English
新闻公告
More
化学进展 2014, Vol. 26 Issue (04): 553-559 DOI: 10.7536/PC130816 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

锂离子电池高电压电解液

张玲玲, 马玉林, 杜春雨, 尹鸽平*   

  1. 哈尔滨工业大学化工学院 特种化学电源研究所 哈尔滨 150001
  • 收稿日期:2013-08-01 修回日期:2013-12-01 出版日期:2014-04-15 发布日期:2014-01-20
  • 通讯作者: 尹鸽平,e-mail:yingphit@hit.edu.cn E-mail:yingphit@hit.edu.cn
  • 基金资助:

    国家高技术发展计划(863)项目(No. 2012AA110203)、国家自然科学基金项目(No.51202047)、黑龙江省博士后项目(No.LBH-Z11141)和中央高校基金项目(No.HIT.NSRIF.2011022)资助

Research on the High-Voltage Electrolyte for Lithium Ion Batteries

Zhang Lingling, Ma Yulin, Du Chunyu, Yin Geping*   

  1. Institute of Advanced Chemical Power Sources, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China
  • Received:2013-08-01 Revised:2013-12-01 Online:2014-04-15 Published:2014-01-20
  • Supported by:

    The work was supported by the National High Technology Research and Development Program (863 Program) of China (No. 2012AA110203), National Science Foundation of China(No.51202047), Heilongjiang Postdoctoral Fund (No.LBH-Z11141) and Fundamental Research Funds for the Central Universities (No.HIT.NSRIF.2011022)

开发高电压正极材料是发展高能量密度锂离子电池的重要途径之一。常规电解液在高电压下容易与正极材料表面发生副反应,影响高电压正极材料性能的发挥,因此,高电压电解液引起了人们广泛的关注。本文主要从新型溶剂体系和常规碳酸酯溶剂体系两方面对锂离子电池高电压电解液进行综述与评价,提出了现有电解液的不足及面临的问题。从电解液溶剂分子设计理论入手,分析了砜类溶剂、腈基溶剂和离子液体等新型溶剂作为高压电解液溶剂的优缺点,同时探讨了不同种类添加剂在常规碳酸酯溶剂体系中的作用机理。此外,本文还介绍了理论计算方法在锂离子电池高电压电解液研究中的应用,并对其在设计新型高电压电解液中的应用前景进行了展望。

The research for high-voltage cathode materials is one of important way to develop high energy density of lithium ion batteries. Electrolyte is an essential part of lithium ion batteries, which affects the electrochemical behavior through the interface reactions with the electrodes and its Li+ ion diffusion characters. The conventional carbonate/LiPF6 electrolyte decomposes and tends to react with active cathode material when the voltage is higher than 4.5 V (vs Li/Li+), resulting in the poor performance. Therefore, searching for high-voltage electrolytes is essential to the realization of high-voltage lithium ion batteries. The progress on high-voltage electrolyte for lithium ion batteries is reviewed in this paper. The draw back and challenge of high-voltage electrolyte are also illustrated. On the theory of designing for electrolyte solvent molecular, the performance of high-voltage electrolyte is evaluated from aspects of new solvent system electrolytes and carbonate-based electrolytes. New electrolytes based on nitrile, sulfone and ionic liquids as high-voltage electrolytes with their advantage and drawbacks are analyzed. The action mechanisms of different additives in the carbonate-based electrolytes are discussed. In addition, the application of theoretical calculation methods on high-voltage electrolyte is discussed, and the vision utilizing theoretical calculation in designing novel high-voltage electrolyte is prospected.

Contents
1 Introduction
2 New organic solvents
2.1 Nitrile-based solvents
2.2 Sulfone-based solvents
2.3 Ionic liquids
3 Carbonate solvents and additives
3.1 Electrochemically polymerized additives
3.2 Phosphine-based additives
3.3 Boron-based additives
3.4 Others
4 The application of theoretical calculation method on high-voltage electrolyte
5 Conclusion and outlook

中图分类号: 

()

[1] Devaraju M K, Rangappa D, Honma I. Electrochim. Acta, 2012, 85: 548.
[2] Yang C F, Huang J J, Huang LG, Wang G J. J. Power Sources, 2013, 226: 219.
[3] Wang F, Zhang Y, Zou J Z, Liu W J, Chen Y P. J. Alloys Compounds, 2013, 558: 172.
[4] Bareo J, Balasubramanian M, Kang S H, Wen J G, Lei C H, Pol S V, Petrov I, Abraham D P. Chem. Mater., 2011, 23 (8): 2039.
[5] Alcntara R, Jaraba M, Lavela P, Tirado J L. J. Electroanal. Chem., 2004, 566: 187.
[6] Liu J, Manthiram A. J. Electrochem. Soc., 2009, 156(1): A66.
[7] Liu J, Manthiram A. J. Electochem. Soc., 2009, 156(11): A833.
[8] Yang L, Ravdel B, Lucht B L. Electrochem. Solid-State Lett., 2010, 13(8): A95.
[9] Oh S W, Park S H, Kim J H, Bae Y C, Sun Y K. J. Power Sources, 2006, 157(1): 464.
[10] 尹成果(Yin C G), 马玉林(Ma Y L), 程新群(Cheng X Q), 尹鸽平(Yin G P). 化学进展(Progress in Chemistry), 2013, 25(1): 54.
[11] Ue M, Ida K, Mori S. J. Electrochem. Soc., 1994, 141(11): 2989.
[12] Wang Q, Zakeeruddin S M, Exnar I. J. Electrochem. Soc., 2004, 151(10): A1598.
[13] Garcia B, Armand M. J. Power Sources, 2004, 132: 206.
[14] Ue M, Takeda M, Takehara M, Mori S. J. Electrochem. Soc., 1997, 144(8): 2684.
[15] Momota K. Battery Technol., 1996, 8: 108.
[16] Kanamura K, Umegaki T, Shiraishi S, Ohashi M, Takehara Z I. J. Electrochem. Soc., 2002, 149 (2): A185.
[17] Censo D D, Exnar I, Graetzel M. Electrchem. Commun., 2005, 7: 1000.
[18] Galasiu I, Galasiu R, Thonstad J. Nonaqueous Electrochemistry (Eds. Aurbach D), New York: Marcel Dekker, 1999. 461.
[19] Abu-Lebdeh Y, Davidson I. J. Power Sources, 2009, 189: 576.
[20] Abu-Lebdeh Y, Davidson I. J. Electrochem. Soc., 2009, 156(1): A60.
[21] 左晓希(Zuo X X), 李伟善(Li W S), 刘建生(Liu J S). 电池工业(Chinese Battery Industry), 2003, 11(2): 97.
[22] Kang X. Chem. Rev., 2004, 104: 4303.
[23] Xu K, Angell C A. J. Electrochem. Soc., 1998, 145(4): L70.
[24] Xu K, Angell C A. J. Electrochem. Soc., 2002, 149(7): A920.
[25] Sun X G, Angell C A. Electrochem. Commun., 2004, 175: 257.
[26] Seel J A, Dahn J R. J. Electrochem. Soc., 2000, 147(3): 892.
[27] Sun X G, Angell C A. Electrochem. Commun., 2005, 7: 261.
[28] Ouatani L E, Dedryvere R, Siret C, Biensanb P, Reynauda S, Iratçabala P, Gonbeaua D. J. Electrochem. Soc., 2009, 156(2): A103.
[29] Abouimrane A, Belharouak I, Amine K. Electrochem. Commun., 2009, 11: 1073.
[30] Watanabe Y, Kinoshita S, Wada S, Hoshino K J, Morimoto H, Tobishima S. J. Power Sources, 2008, 179(2): 770.
[31] Sun X G, Austen C A. Electrochem. Commun., 2009, 11: 1418.
[32] Sun X G, Austen C A. Solid State Ionics, 2004, 175: 257.
[33] Buzzeo M, Evans R, Compton R. Chem. Phys. Chem., 2004, 5: 1106.
[34] Tokuda H, Hayamizu K, Ishii K, Susan M A B H, Watanabe M. J. Phys. Chem. B, 2004, 108(42): 16593.
[35] Tokuda H, Hayamizu K, Ishii K, Susan M A B H, Watanabe M. J. Phys. Chem. B, 2005, 109(13): 6103.
[36] Matsumoto H, Sakaebe H, Tatsumi K. J. Power Sources, 2005, 146: 45.
[37] Markevich E, Baranchugov V, Aurbach D. Electrochem. Commun., 2006, 8: 1331.
[38] Borgel V, Markevich E, Aurbach D. J. Power Sources, 2009, 189: 331.
[39] Holzapfel M, Jost C, Prodi-Schwab A, Krumeich F, Würsig A, Buqa H, Novák P. Carbon, 2005, 43: 1488.
[40] Sato T, Maruo T, Marukane S. J. Power Sources, 2004, 138: 253.
[41] Zheng H, Jiang K, Abe T. Carbon, 2006, 44: 203.
[42] Guerfi A, Dontigny M, Charest P, Petitclerc M, Lagacé M, Vijh A, Zaghib K. J. Power Sources, 2010, 195: 845.
[43] Xiang J, Wu F, Chen R, Li L, Yu H. J. Power Sources, 2013, 233: 115.
[44] Yazami R, Ozawa Y, Gabrisch H, Fultz B. Electrochim. Acta, 2004, 50: 385.
[45] Kim Y, Veith G M, Nanda J, Unocic R R, Chi M F, Dudney N J. Electrochim. Acta, 2011, 56(19): 6573.
[46] Yang L, Markmaitree T, Lucht B L. J. Power Sources, 2011, 196: 2251.
[47] Reimers J N, Way B M., EP6074777, 1998.
[48] Mao H. EP 5879834, 1999.
[49] Abe K, Ushigoe Y, Yoshitake H, Yoshiol M. J. Power Sources, 2006, 153: 328.
[50] Lee K S, Sun Y K, Noh J, Song K S, Kim D W. Electrchem. Commun., 2009, 11: 1900.
[51] Lee Y S, Lee K S, Sun Y K, Lee Y M, Kim D W. J. Power Sources, 2011, 196: 6997.
[52] Zhang S S, Xu K, Jow T R. J. Power Sources, 2003, 113: 166.
[53] Ma Y L, Yin G P, Zuo P J, Tan X L, Gao Y Z, Shi P F. Electrochem. Solid-State Lett., 2008, 11(8): A129.
[54] Nam N D, Park I J, Kim J G. ECS Transactions, 2011, 33(22): 7.
[55] Lee J N, Han G B, Ryou M H. Electrochim. Acta, 2011, 56: 5195.
[56] Abe K, Takaya T, Yoshitake H, Ushigoea Y, Yoshiob M, Wang H Y. Electrochem. Solid-State Lett., 2004, 7(12): A462.
[57] Xu M Q, Liu Y L, Li B, Weishan Li, Li X P, Hu S J. Electrochem. Commun., 2012, 18: 123.
[58] Cresce A V, Xu K. J. Electrochem. Soc., 2011, 158(3): A337.
[59] Wu X L, Xin S, Seo H H, Kim J, Guo Y G, Lee J S. Solid State Ionics, 2011, 186: 1.
[60] Li Y H, Wu X L, Kim J H, Xin S, Su J, Yan Y, Lee J S, Guo Y G. J. Power Sources, 2013, 244: 234.
[61] Xu K, Zhang S S, Poese B A, Jow T R. Elecrochem. Solid-State Lett., 2002, 5: A259.
[62] 谭晓兰(Tan X L), 程新群(Cheng X Q), 马玉林(Ma Y L), 尹鸽平(Yin G P). 物理化学学报(Acta Phys. Chim. Sin. ), 2009, 25(10): 1967.
[63] Yang L, Markmaitree T, Lucht B L. J. Power Sources, 2011, 196: 2251.
[64] Dalavi S, Xu M Q, Knight B. Electrochem. Solid-State Lett., 2012, 15 (2): A28.
[65] Hu M, Wei J P, Xing L Y, Zhou Z. J. Appl. Electrochem., 2012, 42: 291.
[66] Zuo X X, Fan C J, Liu J S. J. Power Sources, 2013, 229: 308.
[67] Wrodnigg G H, Tanja M, Besenhard J O, Winter M. Electrochem. Commun., 1999, 1(3/4): 148.
[68] Lee H, Choi S, Kim H J, Choi Y S, Yoon S J, Cho J J. Electrochem. Commun., 2007, 9: 801.
[69] Xu M Q, Li W S, Lucht B L. J. Power Sources, 2009, 193: 804.
[70] Zuo X X, Fan C J, Xiao X. J. Power Sources, 2012, 219: 94.
[71] Kubota T, Ihara M, Katayama S. J. Power Sources, 2012, 207: 141.
[72] 许梦清(Xu M Q), 邢丽丹(Xing L D), 李伟善(Li W S). 化学进展(Progress in Chemistry), 2009, 21(10): 2012.
[73] Shao N, Sun X G, Dai S. J. Phys. Chem. B, 2011, 115, 12120.
[74] Borodin O, Jow T R. ECS Transactions, 2011, 32 (28): 77.
[75] Xing L, Li W, Wang C, Wang Y T, Xu M Q, Gua F L, Hu S J. J. Phys. Chem. B, 2009, 113: 16596.

[1] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[2] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[3] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[4] 何闯, 鄂爽, 闫鸿浩, 李晓杰. 碳点在润滑领域中的应用[J]. 化学进展, 2022, 34(2): 356-369.
[5] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[6] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[7] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[8] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[9] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[10] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[11] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[12] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[13] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[14] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[15] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
阅读次数
全文


摘要

锂离子电池高电压电解液