygen, thereby improving the anti-humidity performance of the semiconductor gas sensors. Here, the influence mechanism of the water molecule on gas sensing performance is analyzed and the future development of the mentioned anti-humidity promotion strategies has been prospected. This article is expected to provide solutions and method guidance for the improvement in the anti-humidity performance of gas-sensitive materials based on metal oxide semiconductors.

Contents

1 Introduction

2 Mechanisms by which humidity affects the sensing property of metal oxide semiconductor gas sensitive materials

3 Research progress of anti-humidity strategies

3.1 Hydrophobic and breathable coating

3.2 Hydroxyl absorbent

3.3 Surface oxygen adsorption regulation

4 Conclusion and outlook

()
图1 (a) 金属氧化物半导体气体传感器研究文献统计数量图 (b) 金属氧化物半导体气体传感器研究排名前十的国家文献统计数量图(2012-2022)
Fig. 1 (a) Statistical quantity chart of research literature on metal oxide semiconductor gas sensors (b) Statistics of the top ten national literature statistics for metal oxide semiconductor gas sensor research(2012-2022)
图2 金属氧化物半导体气体传感器气敏机理(以SnO2气敏膜对CO的响应为例)[15⇓~17]
Fig. 2 Gas sensing mechanism of metal oxide semiconductor gas sensor (take the response of SnO2 gas sensing film to CO as an example)[15⇓~17]
图3 金属氧化物半导体气敏材料抗湿策略示意图
Fig. 3 Schematic diagram of anti-humidity strategy of metal oxide semiconductor gas sensitive material
图4 (a) 聚二甲基硅氧烷(PMDS)修饰Pd-TiO2纳米管阵列提升其抗湿性示意图;不同湿度下,Pd-TiO2纳米管(b)和表面包覆PDMS的Pd-TiO2纳米管(c)对不同浓度氢气的响应曲线[24]
Fig. 4 (a) Polydimethylsiloxane (PMDS) modified Pd-TiO2 nanotube array to improve its moisture resistance; under different humidity, Response curve of Pd-TiO2 nanotubes (b) and PDMS-coated Pd-TiO2 nanotubes (c) to different concentrations of hydrogen[24]
图5 (a)MOFs修饰金属氧化物半导体纳米线阵列提升气体传感器抗湿性示意图;(b)ZnO@ZIF-CoZn基气体传感器在260 ℃温度下,对干燥环境中不同浓度丙酮和10 ppm丙酮浓度在相对湿度0~90%范围内的气敏响应;(c)ZnO基传感器与ZnO@ZIF-CoZn基传感器在丙酮浓度10 ppm、环境温度260 ℃下,在0~90 RH%范围内的变化系数[34]
Fig. 5 (a) MOFs modified metal oxide semiconductor nanowire array to improve its moisture resistance; Gas sensing properties of ZnO@ZIF-CoZn sensor: (b) response-recovery curves of ZnO@5 nm ZIF-CoZn to acetone with different concentrations in dry air and to 10 ppm acetone with different relative humidity; (c) Coefficients of variation of the sensors by varying RH from 0% to 90% (acetone 10 ppm, 260 ℃)[34]
图6 (a) SnO2空心微球TEM图;(b) SnO2空心微球负载CuO的HR-TEM图;(c~f) CuO负载SnO2空心微球的TEM图及元素扫描图;(g) SnO2及CuO-SnO2气敏材料在不同温度和不同湿度下对H2S气体的响应性能[44]
Fig. 6 (a) TEM image of SnO2 hollow microspheres; (b) HR-TEM image of SnO2 hollow microspheres loaded with CuO; (c~f) TEM image and element scan image of CuO-loaded SnO2 hollow microspheres; (g) The response performance of SnO2 and CuO-SnO2 gas-sensitive materials to H2S gas at different temperatures and different humidity[44]
图7 (a) SnO2、Sb-SnO2、Pd/Sb-SnO2在不同湿度条件对氢气的响应特性;(b) Pd/Sb-SnO2提升其氢敏性能及抗湿性能的机制示意图[50]
Fig. 7 (a) The response characteristics of SnO2, Sb-SnO2, Pd/Sb-SnO2 to hydrogen under different humidity conditions; (b) The schematic diagram of the mechanism of Pd/Sb-SnO2 improving its hydrogen sensitivity and moisture resistance[50]
表1 不同抗湿稳定性改性策略的效果总结
Table 1 Literature summary of different anti-humidity stability modification strategies
[1]
Hodgins D, Sensors and Actuators B: Chemical., 1995, 27: 255.

doi: 10.1016/0925-4005(94)01597-B     URL    
[2]
Nanto H, Yokoi Y, Mukai T, Fujioka J, Kusano E, Kinbara A, Douguchi Y. Materials Science & Engineering C-Biomimetic and Supramolecular Systems., 2000, 12: 43.
[3]
Richter D, Lancaster D G, Tittel F K. Applied Optics. 2000, 39:4444.

pmid: 11543548
[4]
Buttner W, Burgess R, Post M, Rivkin C.(2012). Summary and findings from the NREL/DOE hydrogen sensor workshop (June 8, 2011) (No. NREL/TP-5600-55645). National Renewable Energy Lab.(NREL), Golden, CO (United States).
[5]
Penner R M. Accounts of Chemical Research., 2017, 50: 1902.

doi: 10.1021/acs.accounts.7b00163     URL    
[6]
Walker J M, Akbar S A, Morris P A. Sensors and Actuators B: Chemical., 2019, 286: 624.

doi: 10.1016/j.snb.2019.01.049     URL    
[7]
Hakim M, Broza Y Y, Barash O, Peled N, Phillips M, Amann A, Haick H. Chemical Reviews., 2012, 112: 5949.

doi: 10.1021/cr300174a     URL    
[8]
Henriksson J, Villanueva L G, Brugger J. Nanoscale., 2012, 4: 5059.

doi: 10.1039/c2nr30639e     pmid: 22767251
[9]
Qi P, Xu Z, Zhang T, Fei T, Wang R. Journal of Colloid and Interface Science., 2020, 560: 284.

doi: 10.1016/j.jcis.2019.10.080     URL    
[10]
Wetchakun K, Samerjai T, Tamaekong N, Liewhiran C, Siriwong C, Kruefu V, Wisitsoraat A, Tuantranont A, Phanichphant S. Sensors and Actuators B: Chemical., 2011, 160:580.

doi: 10.1016/j.snb.2011.08.032     URL    
[11]
Zhang J, Qin Z, Zeng D, Xie C. Physical Chemistry Chemical Physics., 2017, 19: 6313.

doi: 10.1039/c6cp07799d     pmid: 28198897
[12]
Navaneethan M, Patil V L, Ponnusamy S, Muthamizhchelvan C, Kawasaki S, Patil P S, Hayakawa Y. Sensors and Actuators B: Chemical., 2018, 255: 672.

doi: 10.1016/j.snb.2017.08.015     URL    
[13]
Li Z, Li H, Wu Z, Wang M, Luo J, Torun H, Hu P, Yang C, Grundmann M, Liu X, Fu Y. Materials Horizons., 2019, 6: 470.

doi: 10.1039/C8MH01365A     URL    
[14]
Mazhar M E, Faglia G, Comini E, Zappa D, Baratto C, Sberveglieri G. Sensors and Actuators B: Chemical., 2016, 222: 1257.

doi: 10.1016/j.snb.2015.05.050     URL    
[15]
Franke M E, Koplin T J, Simon U. Small., 2006, 2: 36.

doi: 10.1002/smll.200500261     URL    
[16]
Schierbaum K D, Weimar U, Göpel W, Kowalkowski R. Sensors and Actuators B: Chemical., 1991, 3: 205.

doi: 10.1016/0925-4005(91)80007-7     URL    
[17]
Yamazoe N, Sakai G, Shimanoe K. Catalysis Surveys from Asia., 2003, 7: 63.

doi: 10.1023/A:1023436725457     URL    
[18]
Sadek A Z, Choopun S, Wlodarski W, Ippolito S J, Kalantar-zadeh K. IEEE Sensors Journal., 2007, 7: 919.
[19]
Zhang Z, Yates J T. Chemical Reviews., 2012, 112: 5520.

doi: 10.1021/cr3000626     pmid: 22783915
[20]
Zhang W H, Zhang W D. Sensors and Actuators B: Chemical. 2008, 134: 403.

doi: 10.1016/j.snb.2008.05.015     URL    
[21]
Tang Y, Li L, Wang S, Cheng Q, Zhang J. Environmental Progress & Sustainable Energy., 2016, 35: 257.
[22]
Egashira M, Nakashima M, Kawasumi S, Selyama T. The Journal of Physical Chemistry., 1981, 85: 4125.

doi: 10.1021/j150626a034     URL    
[23]
Morimoto T, Nahao M, Tokuda F. The Journal of Physical Chemistry., 1969, 73: 243.

doi: 10.1021/j100721a039     URL    
[24]
Gao Z, Song G, Zhang X, Li Q, Yang S, Wang T, Li Y, Zhang L, Guo L, Fu Y. Sensors and Actuators B: Chemical., 2020, 325: 128810.
[25]
Cui F,.; Chen W,; Jin L. et.al. Journal of Materials Science: Materials in Electronics. 2018, 29, 19697.
[26]
Ji P, Hu X, Tian R, Zheng H, Sun J, Zhang W, Peng J. Journal of Materials Chemistry C., 2020, 8: 2927.

doi: 10.1039/C9TC06530J     URL    
[27]
Wu X, Xiong S, Mao Z, Hu S, Long X. Chemistry., 2017, 23: 7969.
[28]
Du B, Qi T, Li J, He Y, Yang X. Sensors and Actuators B: Chemical., 2021, 344: 130268.
[29]
Liu Z, Yang X, Sun J, Ma F. Materials Letters., 2018, 212: 283.

doi: 10.1016/j.matlet.2017.10.105     URL    
[30]
Koo W T, Jang J S, Kim I D. Chem., 2019, 5: 1938.

doi: 10.1016/j.chempr.2019.04.013     URL    
[31]
Li Y, Xiao A S, Zou B, Zhang H X, Yan K L, Lin Y. Polyhedron., 2018, 154: 83.

doi: 10.1016/j.poly.2018.07.028     URL    
[32]
Nandasiri M I, Jambovane S R, McGrail B P, Schaef H T, Nune S K. Coordination Chemistry Reviews., 2016, 311: 38.

doi: 10.1016/j.ccr.2015.12.004     URL    
[33]
Qian Q, Asinger P A, Lee M J, Han G, Mizrahi Rodriguez K, Lin S, Benedetti F, Wu A, Seok Chi W, Smith Z P. Chemical Reviews., 2020, 120: 8161.

doi: 10.1021/acs.chemrev.0c00119     URL    
[34]
Yao M S, Tang W X, Wang G E, Nath B, Xu G. Advanced materials., 2016, 28(26): 5229.

doi: 10.1002/adma.201506457     URL    
[35]
Nair S S, Illyaskutty N, Tam B, Yazaydin A O, Emmerich K, Steudel A, Hashem T, Schöttner L, Christof Wöll, Kohler H, Gliemann H. Sensors and Actuators B: Chemical., 2020, 304: 127184.
[36]
Qu F, Zhang S, Huang C, Guo X, Zhu Y, Thomas T, Guo H, Attfield J, Yang M. Angewandte Chemie International Edition., 2021, 60: 6561.

doi: 10.1002/anie.202015856     URL    
[37]
Sun Y, Zhao Z, Suematsu K, Li P, Yu Z, Zhang W, Hu J, Shimanoe K. ACS Sensors., 2020, 5: 1040.

doi: 10.1021/acssensors.9b02557     URL    
[38]
Urasinska-wojick B, Gardner J W. IEEE Sensors Journal., 2018, 18: 3502.

doi: 10.1109/JSEN.2018.2811462     URL    
[39]
Xu L, Ge M, Zhang F, Huang H, Sun Y, He D. Journal of Materials Research., 2020, 35: 3079.

doi: 10.1557/jmr.2020.239     URL    
[40]
Kim T H, Kwak C H, Lee J H. ACS Applied Materials & Interfaces., 2017, 9: 32034.
[41]
Kim H R, Haensch A, Kim I D, Barsan N, Weimar U, Lee J H. Advanced Functional Materials., 2011, 21: 4456.

doi: 10.1002/adfm.201101154     URL    
[42]
Xu L, Ge M, Zhang F, Huang H, Sun Y, He D. Journal of Materials Research., 2020, 35: 3079.

doi: 10.1557/jmr.2020.239     URL    
[43]
Qiu L, Wang P, Zhang S, Qu F, Guo H, Zhao R, Tiju T, Yao D, Yang M. Sensors and Actuators B: Chemical., 2020, 324: 128648.
[44]
Choi K I, Kim H J, Kang Y C, Lee J H. Sensors and Actuators B: Chemical., 2014, 194: 371.

doi: 10.1016/j.snb.2013.12.111     URL    
[45]
Sun Y, Zhao Z, Suematsu K, Li P, Yu Z, Zhang W, Hu J, Shimanoe K. ACS Sensors., 2020, 5: 1040.

doi: 10.1021/acssensors.9b02557     URL    
[46]
Yang M, Lu J, Wang X, Zhang H, Chen F, Sun J, Yang J, Sun Y, Lu, G. Sensors and Actuators B: Chemical., 2020, 313: 127965.
[47]
Gao H, Yu Q, Zhang S, Wang T, Sun P, Lu H, Lu F, Yan X, Liu F, Liang X, Gao Y, Lu G. Sensors and Actuators B: Chemical., 2018, 269: 210.

doi: 10.1016/j.snb.2018.04.161     URL    
[48]
Yang J, Han W, Ma J, Wang C, Shimanoe K, Zhang S, Sun Y, Cheng P, Wang Y, Zhang H, Lu G. Sensors and Actuators B: Chemical., 2021, 340: 129971.
[49]
Ma N, Suematsu K, Yuasa M, Kida T, Shimanoe K. ACS Applied Materials & Interfaces., 2015, 7: 5863.
[50]
Suematsu K, Sasaki M, Ma N, Yuasa M, Shimanoe K. ACS Sensors., 2016, 1: 913.

doi: 10.1021/acssensors.6b00323     URL    
[51]
Yoon J W, Kim J S, Kim T H, Hong Y J, Kang Y C, Lee J H. Small., 2016, 12: 4229.

doi: 10.1002/smll.201601507     URL    
[52]
Prabhakaran V, Arges C G, Ramani V. Proceedings of the National Academy of Sciences., 2012, 109: 1029.

doi: 10.1073/pnas.1114672109     URL    
[53]
Wang L, Advani S G, Prasad A K. Electrochimica Acta., 2013, 109: 775.

doi: 10.1016/j.electacta.2013.07.189     URL    
[54]
Tricoli A, Righettoni M, Pratsinis S. Nanotechnology., 2009, 20: 315502.
[55]
Bang J H, Kwon Y J, Lee J H, Mirzaei A, Lee H Y, Choi H, Kim S S, Jeong Y K, Kim H W. Journal of Hazardous Materials., 2021, 416, 125841.
[56]
Li H, Lee C S, Kim D H, Kim D H, Lee J H. ACS applied materials & interfaces., 2018, 10(33), 27858.
[57]
Kwak C H, Kim T H, Jeong S Y, Yoon J W, Kim J S, Kim J J, Lee J H. ACS applied materials & interfaces., 2018, 10(22), 18886.
[58]
Kim J S, Na C W, Kwak C H, Li H Y, Yoon J W, Kim J H, Kim J H, Jeong S Y, Lee J H. ACS applied materials & interfaces., 2019, 11(28), 25322.
[59]
Azimi G, Dhiman R, Kwon H M, Paxson A T, Varanasi K K. Nat. Mater., 2013,12, 315.
[60]
Manikandan A, Manikandan E, Meenatchi B, Vadivel S, Jaganathan S K, Ladchumananandasivam R, Henini M, Maaza M, Aanand J S. J. Alloy. Compd., 2019. 723, 1155.
[61]
Ahmed A, Siddique M N, Ali T, Tripathi P. Appl. Surf. Sci., 2019, 483, 463.
[62]
Kim K, Park J K, Lee J, Kwon Y J, Choi H, Yang S M, Lee J H, Jeong Y K. Journal of Hazardous Materials., 2022, 424, 127524.
[63]
Yao M S, Tang W X, Wang G E, Nath B, Xu G. Advanced Materials., 2016, 28: 5229.

doi: 10.1002/adma.201506457     URL    
[64]
Wang X, Wang L, Yang W, Ai S. Sensors and Actuators B: Chemical., 2014, 194: 276.

doi: 10.1016/j.snb.2013.12.068     URL    
[65]
Jeong S Y, Moon Y K, Kim J K, Park S W, Jo Y K, Kang Y C, Lee J H. Advanced Functional Materials., 2021, 31: 2007895.
[66]
Kwak C H, Kim T H, Jeong S Y, Yoon J W, Kim J S, Lee J H. ACS Applied Materials & Interfaces., 2018, 10: 18886.
[67]
Kim J S, Na C W, Kwak C H, Li H Y, Yoon J W, Kim J H, Jeong S Y, Lee J H. ACS Applied Materials & Interfaces., 2019, 11: 25322.
[68]
Suematsu, K,.; Ma, N,.; Yuasa, M.. et.al. RSC Advances. 2015, 5, 86347.
[69]
Choi K I, Hwang S J, Dai Z, Kang Y C, Lee J H. RSC Advances., 2014, 4: 53130.
[70]
Liu Y, Yao S, Yang Q, Sun P, Gao Y, Liang X, Liu F, Lu G. RSC Advances., 2015, 5: 52252.
[71]
Ghosh S, Ilango M S, Prajapati C S, Bhat N. Crystal Research and Technology., 2021, 56(1): 2000155.
[72]
Weber I C, Braun H P, Krumeich F, Güntner A T, Pratsinis S E. Advanced Science., 2020, 7(19): 2001503.
[73]
Yan M, Wu Y, Hua Z, Lu N, Sun W, Zhang J, Fan S. Sensors and Actuators B: Chemical., 2021, 334: 129601.
[74]
Dmitrzak M, Jasiński P, Jasiński G. Bulletin of the Polish Academy of Sciences-Technical Sciences., 2020, 68: 1275.
[1] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[2] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[3] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[4] 金士成, 闫爽. 金属氧化物室温气敏材料的结构调控及传感机理[J]. 化学进展, 2021, 33(12): 2348-2361.
[5] 张志, 邹晨涛, 杨水金. 基于钨(钼)酸铋半导体复合材料的合成及其在光催化降解中的应用[J]. 化学进展, 2020, 32(9): 1427-1436.
[6] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.
[7] 朱蕾, 王嘉楠, 刘建伟, 王玲, 延卫. 静电纺丝一维纳米材料在气敏传感器的应用[J]. 化学进展, 2020, 32(2/3): 344-360.
[8] 乔少明, 黄乃宝, 高正远, 周仕贤, 孙银. 超级电容器用镍锰基二元金属氧化物电极材料[J]. 化学进展, 2019, 31(8): 1177-1186.
[9] 李丹, 刘玉荣, 林保平, 孙莹, 杨洪, 张雪勤. 超级电容器用石墨烯/金属氧化物复合材料[J]. 化学进展, 2015, 27(4): 404-415.
[10] 周丽, 邓慧萍, 张为. 可见光响应的银系光催化材料[J]. 化学进展, 2015, 27(4): 349-360.
[11] 张慧, 周雅静, 宋肖锴. 基于金属-有机骨架前驱体的先进功能材料[J]. 化学进展, 2015, 27(2/3): 174-191.
[12] 翟康, 李孔斋, 祝星, 魏永刚. 两步热化学分解水制氢用氧交换材料[J]. 化学进展, 2015, 27(10): 1481-1499.
[13] 庞义军, 陈晓晖, 许承志, 雷阳军, 魏可镁. 丙烯气相环氧化催化剂及其机理研究[J]. 化学进展, 2014, 26(08): 1307-1316.
[14] 何菡娜, 王海燕, 唐有根, 刘又年. 钠离子电池负极材料[J]. 化学进展, 2014, 26(04): 572-581.
[15] 白莹, 李雨, 仲云霞, 陈实, 吴锋, 吴川. 锂离子电池富锂过渡金属氧化物xLi2MnO3·(1-x)LiMO2(M=Ni,Co或Mn)正极材料[J]. 化学进展, 2014, 26(0203): 259-269.