English
新闻公告
More
化学进展 2023, Vol. 35 Issue (1): 105-118 DOI: 10.7536/PC220622 前一篇   后一篇

• 综述 •

表面合成异质原子掺杂的石墨烯纳米带

张永, 张辉, 张逸, 高蕾, 卢建臣*(), 蔡金明*()   

  1. 昆明理工大学 材料科学与工程学院 昆明 650093
  • 收稿日期:2022-06-17 修回日期:2022-09-13 出版日期:2023-01-24 发布日期:2022-10-30
  • 基金资助:
    国家自然科学基金项目(62271238); 国家自然科学基金项目(61901200); 云南省基础研究计划项目(202101AV070008); 云南省基础研究计划项目(202101AW070010); 云南省基础研究计划项目(202201AT070078); 中国科学院先导计划项目(XDB30000000); 东莞创新研究团队计划项目资助

Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons

Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu(), Jinming Cai()   

  1. Faculty of Materials Science and Engineering, Kunming University of Science and Technology,Kunming 650093, China
  • Received:2022-06-17 Revised:2022-09-13 Online:2023-01-24 Published:2022-10-30
  • Contact: *e-mail: jclu@kust.edu.cn(Jianchen Lu); j.cai@kust.edu.cn(Jinming Cai)
  • Supported by:
    National Natural Science Foundation of China(62271238); National Natural Science Foundation of China(61901200); Yunnan Fundamental Research Projects(202101AV070008); Yunnan Fundamental Research Projects(202101AW070010); Yunnan Fundamental Research Projects(202201AT070078); Strategic Priority Research Program of Chinese Academy of Sciences(XDB30000000); Dongguan Innovation Research Team Program

超高真空环境下,通过自下而上的方法原子级精确合成石墨烯纳米带是打开石墨烯带隙的重要方法。合理地设计带有异质原子(如硼、氮、氧等)的前驱体分子可以合成异质原子掺杂的石墨烯纳米带。掺杂的异质原子可以显著地调制石墨烯纳米带的电学、磁学等物理化学性质,并且调控的效果与异质原子的种类、位置、密度等密切相关。本文综述了近些年来利用分子束外延方法,在表面上合成异质原子掺杂的石墨烯纳米带的研究进展,同时对掺杂石墨烯纳米带的应用前景进行了展望。

Atomically precise bottom-up synthesis of graphene nanoribbons under ultra-high vacuum condition is an important tool to open band gap of graphene. Rational design of precursor molecules with heteroatoms (boron, nitrogen, oxygen, sulfur, etc.) allows the synthesis of heteroatoms-doped graphene nanoribbons. Furthermore, heteroatoms-dopant can precisely tune the electrical, magnetic, and other physicochemical properties of graphene nanoribbons. The doping effect is closely related to the type, location and density of heteroatoms. In this review, we summarize the recent research progress on the synthesis and application prospects of heteroatoms-doped graphene nanoribbons based on the molecular beam epitaxy method. The applications of doped graphene nanoribbon are also propected.

Contents

1 Introduction

2 Armchair GNRs doped with heteroatoms

2.1 Sing-heteroatom doped Armchair GNRs

2.2 Multiple-heteroatom doped Armchair GNRs

2.3 Other doped AGNRs

3 Chiral GNRs doped with heteroatoms

4 Chevron GNRs doped with heteroatoms

4.1 Sing-heteroatom doped Chevron GNRs

4.2 Multiple-heteroatom doped Chevron GNRs

4.3 Chevron GNR heterojunctions

5 Zigzag GNRs doped with heteroatoms

6 Conclusion and outlook

()
图1 自下而上合成GNRs的反应示意图及GNRs的四种主要类型
Fig. 1 Reaction schemes for bottom-up fabrications of atomically precise GNRs and four main types of GNRs
表1 不同的前驱体分子以及其合成对应宽度的GNRs
Table 1 Different precursors and synthesized corresponding width of GNRs
图2 AGNRs的理论和实验带宽:(a)AGNRs带隙随宽度的变化曲线.三组AGNRs用不同的符号表示,开放符号为LDA计算带隙, 固体符号为GW计算带隙[11];(b,c)3p AGNRs的STM图以及相对应的STS谱[7];(d~f)3p+1 AGNRs的STS谱[3,8,20];(g~i)3p+2 AGNRs的STS谱[3,20,22]
Fig. 2 Theoretical and experimental band gap of AGNRs. (a) Variation of band gaps with the width of AGNRs. The three families of AGNRs are represented by different symbols. The open symbols are LDA band gaps while the solid symbols are the corresponding GW band gaps[11]; (b,c) The STM image and the corresponding STS spectra of 3p AGNRs[7]; (d~f) STS spectra of 3p+1 AGNRs[3,8,20]; (g~i) STS spectra of 3p+2 AGNRs[3,20,22]
图3 (a)表面合成BB-GNRs的反应示意图[23];(b)BB-GNR的NC-AFM图;(c)BB-GNR四个不同位点及一个Au(111)位点的dI/dV谱;(d)NO分子在BB-GNRs的STM形貌,蓝色、红色和黄色箭头分别表示NO分子吸附在Au(111)、扶手边缘和BB-GNRs的硼位点;(e)表面合成2B-GNRs的反应示意图[14];(f)2B-GNR的STM图;(g)B原子掺杂引入两个掺杂态的dI/dV maps(h)2B-GNR的带结构计算图[24]
Fig. 3 (a) Schematic drawing of the on-surface synthesis of BB-GNRs[23]; (b) NC-AFM image of BB-GNR; (c) Differential conductance (dI/dV) spectra taken at four different sites of BB-GNR and one Au(111) site; (d) STM topography of BB-GNRs with NO molecules. Blue, red and yellow arrows indicate NO molecules attached at the elbow of herringbone structure on Au(111), the armchair edge, and the boron site of the BB-GNRs, respectively; (e) Schematic drawing of the on-surface synthesis of 2B-GNRs[14]; (f) STM image of 2B-GNR; (g) dI/dV maps of two doping states induced by two B atoms; (h) Band structures calculated of 2B-GNR by DFT within LDA[24]
图4 不同种类的N原子对GNRs结构和电学性质的影响[29]:(a)表面合成N=9 N-doped AGNRs的反应示意图;(b,c)不同种类N原子的STM图像、BR-STM图像和结构模型图;(d)N-doped GNRs不同氮原子位置处的dI/dV谱;(e,f)周期性吡啶氮和石墨氮原子掺杂的GNRs的带结构计算图
Fig. 4 Effects of different kinds of N atoms on the structure and electrical properties of GNRs[29]: (a) The synthetic strategy for the N=9 N-doped AGNRs; (b,c) STM images, BR-STM images and structural model images of different kinds of N atoms, respectively; (d) dI/dV spectra taken at different N-doped sites of the N-9-AGNR obtained with a CO functionalized tip; (e,f) Calculated electronic structures and charge distributions of two different periodic N-doped GNRs, respectively
图5 (a)表面合成N=13 S-AGNR的反应示意图;(b)N=13 S-AGNR的STM图像;(c)S-AGNRs不同位置处的dI/dV谱;(d)S掺杂AGNR和未掺杂的AGNR带结构的计算;(e)实验的dI/dV谱图与计算的DOS图的比较[30]
Fig. 5 (a) Reaction scheme for bottom-up synthesis of N=13 S-AGNRs; (b) STM image of a fully cyclized N=13 S-AGNR; (c) dI/dV spectra of S-AGNRs at different spatial positions; (d) Computed band structures of a S-AGNR and a pristine AGNR; (e) Experimental dI/dV spectra compared to the calculated density of states (DOS)[30]
图6 多原子掺杂的AGNRs[31]:(a)前驱体分子的结构式;(b~d)不同耦合路径所形成的NC-AFM图像;(e)模拟的BN-AGNRs原子结构示意图;(f)在BN-GNR中不同元素位置处的力谱测量;(g)BN-GNRs不同元素处的键长测量;(h)BN-GNRs不同元素处的电荷密度计算;(i~l)BN-GNRs不同位置处的dI/dV谱
Fig. 6 Synthesis of multiple heteroatom-substituted AGNRs[31]. (a) The structure formula of precursor molecule; (b~d) NC-AFM images formed by three different coupling paths; (e) Simulated atomic structure and NC-AFM images; (f) Force spectroscopic measurements taken at different elements in the BN-GNR; (g) Analysis of the bond lengths in the NC-AFM image; (h) Calculated valence electron density of BN-GNR; (i~l) dI/dV spectra taken at different sites of BN-GNR
图7 (a)表面合成孔洞型GNRs的反应示意图;(b,c)孔洞型GNRs的NC-AFM图和BR-STM图;(d)孔洞型GNR的dI/dV 谱;(e)孔洞型GNR的带结构计算[17]
Fig. 7 (a) Reaction scheme for bottom-up synthesis of porous GNRs; (b,c) STM image and NC-AFM image of porous GNRs; (d) dI/dV spectra of porous GNR; (e) Band structure of porous GNR[17]
图8 (a)表面合成chGNRs的反应示意图;(b)chGNRs的STM图;(c)chGNR的dI/dV谱[12]
Fig. 8 (a) Reaction scheme for bottom-up synthesis of chGNRs; (b) STM image of the reacted chGNRs; (d) dI/dV spectra of chGNR[12]
图9 OBO单元掺杂的chGNRs[39]:(a)表面合成OBO-chGNRs的反应路线图;(b,c)OBO-chGNR的STM图及对应的NC-AFM图;(d)OBO-chGNR的dI/dV谱;(e)从左到右依次为OBO-chGNR中O原子所在位置(黄线)、B原子所在位置 (绿线)及未掺杂chGNR的带结构计算
Fig. 9 OBO-doped chGNRs[39]. (a) Reaction route for bottom-up synthesis of OBO-chGNRs; (b,c) STM image of the reacted OBO-chGNRs and corresponding NC-AFM image; (d) dI/dV spectra of OBO-chGNR; (e) Band structure of the oxygen 2p orbital weight (orange) of the bands, the boron 2p orbital weight (green) and the pristine chGNR
图10 N掺杂的Chiral型GNRs[40]:(a)表面合成N-chGNRs的反应路线图;(b)N-chGNRs的STM图;(c,d)N-chGNRs的XPS图;(e~h)Au基底、polymers和N-chGNRs的角度分辨紫外光电子能谱图
Fig. 10 N-doped chGNRs[40]. (a) Reaction route for bottom-up synthesis of N-chGNRs; (b) STM image of the reacted N-chGNRs; (c,d) XPS image of the reacted N-chGNRs; (e~h) The angle-resolved ultraviolet photoelectron spectroscopy characterization of bare gold, the precursor polymers, and the GNRs
表2 不同前驱体分子合成不同带宽的V型GNRs[6,8,15,41? ~43]
Table 2 On-synthesis different bandwidths VGNRs by different precursor molecules[6,8,15,41? ~43]
图11 (a~c)N-VGNRs、2N-VGNRs、S-VGNRs的STM图像;(d)N-VGNR的dI/dV谱[44];(e)NN-VGNR在不同空间位置的dI/dV谱[45];(f)不同结构组成的S-VGNR示意图及其对应的PDOS图[46]
Fig. 11 (a~c) STM image of the N-VGNRs, 2N-VGNRs and S-VGNRs; (d) dI/dV spectra of N-VGNR[44]; (e) dI/dV spectra of NN-VGNR at different spatial positions[45]; (f) Schematic structures and the corresponding calculated PDOS of S-VGNR composed of distinct segments[46]
图12 (a)分子前驱体的结构图;(b~d)三种不同掺杂VGNRs的STM图和NC-AFM图;(e)三种不同掺杂VGNRs和原始VGNR的dI/dV谱;(f)计算所得的三种不同掺杂VGNRs和原始VGNR在Γ点附近的能级[48]
Fig. 12 (a) Structure profile of three different precursor molecules; (b~d) STM image and NC-AFM image of three doped VGNRs; (e) dI/dV spectra of three doped VGNRs and pristine VGNR; (f) Calculated energy levels at the Γ point of three doped VGNRs and pristine VGNR near the band gap[48]
图13 不同类型的半导体异质结[49]
Fig. 13 Different types of semiconductor heterojunctions[49]
图14 自下而上合成p-N-VGNRs异质结[18]:(a)p-N-VGNRs异质结的反应路径图;(b)p-N-VGNRs异质结的STM图;(c)p-N-VGNRs异质结在不同偏压下的dI/dV maps;(d,e)p-VGNR和N-VGNR带结构的计算;(g)p-N-VGNRs异质结在界面处的电子迁移率变化图;(f~h)p-N-VGNRs异质结在界面处的LDOS图
Fig. 14 Bottom-up fabrication of p-N-VGNRs heterojunctions[18]. (a) Reaction route for bottom-up synthesis of p-N-VGNRs heterojunctions; (b) STM image of p-N-VGNRs heterojunctions; (c) Differential conductance dI/dV maps of p-N-VGNRs heterojunctions; (d,e) Computed band structures of p-VGNR and N-VGNR; (g) The change in electrostatic potential across the interface region of p-N-VGNRs heterojunctions; (f~h) The LDOS across the p-N-VGNRs heterojunction.
图15 自下而上合成ZGNRs[2]:(a)前驱体分子的结构示意图;(b)ZGNRs的NC-AFM图;(c)将ZGNR桥接在NaCl岛上的STM图;(d)ZGNR的dI/dV谱;(e,f)ZGNR在不同偏压下的dI/dV maps及对应的LDOS图
Fig. 15 Bottom-up fabrication of ZGNRs[2]. (a) Structure profile of precursor molecule; (b) NC-AFM image of ZGNRs; (c) STM image of a ZGNR bridging between two NaCl monolayer islands; (d) dI/dV spectra of ZGNR; (e,f) dI/dV maps of ZGNR taken at different bias and corresponding LDOS of ZGNR
图16 自下而上合成NBN-ZGNRs[51]:(a~e)两种NBN-ZGNRs的前驱体分子, STM图和NC-AFM图;(f~i)两种NBN-ZGNRs的dI/dV谱及对应的DOS图;(j~m)两种NBN-ZGNRs中NBN单元被氧化成自由阳离子的能带结构
Fig. 16 Bottom-up fabrication of two kinds of NBN-ZGNRs[51]. (a~e) Precursor molecules, STM image and NC-AFM image of two kinds of NBN-ZGNRs; (f~i) dI/dV maps and corresponding DOS of two kinds of NBN-ZGNRs; (j~m) DFT calculated band structures of NBN-ZGNR1 radical cations and NBN-ZGNR2 radical cations, in which each NBN unit loses one electron
图17 自下而上合成N-ZGNR[52]:(a)前驱体分子的结构示意图;(b)大面积N-ZGNRs的STM图像;(c)N-ZGNR的dI/dV谱;(d)ZGNR 和N-ZGNR的能带结构的DFT计算
Fig. 17 Bottom-up fabrication of ZGNRs[52]. (a) Structure profile of precursor molecule; (b) STM topographic image of fully cyclized N-ZGNRs; (c) dI/dV spectra of N-ZGNR; (d) Band structure of freestanding ZGNR (grey) and N-ZGNR (red) calculated using the same dimension unit cell
[1]
Yang L, Park C H, Son Y W, Cohen M L, Louie S G. Phys. Rev. Lett., 2007, 99(18): 186801.

doi: 10.1103/PhysRevLett.99.186801     URL    
[2]
Ruffieux P, Wang S Y, Yang B, Sánchez-Sánchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X L, Müllen K, Fasel R. Nature, 2016, 531(7595): 489.

doi: 10.1038/nature17151     URL    
[3]
Yamaguchi J, Hayashi H, Jippo H, Shiotari A, Ohtomo M, Sakakura M, Hieda N, Aratani N, Ohfuchi M, Sugimoto Y, Yamada H, Sato S. Commun. Mater., 2020, 1: 36.

doi: 10.1038/s43246-020-0039-9     URL    
[4]
Han P, Akagi K, Federici Canova F, Mutoh H, Shiraki S, Iwaya K, Weiss P S, Asao N, Hitosugi T. ACS Nano, 2014, 8(9): 9181.

doi: 10.1021/nn5028642     URL    
[5]
Liu M Z, Liu M X, She L M, Zha Z Q, Pan J L, Li S C, Li T, He Y Y, Cai Z Y, Wang J B, Zheng Y, Qiu X H, Zhong D Y. Nat. Commun., 2017, 8: 14924.

doi: 10.1038/ncomms14924     URL    
[6]
Panighel M, Quiroga S, Brandimarte P, Moreno C, Garcia-Lekue A, Vilas-Varela M, Rey D, Sauthier G, Ceballos G, Peña D, Mugarza A. ACS Nano, 2020, 14(9): 11120.

doi: 10.1021/acsnano.0c01837     pmid: 32804481
[7]
Merino-Díez N, Garcia-Lekue A, Carbonell-Sanromà E, Li J C, Corso M, Colazzo L, Sedona F, Sánchez-Portal D, Pascual J I, de Oteyza D G. ACS Nano, 2017, 11(11): 11661.

doi: 10.1021/acsnano.7b06765     pmid: 29049879
[8]
Cai J M, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X L, Müllen K, Fasel R. Nature, 2010, 466(7305): 470.

doi: 10.1038/nature09211     URL    
[9]
Jiao L Y, Zhang L, Wang X R, Diankov G, Dai H J. Nature, 2009, 458(7240): 877.

doi: 10.1038/nature07919     URL    
[10]
Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M. Nature, 2009, 458(7240): 872.

doi: 10.1038/nature07872     URL    
[11]
Houtsma R S K, de la Rie J, Stöhr M. Chem. Soc. Rev., 2021, 50(11): 6541.

doi: 10.1039/d0cs01541e     pmid: 34100034
[12]
Jacobse P H, Mangnus M J J, Zevenhuizen S J M, Swart I. ACS Nano, 2018, 12(7): 7048.

doi: 10.1021/acsnano.8b02770     pmid: 29939719
[13]
di Giovannantonio M, Deniz O, Urgel J I, Widmer R, Dienel T, Stolz S, Sánchez-Sánchez C, Muntwiler M, Dumslaff T, Berger R, Narita A, Feng X L, Müllen K, Ruffieux P, Fasel R. ACS Nano, 2018, 12(1): 74.

doi: 10.1021/acsnano.7b07077     pmid: 29200262
[14]
Friedrich N, Brandimarte P, Li J C, Saito S, Yamaguchi S, Pozo I, Peña D, Frederiksen T, Garcia-Lekue A, Sánchez-Portal D, Pascual J I. Phys. Rev. Lett., 2020, 125(14): 146801.

doi: 10.1103/PhysRevLett.125.146801     URL    
[15]
Nguyen G D, Tsai H Z, Omrani A A, Marangoni T, Wu M, Rizzo D J, Rodgers G F, Cloke R R, Durr R A, Sakai Y, Liou F, Aikawa A S, Chelikowsky J R, Louie S G, Fischer F R, Crommie M F. Nat. Nanotechnol., 2017, 12(11): 1077.

doi: 10.1038/nnano.2017.155     pmid: 28945240
[16]
Carbonell-Sanromà E, Hieulle J, Vilas-Varela M, Brandimarte P, Iraola M, Barragán A, Li J C, Abadia M, Corso M, Sánchez-Portal D, Peña D, Pascual J I. ACS Nano, 2017, 11(7): 7355.

doi: 10.1021/acsnano.7b03522     pmid: 28636331
[17]
Pawlak R, Liu X S, Ninova S, D’Astolfo P, Drechsel C, Sangtarash S, Häner R, Decurtins S, Sadeghi H, Lambert C J, Aschauer U, Liu S X, Meyer E. J. Am. Chem. Soc., 2020, 142(29): 12568.

doi: 10.1021/jacs.0c03946     pmid: 32589029
[18]
Cai J M, Pignedoli C A, Talirz L, Ruffieux P, Söde H, Liang L B, Meunier V, Berger R, Li R J, Feng X L, Müllen K, Fasel R. Nat. Nanotechnol., 2014, 9(11): 896.

doi: 10.1038/nnano.2014.184     URL    
[19]
Jacobse P H, McCurdy R D, Jiang J W, Rizzo D J, Veber G, Butler P, Zuzak R, Louie S G, Fischer F R, Crommie M F. J. Am. Chem. Soc., 2020, 142(31): 13507.

doi: 10.1021/jacs.0c05235     pmid: 32640790
[20]
Sun K W, Ji P H, Zhang J J, Wang J X, Li X C, Xu X, Zhang H M, Chi L F. Small, 2019, 15(15): 1804526.

doi: 10.1002/smll.201804526     URL    
[21]
Chen Y C, de Oteyza D G, Pedramrazi Z, Chen C, Fischer F R, Crommie M F. ACS Nano, 2013, 7(7): 6123.

doi: 10.1021/nn401948e     URL    
[22]
Kimouche A, Ervasti M M, Drost R, Halonen S, Harju A, Joensuu P M, Sainio J, Liljeroth P. Nat. Commun., 2015, 6: 10177.

doi: 10.1038/ncomms10177     pmid: 26658960
[23]
Kawai S, Saito S, Osumi S, Yamaguchi S, Foster A S, Spijker P, Meyer E. Nat. Commun., 2015, 6: 8098.

doi: 10.1038/ncomms9098     URL    
[24]
Pedramrazi Z, Chen C, Zhao F Z, Cao T, Nguyen G D, Omrani A A, Tsai H Z, Cloke R R, Marangoni T, Rizzo D J, Joshi T, Bronner C, Choi W W, Fischer F R, Louie S G, Crommie M F. Nano Lett., 2018, 18(6): 3550.

doi: 10.1021/acs.nanolett.8b00651     pmid: 29851493
[25]
Cloke R R, Marangoni T, Nguyen G D, Joshi T, Rizzo D J, Bronner C, Cao T, Louie S G, Crommie M F, Fischer F R. J. Am. Chem. Soc., 2015, 137(28): 8872.

doi: 10.1021/jacs.5b02523     pmid: 26153349
[26]
Ruffieux P, Cai J M, Plumb N C, Patthey L, Prezzi D, Ferretti A, Molinari E, Feng X L, Müllen K, Pignedoli C A, Fasel R. ACS Nano, 2012, 6(8): 6930.

doi: 10.1021/nn3021376     pmid: 22853456
[27]
Biel B, Blase X, Triozon F, Roche S. Phys. Rev. Lett., 2009, 102(9): 096803.

doi: 10.1103/PhysRevLett.102.096803     URL    
[28]
da Costa Azevêdo A S, Saraiva-Souza A, Meunier V, Girão E C. Phys. Chem. Chem. Phys., 2021, 23(23): 13204.

doi: 10.1039/D1CP00197C     URL    
[29]
Zhang Y, Lu J C, Li Y, Li B J, Ruan Z L, Zhang H, Hao Z L, Sun S J, Xiong W, Gao L, Chen L, Cai J M. Angewandte. Chemie. Int. Ed., 2022, 61(28): e202204736.
[30]
Nguyen G D, Toma F M, Cao T, Pedramrazi Z, Chen C, Rizzo D J, Joshi T, Bronner C, Chen Y C, Favaro M, Louie S G, Fischer F R, Crommie M F. J. Phys. Chem. C, 2016, 120(5): 2684.

doi: 10.1021/acs.jpcc.5b09986     URL    
[31]
Kawai S, Nakatsuka S, Hatakeyama T, Pawlak R, Meier T, Tracey J, Meyer E, Foster A S. Sci. Adv., 2018, 4(4): eaar7181.
[32]
Chong M C, Reecht G, Bulou H, Boeglin A, Scheurer F, Mathevet F, Schull G. Phys. Rev. Lett., 2016, 116(3): 036802.

doi: 10.1103/PhysRevLett.116.036802     URL    
[33]
Pedersen T G, Flindt C, Pedersen J, Mortensen N A, Jauho A P, Pedersen K. Phys. Rev. Lett., 2008, 100(18): 189905.

doi: 10.1103/PhysRevLett.100.189905     URL    
[34]
Tan H X, Liu T Q, Zhang X, Shan Q, Chen J, Li Z, Ihara H, Qiu H D. Anal. Chem., 2020, 92(20): 13630.

doi: 10.1021/acs.analchem.0c02446     URL    
[35]
Moreno C, Vilas-Varela M, Kretz B, Garcia-Lekue A, Costache M V, Paradinas M, Panighel M, Ceballos G, Valenzuela S O, Peña D, Mugarza A. Science, 2018, 360(6385): 199.

doi: 10.1126/science.aar2009     pmid: 29650671
[36]
Talirz L, Söde H, Dumslaff T, Wang S Y, Sanchez-Valencia J R, Liu J, Shinde P, Pignedoli C A, Liang L B, Meunier V, Plumb N C, Shi M, Feng X L, Narita A, Müllen K, Fasel R, Ruffieux P. ACS Nano, 2017, 11(2): 1380.

doi: 10.1021/acsnano.6b06405     URL    
[37]
Akatyeva E, Dumitrică T. J. Chem. Phys., 2012, 137(23): 234702.

doi: 10.1063/1.4770002     URL    
[38]
Keerthi A, Sánchez-Sánchez C, Deniz O, Ruffieux P, Schollmeyer D, Feng X L, Narita A, Fasel R, Müllen K. Chem. Asian J., 2020, 15(22): 3807.

doi: 10.1002/asia.202001008     URL    
[39]
Wang X Y, Urgel J I, Barin G B, Eimre K, di Giovannantonio M, Milani A, Tommasini M, Pignedoli C A, Ruffieux P, Feng X L, Fasel R, Müllen K, Narita A. J. Am. Chem. Soc., 2018, 140(29): 9104.

doi: 10.1021/jacs.8b06210     URL    
[40]
Feng Z J, Mazaheripour A, Dibble D J, Wagner P, Czap G, Kladnik G, Cossaro A, Verdini A, Floreano L, Bavdek G, Ho W, Comelli G, Cvetko D, Morgante A, Gorodetsky A A. Carbon, 2020, 170: 677.

doi: 10.1016/j.carbon.2020.07.018     URL    
[41]
Shekhirev M, Zahl P, Sinitskii A. ACS Nano, 2018, 12(8): 8662.

doi: 10.1021/acsnano.8b04489     pmid: 30085655
[42]
Teeter J D, Zahl P, Mehdi Pour M, Costa P S, Enders A, Sinitskii A. ChemPhysChem, 2019, 20(18): 2281.

doi: 10.1002/cphc.201900445     pmid: 31185134
[43]
Marangoni T, Haberer D, Rizzo D J, Cloke R R, Fischer F R. Chem. Eur. J., 2016, 22(37): 13037.

doi: 10.1002/chem.201603497     URL    
[44]
Zhang Y, Zhang Y F, Li G, Lu J C, Lin X, Du S X, Berger R, Feng X L, Müllen K, Gao H J. Appl. Phys. Lett., 2014, 105(2): 023101.

doi: 10.1063/1.4884359     URL    
[45]
Vo T H, Perera U G E, Shekhirev M, Mehdi Pour M, Kunkel D A, Lu H D, Gruverman A, Sutter E, Cotlet M, Nykypanchuk D, Zahl P, Enders A, Sinitskii A, Sutter P. Nano Lett., 2015, 15(9): 5770.

doi: 10.1021/acs.nanolett.5b01723     URL    
[46]
Zhang Y F, Zhang Y, Li G, Lu J C, Que Y D, Chen H, Berger R, Feng X L, Müllen K, Lin X, Zhang Y Y, Du S X, Pantelides S T, Gao H J. Nano Res., 2017, 10(10): 3377.

doi: 10.1007/s12274-017-1550-2     URL    
[47]
Cao Y, Qi J, Zhang Y F, Huang L, Zheng Q, Lin X, Cheng Z H, Zhang Y Y, Feng X L, Du S X, Pantelides S T, Gao H J. Nano Res., 2018, 11(12): 6190.

doi: 10.1007/s12274-018-2136-3     URL    
[48]
Durr R A, Haberer D, Lee Y L, Blackwell R, Kalayjian A M, Marangoni T, Ihm J, Louie S G, Fischer F R. J. Am. Chem. Soc., 2018, 140(2): 807.

doi: 10.1021/jacs.7b11886     URL    
[49]
Marschall R. Adv. Funct. Mater., 2014, 24(17): 2421.

doi: 10.1002/adfm.201303214     URL    
[50]
Lu Y, Guo J. Nano Res., 2010, 3(3): 189.

doi: 10.1007/s12274-010-1022-4     URL    
[51]
Fu Y B, Yang H, Gao Y X, Huang L, Berger R, Liu J Z, Lu H L, Cheng Z H, Du S X, Gao H J, Feng X L. Angew. Chem. Int. Ed., 2020, 59(23): 8873.

doi: 10.1002/anie.202000488     URL    
[52]
Blackwell R E, Zhao F Z, Brooks E, Zhu J M, Piskun I, Wang S K, Delgado A, Lee Y L, Louie S G, Fischer F R. Nature, 2021, 600(7890): 647.

doi: 10.1038/s41586-021-04201-y     URL    
[53]
Shi G Q, Zhou J F, Li Z, Sun Y, Kantorovich L N, Fang Q, Besenbacher F, Yu M. Angew. Chem. Int. Ed., 2020, 59(37): 15958.

doi: 10.1002/anie.202006176     URL    
[54]
Zhang H, Xiong W, Lu J C, Cai J M. Prog. Chem., 2021, 34(3): 557.
(张辉, 熊玮, 卢建臣, 蔡金明. 化学进展, 2021, 34(3): 557. ).
[55]
Hao Z L, Ruan Z L, Yang X T, Cai Y T, Lu J C, Cai J M. Acta. Chimica. Sinica., 2017, 66(21): 218103.
(郝振亮, 阮子林, 杨孝天, 蔡逸婷, 卢建臣, 蔡金明. 化学学报, 2017, 66(21): 218103. ).
[1] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[2] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[3] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[4] 孟鹏飞, 张笑容, 廖世军, 邓怡杰. 金属/非金属元素掺杂提升原子级分散碳基催化剂的氧还原性能[J]. 化学进展, 2022, 34(10): 2190-2201.
[5] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[6] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[7] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[8] 白钰, 王拴紧, 肖敏, 孟跃中, 王成新. 燃料电池用高温质子交换膜[J]. 化学进展, 2021, 33(3): 426-441.
[9] 曹秀军, 张雷, 朱元鑫, 张鑫, 吕超南, 侯长民. 软铋矿基微纳米材料的设计合成及其在光催化中的应用[J]. 化学进展, 2020, 32(2/3): 262-273.
[10] 鲁志远, 刘燕妮, 廖世军. 锂离子电池富锂锰基层状正极材料的稳定性[J]. 化学进展, 2020, 32(10): 1504-1514.
[11] 马晓辉, 杨立群, 郑士建, 戴其林, 陈聪, 宋宏伟. 全无机钙钛矿太阳电池: 现状与未来[J]. 化学进展, 2020, 32(10): 1608-1632.
[12] 朱红林, 李文英, 黎挺挺, Michael Baitinger, Juri Grin, 郑岳青. CO2电还原用氮掺杂碳基过渡金属单原子催化剂[J]. 化学进展, 2019, 31(7): 939-953.
[13] 龚乐, 杨蓉, 刘瑞, 陈利萍, 燕映霖, 冯祖飞. 石墨烯量子点在储能器件中的应用[J]. 化学进展, 2019, 31(7): 1020-1030.
[14] 邵奕嘉, 黄斌, 刘全兵, 廖世军. 三元镍钴锰正极材料的制备及改性[J]. 化学进展, 2018, 30(4): 410-419.
[15] 杨蓉, 李兰, 任冰, 陈丹, 陈利萍, 燕映霖. 锂硫电池中的石墨烯掺杂[J]. 化学进展, 2018, 30(11): 1681-1691.