English
新闻公告
More
化学进展 2022, Vol. 34 Issue (6): 1290-1297 DOI: 10.7536/PC210839 前一篇   后一篇

• 综述与评论 •

石墨基液流电池复合双极板

蒋峰景*(), 宋涵晨   

  1. 上海交通大学机械与动力工程学院 上海 200240
  • 收稿日期:2021-08-23 修回日期:2021-11-10 出版日期:2022-04-01 发布日期:2022-04-01
  • 通讯作者: 蒋峰景

Graphite-based Composite Bipolar Plates for Flow Batteries

Fengjing Jiang(), Hanchen Song   

  1. School of Mechanical Engineering, Shanghai Jiao Tong University,Shanghai 200240, China
  • Received:2021-08-23 Revised:2021-11-10 Online:2022-04-01 Published:2022-04-01
  • Contact: Fengjing Jiang

液流电池是一种安全性高、使用寿命长、可扩展的大规模储能系统,可以协助电网调峰储能,提高能源利用率,发展前景广阔。双极板是液流电池的重要组成部分。功能上起到了分隔、串联电池、传导电流、为电堆提供结构支撑等作用。从成本构成角度看,双极板的价格占电堆成本的比重也较大。开发高性能、低成本的双极板对加快液流电池的商业化应用具有重要意义,也是目前业界的迫切需求。虽然文献上报道了许多针对液流电池双极板开发的工作,但是目前高性能、低成本的液流电池双极板产品仍无法充分满足市场需求。本文着重介绍了石墨基复合双极板的研究现状,介绍了材料选择、工艺流程对关键性能的影响,对相关工作进行了评述,并为液流电池双极板的开发提出了建议。

Flow battery is considered a promising technology for large-scale energy storage, because of its high safety, long service life, and scalability. It can assist the power grid in peak shaving and energy storage, which will help to improve the energy utilization. Bipolar plate is a key component in a flow battery, which can separate single cells, connect the adjacent electrodes in series, help to conduct electric current and provide structural support for the stack. However, the cost of bipolar plate accounts for a big proportion of the total stack cost. It is of great significance to develop high-performance and low-cost bipolar plates, which will significantly accelerate the commercialization of flow batteries. Thus, its development has become an urgent need in the flow battery industry. Although much work related to the development of bipolar plates has been carried out, there is still lack of ideal bipolar plate products in the market, taking both their performance and cost into consideration. This article focuses on the introduction of current research status on graphite-based composite bipolar plates for flow batteries and the influence of material selection and processing techniques on the performance of bipolar plates, including electrical conductivity, mechanical strength, barrier properties, and corrosion resistance. Based on the review, some suggestions are made for the further developments of bipolar plates for flow batteries.

Contents

1 Introduction

2 Key performance and requirements of graphite-based composite bipolar plates

2.1 Electrical conductivity

2.2 Mechanical strength

2.3 Barrier properties

2.4 Corrosion resistance

2.5 Economical requirements

3 Conclusion and outlook

()
图1 接触电阻测试方法示意图[1]
Fig. 1 Schematic diagram of contact resistance test[1]
表1 液流电池复合双极板的导电性能
Table 1 Electrical properties of composite bipolar plates for flow batteries
表2 液流电池复合双极板的机械性能
Table 2 Mechanical properties of composite bipolar plates for flow batteries
图2 全钒液流电池与铁钒液流电池中双极板成本在总成本中的比重[72]
Fig. 2 Proportion of the cost of BP in the total cost of all-vanadium redox flow battery and Fe-V flow battery[72]
[1]
Kumar A, Ricketts M, Hirano S. J. Power Sources, 2010, 195(5): 1401.

doi: 10.1016/j.jpowsour.2009.09.022     URL    
[2]
Kang K, Park S, Ju H. Solid State Ion., 2014, 262: 332.

doi: 10.1016/j.ssi.2013.11.024     URL    
[3]
Rigail-Cedeño A F, Espinoza-Andaluz M, Vera J, Orellana-Valarezo M, Villacis-Balbuca M. Mater. Today Proc., 2020, 33: 2003.
[4]
Derieth T, Bandlamudi G, Beckhaus P, Kreuz C, Mahlendorf F, Heinzel A. J. New Mat. Electr. Sys., 2008, 11: 21.
[5]
Clingerman M L, King J A, Schulz K H, Meyers J D. J. Appl. Polym. Sci., 2002, 83(6): 1341.

doi: 10.1002/app.10014     URL    
[6]
Mamunya Y P, Davydenko V V, Pissis P, Lebedev E V. Eur. Polym. J., 2002, 38(9): 1887.

doi: 10.1016/S0014-3057(02)00064-2     URL    
[7]
Blunk R, Zhong F, Owens J. J. Power Sources, 2006, 159(1): 533.

doi: 10.1016/j.jpowsour.2005.09.068     URL    
[8]
Kang S J, Kim D O, Lee J H, Lee P C, Lee M H, Lee Y, Lee J Y, Choi H R, Lee J H, Oh Y S, Nam J D. J. Power Sources, 2010, 195(12): 3794.

doi: 10.1016/j.jpowsour.2009.11.064     URL    
[9]
Mathur R B, Dhakate S R, Gupta D K, Dhami T L, Aggarwal R K. J. Mater. Process. Technol., 2008, 203(1/3): 184.

doi: 10.1016/j.jmatprotec.2007.10.044     URL    
[10]
Rao J, Zhang P, He S, Li Z H, Ma H W, Shen Z P, Miao S D. Sci. Sin. Technol., 2017, 47(1): 13.

doi: 10.1360/N092015-00380     URL    
( 饶娟, 张盼, 何帅, 李植淮, 马鸿文, 沈兆普, 苗世顶. 中国科学: 技术科学, 2017, 47(1): 13.)
[11]
Li W W, Jing S, Wang S B, Wang C, Xie X F. Int. J. Hydrog. Energy, 2016, 41(36): 16240.

doi: 10.1016/j.ijhydene.2016.05.253     URL    
[12]
Luo X K, Hou M, Fu Y F, Hou Z J, Ming P W, Yi B L. Chinese Journal of Power Sources, 2008(03): 174.
( 罗晓宽, 侯明, 傅云峰, 侯中军, 明平文, 衣宝廉. 电源技术, 2008(03): 174.).
[13]
Du C, Ming P W, Hou M, Fu J, Fu Y F, Luo X K, Shen Q, Shao Z G, Yi B L. J. Power Sources, 2010, 195(16): 5312.

doi: 10.1016/j.jpowsour.2010.03.005     URL    
[14]
Park M, Jung Y J, Ryu J, Cho J. J. Mater. Chem. A, 2014, 2(38): 15808.

doi: 10.1039/C4TA03542A     URL    
[15]
Gautam R K, Kar K K. Fuel Cells, 2016, 16(2): 179.

doi: 10.1002/fuce.201500051     URL    
[16]
Yang T, Shi P F. J. Power Sources, 2008, 175(1): 390.

doi: 10.1016/j.jpowsour.2007.08.113     URL    
[17]
Li F N, Li H J, Wang J. Carbon, 2004, 42: 2989.

doi: 10.1016/j.carbon.2004.07.012     URL    
[18]
Yang T, Shi P. Chinese J. Power Sources, 2008, 32(5): 306.
( 杨涛, 史鹏飞. 电源技术, 2008, 32(5): 306.)
[19]
Ghosh A, Goswami P, Mahanta P, Verma A. J. Solid State Electrochem., 2014, 18(12): 3427.

doi: 10.1007/s10008-014-2573-1     URL    
[20]
Liao W N, Jiang F J, Zhang Y, Zhou X J, He Z Q. Renew. Energy, 2020, 152: 1310.

doi: 10.1016/j.renene.2020.01.155     URL    
[21]
Phuangngamphan M, Okhawilai M, Hiziroglu S, Rimdusit S. J. Appl. Polym. Sci., 2019, 136(11): 47183.

doi: 10.1002/app.47183     URL    
[22]
Jiang X, Drzal L T. J. Power Sources, 2012, 218: 297.

doi: 10.1016/j.jpowsour.2012.07.001     URL    
[23]
Liao W N, Zhang Y, Zhou X J, Zhuang M D, Guo D Y, Jiang F J, Yu Q C. ChemistrySelect, 2019, 4(8): 2421.

doi: 10.1002/slct.201900521     URL    
[24]
Dweiri R, Sahari J. J. Power Sources, 2007, 171(2): 424.

doi: 10.1016/j.jpowsour.2007.05.106     URL    
[25]
Mirzazadeh H, Katbab A A, Hrymak A N. Polym. Adv. Technol., 2011, 22(6): 863.

doi: 10.1002/pat.1589     URL    
[26]
Wang W B, Wang J H, Wang S B, Xie X F, Lv Y F, Qi L, Yao K J. Chem. Ind. Eng., 2011, 62: 203.
( 王文嫔, 王金海, 王树博, 谢晓峰, 吕亚非, 齐亮, 姚克俭. 化工学报, 2011, 62: 203.).
[27]
Adloo A, Sadeghi M, Masoomi M, Pazhooh H N. Renew. Energy, 2016, 99: 867.

doi: 10.1016/j.renene.2016.07.062     URL    
[28]
Zhao Z D, Men Y, Hou S Y, Wang Y L, Liu J G, Yan C W. Chinese Journal of Power Sources, 2011, 35(11): 1376.
( 赵正德, 门阅, 侯绍宇, 王远乐, 刘建国, 严川伟. 电源技术, 2011, 35(11): 1376.)
[29]
San F G B, Okur O. Int. J. Hydrog. Energy, 2017, 42(36): 23054.

doi: 10.1016/j.ijhydene.2017.07.175     URL    
[30]
Liu Z H, Wang B G, Yu L X. J. Energy Chem., 2018, 27(5): 1369.

doi: 10.1016/j.jechem.2018.04.010     URL    
[31]
Yu H N, Lim J W, Suh J D, Lee D G. J. Power Sources, 2011, 196(23): 9868.

doi: 10.1016/j.jpowsour.2011.06.102     URL    
[32]
Yu H N, Lim J W, Kim M K, Lee D G. Compos. Struct., 2012, 94(5): 1911.

doi: 10.1016/j.compstruct.2011.12.024     URL    
[33]
Kim K H, Kim B G, Lee D G. Compos. Struct., 2014, 109: 253.

doi: 10.1016/j.compstruct.2013.11.002     URL    
[34]
Lee H E, Han S H, Song S A, Kim S S. Compos. Struct., 2015, 134: 44.

doi: 10.1016/j.compstruct.2015.08.037     URL    
[35]
Lee D, Lim J W, Nam S, Choi I, Lee D G. Compos. Struct., 2015, 134: 1.
[36]
Jiang F J, Liao W N, Ayukawa T, Yoon S H, Nakabayashi K, Miyawaki J. J. Power Sources, 2021, 482: 228903.

doi: 10.1016/j.jpowsour.2020.228903     URL    
[37]
Lee D, Lee D G, Lim J W. J. Intell. Mater. Syst. Struct., 2018, 29(17): 3386.

doi: 10.1177/1045389X17708345     URL    
[38]
Liu Z H, Wang B G, Yu L X. J. Energy Chem., 2018, 27(5): 1369.

doi: 10.1016/j.jechem.2018.04.010     URL    
[39]
Avasarala B, Haldar P. J. Power Sources, 2009, 188(1): 225.

doi: 10.1016/j.jpowsour.2008.11.063     URL    
[40]
Xiong J, Song Y X, Wang S L, Li X R, Liu J G, Yan C W, Tang A. J. Power Sources, 2019, 431: 170.

doi: 10.1016/j.jpowsour.2019.05.061    
[41]
Lee N J, Lee S W, Kim K J, Kim J H, Park M S, Jeong G, Kim Y J, Byun D. Bull. Korean Chem. Soc., 2012, 33(11): 3589.

doi: 10.5012/bkcs.2012.33.11.3589     URL    
[42]
Satola B, Kirchner C N, Komsiyska L, Wittstock G. J. Electrochem. Soc., 2016, 163(10): A2318.

doi: 10.1149/2.0841610jes     URL    
[43]
Yang L, Zhou Y, Wang S, Lin Y, Huang T, Yu A. Int. J. Electrochem. Sci., 2017, 12: 7031.
[44]
Nam S, Lee D, Lee D G, Kim J. Compos. Struct., 2017, 159: 220.

doi: 10.1016/j.compstruct.2016.09.063     URL    
[45]
Saadat N, Dhakal H N, Tjong J, Jaffer S, Yang W M, Sain M. Renew. Sustain. Energy Rev., 2021, 138: 110535.
[46]
Kakati B K, Sathiyamoorthy D, Verma A. Int. J. Hydrog. Energy, 2010, 35(9): 4185.

doi: 10.1016/j.ijhydene.2010.02.033     URL    
[47]
Kim N H, Kuila T, Kim K M, Nahm S H, Lee J H. Polym. Test., 2012, 31(4): 537.

doi: 10.1016/j.polymertesting.2012.02.006     URL    
[48]
Ruban E, Stepashkin A, Gvozdik N, Konev D, Kartashova N, Antipov A, Lyange M, Usenko A. Mater. Today Commun., 2021, 26: 101967.
[49]
Boudou J P, Paredes J I, Cuesta A, Martínez-Alonso A, TascÓn J M D. Carbon, 2003, 41(1): 41.

doi: 10.1016/S0008-6223(02)00270-1     URL    
[50]
Montes-Morán M A, Martínez-Alonso A, TascÓn J M D, Paiva M C, Bernardo C A. Carbon, 2001, 39(7): 1057.

doi: 10.1016/S0008-6223(00)00220-7     URL    
[51]
Dai Z S, Shi F H, Zhang B Y, Li M, Zhang Z G. Appl. Surf. Sci., 2011, 258(5): 1894.

doi: 10.1016/j.apsusc.2011.09.096     URL    
[52]
Ozkan C, Karsli N G, Aytac A, Deniz V. Compos. B Eng., 2014, 62: 230.

doi: 10.1016/j.compositesb.2014.03.002     URL    
[53]
Chaiwan P, Pumchusak J. Electrochimica Acta, 2015, 158: 1.

doi: 10.1016/j.electacta.2015.01.101     URL    
[54]
Zhang M Y, Sui S, Chen J Y, Wu S L, Sun R, Guo N. Trans. China Electrotech. Soc., 2014, 29(4): 97.
( 张明艳, 隋珊, 陈金玉, 吴淑龙, 孙睿, 郭宁. 电工技术学报, 2014, 29(4): 97.)
[55]
Celzard A, McRae E, Deleuze C, Dufort M, Furdin G, MarêchÉ J F. Phys. Rev. B, 1996, 53(10): 6209.

pmid: 9982020
[56]
Dhakate S R, Sharma S, Chauhan N, Seth R K, Mathur R B. Int. J. Hydrog. Energy, 2010, 35(9): 4195.

doi: 10.1016/j.ijhydene.2010.02.072     URL    
[57]
Jin F L, Ma C J, Park S J. Mater. Sci. Eng. A, 2011, 528(29/30): 8517.

doi: 10.1016/j.msea.2011.08.054     URL    
[58]
Lee J H, Jang Y K, Hong C E, Kim N H, Li P, Lee H K. J. Power Sources, 2009, 193(2): 523.

doi: 10.1016/j.jpowsour.2009.04.029     URL    
[59]
Caglar B, Fischer P, Kauranen P, Karttunen M, Elsner P. J. Power Sources, 2014, 256: 88.

doi: 10.1016/j.jpowsour.2014.01.060     URL    
[60]
Lee D, Choe J, Nam S, Lim J W, Choi I, Lee D G. Compos. Struct., 2017, 160: 976.

doi: 10.1016/j.compstruct.2016.10.107     URL    
[61]
Jeong K I, Oh J, Song S A, Lee D, Lee D G, Kim S S. Compos. Struct., 2021, 262: 113617.

doi: 10.1016/j.compstruct.2021.113617     URL    
[62]
Choe J, Lim J W, Kim M, Kim J, Lee D G. Compos. Struct., 2015, 134: 106.

doi: 10.1016/j.compstruct.2015.08.030     URL    
[63]
Kim S, Yoon Y, Narejo G M, Jung M, Kim K J, Kim Y J. Int. J. Energy Res., 2021, 45(7): 11098.

doi: 10.1002/er.6592     URL    
[64]
Satola B, Komsiyska L, Wittstock G. J. Electrochem. Soc., 2018, 165(5): A963.

doi: 10.1149/2.0921805jes     URL    
[65]
Al-Fetlawi H, Shah A A, Walsh F C. Electrochimica Acta, 2010, 55(9): 3192.

doi: 10.1016/j.electacta.2009.12.085     URL    
[66]
Antunes R A, Lopes de Oliveira M C, Ett G. Int. J. Hydrog. Energy, 2011, 36(19): 12474.

doi: 10.1016/j.ijhydene.2011.06.131     URL    
[67]
Wang M X, Liu Q, Sun H F, Ogbeifun N, Xu F, Stach E A, Xie J. Mater. Chem. Phys., 2010, 123(2/3): 761.

doi: 10.1016/j.matchemphys.2010.05.055     URL    
[68]
Liu H J, Yang L X, Xu Q, Yan C W. RSC Adv., 2015, 5(8): 5928.

doi: 10.1039/C4RA13697G     URL    
[69]
Hu B, Chang F L, Xiang L Y, He G J, Cao X W, Yin X C. Int. J. Hydrog. Energy, 2021, 46(50): 25666.

doi: 10.1016/j.ijhydene.2021.05.081     URL    
[70]
Xu D Q, Fan Y S, Liu P, Wang B G. J. Chem. Eng. Chin. Univ., 2011, 25(2): 308.
( 徐冬清, 范永生, 刘平, 王保国. 高校化学工程学报, 2011, 25(2): 308.)
[71]
Zheng M L, Sun J, Meinrenken C J, Wang T. J. Electrochem. Energy Convers. Storage, 2019, 16(2): 021001.

doi: 10.1115/1.4040921     URL    
[72]
Viswanathan V, Crawford A, Stephenson D, Kim S, Wang W, Li B, Coffey G, Thomsen E, Graff G, Balducci P, Kintner-Meyer M, Sprenkle V. J. Power Sources, 2014, 247: 1040.

doi: 10.1016/j.jpowsour.2012.12.023     URL    
[73]
Zeng Y K, Zhao T S, An L, Zhou X L, Wei L. J. Power Sources, 2015, 300: 438.

doi: 10.1016/j.jpowsour.2015.09.100     URL    
[74]
Mongird K, Viswanathan V, Alam J, Vartanian C, Sprenkle V, Baxter R. 2020 Grid Energy Storage Technology Cost and Performance Assessment (2020-12-17). [2021-11-1]. https://www.energy.gov/energy-storage-grand-challenge/downloads/2020-grid-energy-storage-technology-cost-and-performance/.
[75]
Middelman E, Kout W, Vogelaar B, Lenssen J, de Waal E. J. Power Sources, 2003, 118(1/2): 44.
[76]
Minke C, Hickmann T, Dos Santos A R, Kunz U, Turek T. J. Power Sources, 2016, 305: 182.

doi: 10.1016/j.jpowsour.2015.11.052     URL    
[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 南明君, 乔琳, 刘玉琴, 张华民, 马相坤. 无机水系液流电池研究[J]. 化学进展, 2022, 34(6): 1402-1413.
[3] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[4] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[5] 陈向娟, 王欢, 安伟佳, 刘利, 崔文权. 有机碳材料在光电催化系统中的作用[J]. 化学进展, 2022, 34(11): 2361-2372.
[6] 张天永, 吴畏, 朱剑, 李彬, 姜爽. 基于纳米碳填料可拉伸导电聚合物复合材料的制备[J]. 化学进展, 2021, 33(3): 417-425.
[7] 王斐然, 蒋峰景. 全钒液流电池离子导电膜[J]. 化学进展, 2021, 33(3): 462-470.
[8] 朱红林, 李文英, 黎挺挺, Michael Baitinger, Juri Grin, 郑岳青. CO2电还原用氮掺杂碳基过渡金属单原子催化剂[J]. 化学进展, 2019, 31(7): 939-953.
[9] 石颖, 闻雷, 吴敏杰, 李峰. 碳材料在钛酸锂负极材料中的应用[J]. 化学进展, 2017, 29(1): 149-161.
[10] 王诚, 王树博, 张剑波, 李建秋, 欧阳明高, 王建龙. 车用质子交换膜燃料电池材料部件[J]. 化学进展, 2015, 27(2/3): 310-320.
[11] 张慧, 周雅静, 宋肖锴. 基于金属-有机骨架前驱体的先进功能材料[J]. 化学进展, 2015, 27(2/3): 174-191.
[12] 王刚, 陈金伟, 朱世富, 张洁, 刘效疆, 王瑞林. 全钒氧化还原液流电池碳素类电极的活化[J]. 化学进展, 2015, 27(10): 1343-1355.
[13] 徐婷婷, 薛春峰, 张忠林, 郝晓刚. 骨架状聚氨酯海绵模板导向制备多级孔碳材料[J]. 化学进展, 2014, 26(12): 1924-1929.
[14] 刘蕾, 袁忠勇. 软模板合成有序介孔碳材料[J]. 化学进展, 2014, 26(05): 756-771.
[15] 苗力孝, 王维坤, 王梦佳, 段博超, 杨裕生, 王安邦. 含单质硫正极复合材料[J]. 化学进展, 2013, 25(11): 1867-1875.
阅读次数
全文


摘要

石墨基液流电池复合双极板