English
新闻公告
More
化学进展 2021, Vol. 33 Issue (1): 136-150 DOI: 10.7536/PC200652 前一篇   后一篇

• 综述 •

全无机钙钛矿太阳电池的制备及稳定性

彭会荣1,2, 蔡墨朗1,2,3,*(), 马爽1,2, 时小强1,2, 刘雪朋1,2, 戴松元1,2,3,*()   

  1. 1 华北电力大学 新能源学院 北京 102206
    2 新型薄膜太阳电池北京市重点实验室 北京 102206
    3 新能源电力系统国家重点实验室 北京 102206
  • 收稿日期:2020-04-19 修回日期:2020-05-06 出版日期:2021-02-09 发布日期:2020-09-23
  • 通讯作者: 蔡墨朗, 戴松元
  • 作者简介:
    * Corresponding author e-mail: (Molang Cai) ; (Songyuan Dai)
  • 基金资助:
    国家重点研发计划(2018YFB1500101); “111”项目(B16016); 国家自然科学基金项目(51702096); 国家自然科学基金项目(U1705256); 国家自然科学基金项目(51572080); 国家自然科学基金项目(61904053); 中央大学基础研究基金项目(2019MS026); 中央大学基础研究基金项目(2019MS027)

Fabrication and Stability of All-Inorganic Perovskite Solar Cells

Huirong Peng1,2, Molang Cai1,2,3,*(), Shuang Ma1,2, Xiaoqiang Shi1,2, Xuepeng Liu1,2, Songyuan Dai1,2,3,*()   

  1. 1 School of New Energy, North China Electric Power University,Beijing 102206, China
    2 Beijing Key Laboratory of Novel Thin-Film Solar Cells,Beijing 102206, China
    3 State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing 102206, China
  • Received:2020-04-19 Revised:2020-05-06 Online:2021-02-09 Published:2020-09-23
  • Contact: Molang Cai, Songyuan Dai
  • Supported by:
    National Key R&D Program of China(2018YFB1500101); the 111 Project(B16016); the National Natural Science Foundation of China(51702096); the National Natural Science Foundation of China(U1705256); the National Natural Science Foundation of China(51572080); the National Natural Science Foundation of China(61904053); and the Fundamental Research Funds for the Central Universities(2019MS026); and the Fundamental Research Funds for the Central Universities(2019MS027)

全无机钙钛矿太阳电池因其热稳定性好、载流子迁移率高,可用于制备叠层电池等优点备受关注。随着人们对全无机钙钛矿太阳电池的深入研究和制备工艺的持续优化,全无机钙钛矿太阳电池的光电转换效率已经突破19%。然而,全无机钙钛矿材料相稳定性较差,这使得实现全无机钙钛矿太阳电池在空气环境下制备和长期使用面临巨大挑战。众多科研工作者通过分析全无机钙钛矿材料的相变机制,有针对性地提出了包括添加剂工程、界面工程和开发全无机钙钛矿量子点电池等多种方式来改善全无机钙钛矿太阳电池的长期稳定性。本综述从全无机钙钛矿材料与电池的结构、活性层制备方法和稳定性研究三个方面总结了近年来关于全无机钙钛矿太阳电池的研究进展。

The all-inorganic perovskite solar cells(PSCs) have attracted much attention because of their good thermal stability, high carrier mobility and excellent compatibility with tandem devices. With the in-depth study of all-inorganic PSCs and continuous optimization of the fabrication process, the power conversion efficiency of all-inorganic PSCs have exceeded 19%. However, the phase stability of all-inorganic perovskite materials is relatively poor, therefore, the preparation and long-term application of all-inorganic PSCs in the air environment still faces great challenges. By analyzing the phase transition mechanism of all-inorganic perovskite, many researchers have proposed various methods including additive engineering, interface engineering and the development of all-inorganic perovskite quantum dot solar cells to improve their long-term stability. This review summarizes the research progress of all-inorganic PSCs in recent years from the aspects of all-inorganic perovskite materials and structure of solar cells, the fabrication method of the active layer and its phase stability.

Contents:

1 Introduction

2 All-inorganic perovskite solar cells

2.1 Crystal structure of all-inorganic perovskite materials

2.2 Architecture of all-inorganic perovskite solar cells

3 Fabrication methods of all-inorganic perovskite films

3.1 Solution processing technique

3.2 Vacuum processing technique

4 Research progress on the phase stability of all-inorganic perovskite

4.1 Mechanism of phase instability

4.2 Strategy for improving phase stability

5 Conclusion and outlook

()
图1 CsPbX3的不同晶体构型[27] : (a)α-CsPbX3;(b)β-CsPbX3;(c)γ-CsPbX3;(d)δ-CsPbX3。
Fig. 1 Crystal structure of CsPbX3phases[27] : (a) α-CsPbX3;(b) β-CsPbX3;(c) γ-CsPbX3; and(d) δ-CsPbX3.
图2 (a)不含HI在335 ℃条件下退火和含HI在100 ℃条件下退火获得薄膜的扫描电子显微镜(SEM)图片 [ 13] ;(b)分别用(2CsI-PbI 2-PbBr 2)和(2CsI-HPbI 3+ x -PbBr 2)前驱液制备得到的薄膜在100 ℃下退火后的紫外-吸收图谱,插入的图片分别是对应薄膜的照片 [ 43] ;(c)DMSO调控晶体动力学机制示意图 [ 46] ;有无DMSO加合物薄膜的缺陷态表征:(d)有无DMSO加合物获得薄膜的稳态光致发光图谱 [ 48] ;(e)有无DMSO加合物获得薄膜的瞬态光致发光图谱 [ 48]
Fig. 2 (a) Scanning electron microscopy(SEM) images of thin films obtained without and with HI annealing at 335 and 100 ℃, respectively[13];(b) Absorption spectra of CsPbI2Br fabricated by using precursor of(2CsI-PbI2-PbBr2) and(2CsI-HPbI3+ x -PbBr2). The two inserted pictures are the corresponding films photos[43];(c) Schematic of the evolution of the CsPbI2Br ?lm with the introduction of DMSO[46];(d) Steady-state photoluminescence(PL) spectra of CsPbI2Br films prepared without and with DMSO adducts[48];(e) Time-resolved PL of CsPbI2Br films prepared without and with DMSO adducts[48]
图3 (a)反溶剂和梯度退火工艺诱导CsPbI2Br晶体生长过程示意图[49] ;(b)溶剂控制生长法(SCG)进行CsPbI3钙钛矿结晶过程的示意图[16]
Fig. 3 Fig. 3 (a) Schematic illustration of CsPbI2Br perovskite crystallization process via gradient thermal annealing(GTA) or gradient thermal annealing with anti-solvent(GTA-ATS) processing[49] ;(b) Schematic illustration of CsPbI3 perovskite crystallization procedures via solvent-controlled growth(SCG)[16]
图4 (a)基底朝下浸涂CsBr制备CsPbBr3薄膜的示意图[54] ;(b)真空沉积法过程示意图[42] 。
Fig. 4 (a) Schematic process for the preparation of CsPbBr3 ?lms obtained by the face-down dipping process[54] ;(b) Schematic process for the vacuum processing technique[42] .
图5 (a)不同温度下CsPbI3的相变情况[63] ;(b)水致立方相全无机钙钛矿分解过程示意图[65] 。
Fig. 5 Fig. 5 (a) Structural phase transitions in CsPbI3 under versus temperature[63] ;(b) Schematic illustration of water-induced degradation process of all-inorganic perovskite[65] .
表1 不同元素取代后的薄膜或电池的稳定性表现
Table 1 Stability performance of the CsPbX3 based thin film or device after being partially replaced by different elements
图6 (a)未封装的纯 α-CsPbI3和CsPb0.96Bi0.04I3电池在湿度环境条件下(55% RH,25 ℃)电池和电池效率的变化[77] ;(b)未封装的CsPbI2Br和CsPb0.95Eu0.05I2Br电池在连续白光照射的条件下效率衰减趋势图[79] ;(c)EDA 2+与CsPbI3产生交联作用提高相稳定性的机制图[87] ;(d)CsPbI3·0.025EDAPbI4薄膜在100 ℃条件下加热一星期后XRD图谱的变化,插入的图片为对应薄膜的照片[87] ;(e)PVP稳定CsPbI3结构的机制图[88] ;(f)有无两性离子添加剂的前驱体溶液形成CsPbI3晶体的示意图[30]
Fig. 6 (a) The photograph and stability of devices based on α-CsPbI3 and CsPb0.96Bi0.04I3after exposing in air without any encapsulation[77] ;(b) Normalized power conversion efficiency(PCE) of unencapsulated CsPbI2Br and CsPb0.95Eu0.05I2Br devices monitored under continuous white light exposure as a function of time[79] ;(c) Schematic diagram of EDA 2+ and CsPbI3 cross-linking to improve phase stability[87] ;(d) XRD pattern and images of the CsPbI3·0.025EDAPbI4 film heated at 100 ℃ in a dry box for 1 week, the insets are their photographs[87] ;(e) Mechanism of PVP-induced cubic phase stability[88] ;(f) Schematic representation of CsPbI3 crystal formation from precursor solution without or with the zwitterion[30]
图7 (a)Br -梯度掺杂和PTA +钝化CsPbI3薄膜表面缺陷的作用机制图[15] ;(b)CsPbI3和PTABr-CsPbI3薄膜暴露在80%± 5% RH的环境中0.5 h后的XRD图谱,插入的图片是对应薄膜的照片[15] ;(c)PEA +与CsPbI3产生的作用机制图[29] ;(d)PEA +-CsPbI3和CsPbI3基的电池在<20% RH环境中效率的衰减趋势[29] ;(e)CsPbI2Br-PEAX基的电池在>60% RH环境中效率衰减趋势[98] ;(f)DPP-DTT处理前后的CsPbI2Br电池在30% RH环境中的效率衰减趋势[99]
Fig. 7 (a) Schematic illustration of gradient Br - doping and PTA + organic cation surface passivation on CsPbI3 perovskite thin ?lm[15] ;(b) XRD patterns of CsPbI3 and PTABr-CsPbI3 thin ?lms after being exposed to 80%± 5% RH at ~35 ℃ for 0.5 h, inset is their photographs[15] ;(c) Schematic illustration of organic cation surface termination using $PEA^{+}$[29] ;(d) PCE decay of the PEA +-CsPbI3 and CsPbI3-based devices as a function of storage time in a dark and dry box with <20% RH[29] ;(e) Long-term stability of normalized PCE of CsPbI2Br-PEAX based devices stored in ambient conditions with >60% RH[98] ;(f) The air stability(humidity: ≈30%) of CsPbI2Br devices with and without DPP-DTT treatment[99]
图8 (a)CsPbI 3量子点电池结构及断面图 [ 89] ; (b)传统方式合成的量子点(OA/m-QDs)与加热三辛基膦合成的量子点(TOP-QDs)不同粒径下的荧光量子产率对比图 [ 104] ;(c)OA/m-QDs和TOP-QDs在湿度环境中储存不同时间的荧光量子产率变化图 [ 104] ;(d)CsSn x P b 1 - x I 3量子点的紫外吸收图谱,插入的图片是对应的稳态荧光光谱 [ 12] ;(e)有无CsAc处理的电池最佳光电转换效率的 J-V曲线,插入的图片是有无CsAc处理的电池效率分布直方图 [ 107]
Fig. 8 (a) Structure and SEM cross-section of the CsPbI3quantum dots devices[89];(b) Dependence of the photoluminescence quantum yield(PL QYs) of the OA/m-QDs and TOP-QDs on their particle size[104];(c) Change of the PL QY of the OA/m-QDs, TOP-QDs with versus storage time under ambient conditions[104];(d) UV-vis absorption spectra of the CsSnx Pb1- x I3 QDs. The inset shows their corresponding normalized steady-state PL spectra[12];(e)J-V curves of the best cells without(control) and with CsAc post-treatment. Inset is the PCE distribution histograms of control and CsAc-treated cells, measured under reverse scan[107]
图9 (a)分别用PbI2或HPbI3以及CsI制备前驱液获得α-CsPbI3的过程[44] ;(b)β-CsPbI3薄膜和粉末的XRD图谱,棕色线是β-CsPbI3的标准XRD图谱[31] ;(c)γ-CsPbI3薄膜在空气中放置30 d前后的XRD图谱变化[32]
Fig. 9 Fig. 9 (a)Schematic illustration of the CsPbI3 ?lms prepared from PbI2 or HPbI3 with CsI based precursor solutions[44] ;(b) XRD patterns acquired from a CsPbI3 thin film and powders scratched from the films. Brown lines indicate the standard β-CsPbI3 XRD pattern[31] ;(c) XRD patterns of γ-CsPbI3 thin film before and after being stored in air for 30 days[32]
[1]
Song J Z, Li J H, Li X M, Xu L M, Dong Y H, Zeng H B. Adv. Mater., 2015, 27: 7162.
[2]
Sutherland B R, Sargent E H. Nat. Photonics , 2016, 10: 295.
[3]
Yang L Y, Barrows A T, Lidzey D G, Wang T. Rep. Prog. Phys. , 2016, 79: 026501.
[4]
Xing G C, Mathews N, Sun S Y, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C. Science , 2013, 342: 344.
[5]
Ju C G , Zhang B , Feng Y Q . Progress in Chemistry , 2016, 28: 219.
琚成功, 张宝, 冯亚青. 化学进展, 2016, 28: 219.
[6]
Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grätzel M, Han H W. Science , 2014, 345: 295.
[7]
Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J. Science , 2012, 338: 643.
[8]
Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I. Science , 2017, 356: 1376.
[9]
Yang Y, Peng H R, Liu C, Arain Z, Ding Y, Ma S, Liu X L, Hayat T, Alsaedi A, Dai S Y. J. Mater. Chem. A , 2019, 7: 6450.
[10]
Shi X Q, Chen R C, Jiang T T, Ma S, Liu X P, Ding Y, Cai M L, Wu J H, Dai S Y. Sol. RRL , 2020, 4: 1900198.
[11]
[2020-04-01]https://www.nrel.gov/pv/assets/images/thumb-best-research -cell-efficiencies-190416.png.
[12]
Liu F, Ding C, Zhang Y H, Ripolles T S, Kamisaka T, Toyoda T, Hayase S, Minemoto T, Yoshino K, Dai S Y, Yanagida M, Noguchi H, Shen Q. J. Am. Chem. Soc., 2017, 139: 16708.
[13]
Eperon G E, Paternò G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F, Snaith H J. J. Mater. Chem. A , 2015, 3: 19688.
[14]
Frolova L A, Anokhin D V, Piryazev A A, Luchkin S Y, Dremova N N, Stevenson K J, Troshin P A. J. Phys. Chem. Lett., 2017, 8: 67.
[15]
Wang Y, Zhang T Y, Kan M, Zhao Y X. J. Am. Chem. Soc., 2018, 140: 12345.
[16]
Wang P Y, Zhang X W, Zhou Y Q, Jiang Q, Ye Q F, Chu Z M, Li X X, Yang X L, Yin Z G, You J B. Nat. Commun. , 2018, 9: 2225.
[17]
Yin W J, Yan Y, Wei S H. J. Phys. Chem. Lett. , 2014, 5: 3625.
[18]
Ahmad W, Khan J, Niu G D, Tang J. Sol. RRL , 2017, 1: 1700048.
[19]
Beal R E, Slotcavage D J, Leijtens T, Bowring A R, Belisle R A, Nguyen W H, Burkhard G F, Hoke E T, McGehee M D. J. Phys. Chem. Lett., 2016, 7: 746.
[20]
Ding X H, Chen H B, Wu Y H, Ma S, Dai S Y, Yang S F, Zhu J. J. Mater. Chem. A , 2018, 6: 18258.
[21]
Wang Y, Liu X M, Zhang T Y, Wang X T, Kan M, Shi J L, Zhao Y X. Angew. Chem. Inter. Edit., 2019, 58: 16691.
[22]
Shi J L, Wang Y, Zhao Y X. Energy Environ. Sci., 2019, 2: 73.
[23]
Wang B, Novendra N, Navrotsky A. J. Am. Chem. Soc., 2019, 141: 14501.
[24]
Guo X D , Niu G D , Wang L D . Acta Chimica Sinica , 2015, 73: 211.
郭旭东, 牛广达, 王立铎. 化学学报, 2015, 73: 211.
[25]
Marronnier A, Roma G, Boyer-Richard S, Pedesseau L, Jancu J M, Bonnassieux Y, Katan C, Stoumpos C C, Kanatzidis M G, Even J. ACS Nano , 2018, 12: 3477.
[26]
Dastidar S, Hawley C J, Dillon A D, Gutierrez-Perez A D, Spanier J E, Fafarman A T. J. Phys. Chem. Lett., 2017, 8: 1278.
[27]
Wang K, Jin Z W, Liang L, Bian H, Bai D L, Wang H R, Zhang J R, Wang Q, Liu S Z. Nat. Commun., 2018, 9: 4544.
[28]
Zhang J R, Hodes G, Jin Z W, Liu S Z. Angew. Chem. Inter. Edit., 2019, 58: 15596.
[29]
Wang Y, Zhang T Y, Kan M, Li Y H, Wang T, Zhao Y X. Joule , 2018, 2: 2065.
[30]
Wang Q, Zheng X P, Deng Y H, Zhao J J, Chen Z L, Huang J S. Joule , 2017, 1: 371.
[31]
Wang Y, Dar M I, Ono L K, Zhang T Y, Kan M, Li Y W, Zhang L J, Wang X T, Yang Y G, Gao X Y, Qi Y B, Grätzel M, Zhao Y X. Science , 2019, 365: 591.
[32]
Zhao B Y, Jin S F, Huang S, Liu N, Ma J Y, Xue D J, Han Q W, Ding J, Ge Q Q, Feng Y Q, Hu J S. J. Am. Chem. Soc., 2018, 140: 11716.
[33]
Becker P, Márquez J A, Just J, Al-Ashouri A, Hages C, Hempel H, Jošt M, Albrecht S, Frahm R, Unold T. Adv. Energy Mater., 2019, 9: 1900555.
[34]
Que Y P , Weng J , Hu L H , Dai S Y . Progress in Chemistry , 2016, 28: 40.
阙亚萍, 翁坚, 胡林华, 戴松元. 化学进展, 2016, 28: 40.
[35]
Zhang T, Wang F, Chen H, Ji L, Wang Y F, Li C, Raschke M B, Li S B. ACS Energy Lett., 2020, 5: 1619.
[36]
Hu Y Q, Xu Q F, Ruan W, Zhang S F, Yang C L, Yan Z, Xu F. Sol. RRL , 2019, 3: 1900287.
[37]
Liu C, Li W Z, Zhang C L;, Ma Y P, Fan J D, Mai Y H. J. Am. Chem. Soc., 2018, 140: 3825.
[38]
Xiang S S, Li W P, Wei Y, Liu J M, Liu H C, Zhu L Q, Yang S H, Chen H N. iScience , 2019, 15: 156.
[39]
Shan X Y , Wang S M , Meng G , Fang X D . Progress in Chemistry , 2019, 31: 714.
单雪燕, 王时茂, 孟钢, 方晓东. 化学进展, 2019, 31: 714.
[40]
Yang Y , Lin F Y , Zhu C T , Chen T , Ma S P , Luo Y , Zhu L , Guo X Y . Acta Chimica Sinica , 2020, 78: 217.
杨英, 林飞宇, 朱从潭, 陈甜, 马书鹏, 罗媛, 朱刘, 郭学益. 化学学报, 2020, 78: 217.
[41]
Yang Y , Gao J , Cui J R , Guo X Y . Journal of Inorganic Materials , 2015, 30: 1131.
杨英 , 高菁, 崔嘉瑞, 郭学益. 无机材料学报, 2015, 30: 1131.
[42]
Tai Q D, Tang K C, Yan F. Energy Environ. Sci., 2019, 12: 2375.
[43]
Wang Y, Zhang T Y, Xu F, Li Y H, Zhao Y X. Sol. RRL , 2018, 2: 1700180.
[44]
Xiang S S, Fu Z H, Li W P, Wei Y, Liu J M, Liu H C, Zhu L Q, Zhang R F, Chen H N. ACS Energy Lett., 2018, 3: 1824.
[45]
Mariotti S, Hutter O S, Phillips L J, Yates P J, Kundu B, Durose K. ACS Appl. Mater. Interfaces , 2018, 10: 3750.
[46]
Zai H C, Zhang D L, Li L, Zhu C, Ma S, Zhao Y Z, Zhao Z G, Chen C F, Zhou H P, Li Y J, Chen Q. J. Mater. Chem. A , 2018, 6: 23602.
[47]
Zhang S S, Wu S H, Chen W T, Zhu H M, Xiong Z Z, Yang Z C, Chen C L, Chen R, Han L Y, Chen W. Mater. Today Energy , 2018, 8: 125.
[48]
Yin G N, Zhao H, Jiang H, Yuan S H, Niu T Q, Zhao K, Liu Z K, Liu S Z. Adv. Funct. Mater. , 2018, 28: 1803269.
[49]
Chen W J, Chen H Y, Xu G Y, Xue R M, Wang S H, Li Y W, Li Y F. Joule , 2019, 3: 191.
[50]
Kulbak M, Cahen D, Hodes G. J. Phys. Chem. Lett., 2015, 6: 2452.
[51]
Liang J, Wang C X, Wang Y R, Xu Z R, Lu Z P, Ma Y, Zhu H F, Hu Y, Xiao C C, Yi X, Zhu G Y, Lv H L, Ma L B, Chen T, Tie Z X, Jin Z, Liu J. J. Am. Chem. Soc., 2016, 138: 15829.
[52]
Liu D J, Hu Z P, Hu W, Wangyang P H, Yu K, Wen M Q, Zu Z Q, Liu J, Wang M, Chen W W, Zhou M, Tang X S, Zang Z G. Mater. Lett., 2017, 186: 243.
[53]
Kulbak M, Gupta S, Kedem N, Levine I, Bendikov T, Hodes G, Cahen D. J. Phys. Chem. Lett. , 2016, 7: 167.
[54]
Teng P P, Han X P, Li J W, Xu Y, Kang L, Wang Y R Q, Yang Y, Yu T. ACS Appl. Mater. Interfaces , 2018, 10: 9541.
[55]
Duan J L, Zhao Y Y, He B L, Tang Q W. Angew. Chem. Inter. Edit. , 2018, 57: 3787.
[56]
Duan J L, Dou D W, Zhao Y Y, Wang Y D, Yang X Y, Yuan H W, He B L, Tang Q W. Mater. Today Energy , 2018, 10: 146.
[57]
Khazaee M, Sardashti K, Sun J P, Zhou H, Clegg C, Hill I G, Jones J L, Lupascu D C, Mitzi D B. Chem. Mater., 2018, 30: 3538.
[58]
Li H, Tong G Q, Chen T T, Zhu H W, Li G P, Chang Y J, Wang L, Jiang Y. J. Mater. Chem. A , 2018, 6: 14255.
[59]
Shahiduzzaman M, Yonezawa K, Yamamoto K, Ripolles T S, Karakawa M, Kuwabara T, Takahashi K, Hayase S, Taima T. ACS Omega , 2017, 2: 4464.
[60]
Kottokkaran R, Gaonkar H A, Bagheri B, Dalal V L. J. Vac .Sci. Technol. A , 2018, 36: 041201.
[61]
Goldschmidt V M. Naturwissenschaften , 1926, 14: 477.
[62]
Li Z, Yang M J, Park J S, Wei S H, Berry J J, Zhu K. Chem.Mater., 2016, 28: 284.
[63]
Marronnier A, Roma G, Boyer-Richard S, Pedesseau L, Jancu J M, Bonnassieux Y, Katan C, Stoumpos C C, Kanatzidis M G, Even J. ACS Nano , 2018, 12: 3477.
[64]
Zhang J R, Jin Z W, Liang L, Wang H R, Bai D L, Bian H, Wang K, Wang Q, Yuan N Y, Ding J N, Liu S Z. Adv. Sci (Weinh ), 2018, 5: 1801123.
[65]
Ding X H, Cai M L, Liu X Y, Ding Y, Liu X P, Wu Y H, Hayat T, Alsaedi A, Dai S Y. ACS Appl. Mater. Interfaces , 2019, 11: 37720.
[66]
Chu W B, Saidi W A, Zhao J, Prezhdo O V. Angew. Chem. Inter. Edit. , 2020, 59: 6435.
[67]
Wang K, Li Z Z, Zhou F G, Wang H R, Bian H, Zhang H, Wang Q, Jin Z W, Ding L M, Liu S Z. Adv. Energy Mater. , 2019, 9: 1902529.
[68]
Zhao H, Xu J, Zhou S J, Li Z Z, Zhang B, Xia X, Liu X L, Dai S Y, Yao J X. Adv. Funct. Mater., 2019, 29: 1808986.
[69]
Lau C F J, Wang Z P, Sakai N, Zheng J H, Liao C H, Green M, Huang S, Snaith H J, Ho-Baillie A. Adv. Energy Mater. , 2019, 9: 1901685.
[70]
Wang Z, Shi Z J, Li T T, Chen Y H, Huang W. Angew. Chem. Inter. Edit., 2017, 56: 1190.
[71]
Meng H G, Shao Z P, Wang L, Li Z P, Liu R R, Fan Y P, Cui G L, Pang S P. ACS Energy Lett., 2020, 5: 263.
[72]
Sutton R J, Eperon G E, Miranda L, Parrott E S, Kamino B A, Patel J B, Hörantner M T, Johnston M B, Haghighirad A A, Moore D T, Snaith H J. Adv. Energy Mater. , 2016, 6: 1502458.
[73]
Akkerman Q A, Gandini M, Di Stasio F, Rastogi P, Palazon F, Bertoni G, Ball J M, Prato M, Petrozza A, Manna L. Nat. Energy , 2016, 2.
[74]
Liu C, Li W Z, Li H Y, Wang H M, Zhang C L, Yang Y G, Gao X Y, Xue Q F, Yip H L, Fan J D, Schropp R E I, Mai Y H. Adv. Energy Mater., 2019, 9: 1803572.
[75]
Lau C F J, Deng X F, Zheng J H, Kim J, Zhang Z L, Zhang M, Bing J M, Wilkinson B, Hu L, Patterson R, Huang S J, Ho-Baillie A. J. Mater. Chem. A , 2018, 6: 5580.
[76]
Swarnkar A, Mir W J, Nag A. ACS Energy Lett., 2018, 3: 286.
[77]
Hu Y Q, Bai F, Liu X B, Ji Q M, Miao X L, Qiu T, Zhang S F. ACS Energy Lett., 2017, 2: 2219.
[78]
Guo Z L, Zhao S, Liu A M, Kamata Y, Teo S, Yang S Z, Xu Z H, Hayase S, Ma T L. ACS Appl. Mater. Interfaces , 2019, 11: 19994.
[79]
Xiang W C, Wang Z W, Kubicki D J, Tress W, Luo J S, Prochowicz D, Akin S, Emsley L, Zhou J T, Dietler G, Grätzel M, Hagfeldt A. Joule , 2019, 3: 205.
[80]
Lau C F J, Zhang M, Deng X F, Zheng J H, Bing J M, Ma Q S, Kim J, Hu L, Green M A, Huang S J, Ho-Baillie A. ACS Energy Lett., 2017, 2: 2319.
[81]
Liang J, Zhao P Y, Wang C X, Wang Y R, Hu Y, Zhu G Y, Ma L B, Liu J, Jin Z. J. Am. Chem. Soc., 2017, 139: 14009.
[82]
Bai D, Zhang J, Jin Z, Bian H, Wang K, Wang H, Liang L, Wang Q, Liu S F. ACS Energy Lett., 2018, 3: 970.
[83]
Yang F, Hirotani D, Kapil G, Kamarudin M A, Ng C H, Zhang Y H, Shen Q, Hayase S. Angew. Chem. Inter Edit. , 2018, 57: 12745.
[84]
Nam J K, Chai S U, Cha W, Choi Y J, Kim W, Jung M S, Kwon J, Kim D, Park J H. Nano Lett., 2017, 17: 2028.
[85]
Guo Y X, Zhao F, Tao J H, Jiang J C, Zhang J G, Yang J P, Hu Z G, Chu J H. ChemSusChem , 2019, 12: 983.
[86]
Wang L , Huo Z P , Yi J X , Ahmed A , Tasawar H , Dai S Y . Progress in Chemistry , 2017, 29: 870.
王露, 霍志鹏, 易锦馨 , Ahmed A , Tasawar H , 戴松元. 化学进展, 2017, 29: 870.
[87]
Zhang T Y, Dar M I, Li G, Xu F, Guo N J, Gratzel M, Zhao Y. Adv. Sci., 2017, 3: e1700841.
[88]
Li B, Zhang Y N, Fu L, Yu T, Zhou S J, Zhang L Y, Yin L W. Nat. Commun., 2018, 9: 1076.
[89]
Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T, Luther J M. Science , 2016, 354: 92.
[90]
McHale J M, Auroux A, Perrotta A J, Navrotsky A. Science , 1997, 277: 788.
[91]
Liu C, Yang Y, Xia X, Ding Y, Arain Z, An S J, Liu X P, Cristina R C, Dai S Y, Nazeeruddin M K. Adv. Energy Mater., 2020, 10: 1903751.
[92]
Shi E Z, Yuan B, Shiring S B, Gao Y, Akriti, Guo Y F, Su C, Lai M L, Yang P D, Kong J, Savoie B M, Yu Y, Dou L T. Nature , 2020, 580: 614.
[93]
Jiang Y Z, Yuan J, Ni Y, Yang J E, Wang Y, Jiu T G, Yuan M J, Chen J. Joule , 2018, 2: 1356.
[94]
Wu T H, Wang Y B, Dai Z S, Cui D Y, Wang T, Meng X Y, Bi E B, Yang X D, Han L Y. Adv. Mater., 2019, 31: 1900605.
[95]
Peng H R, Cai M L, Zhou J Y, Yang Y, Ding X H, Tao Y, Wu G, Liu X P, Pan J H, Dai S Y. Solar RRL , 2020, 2000216.
[96]
Xu W Z, He F, Zhang M, Nie P B, Zhang S W, Zhao C, Luo R P, Li J Z, Zhang X, Zhao S C, Li W D, Kang F Y, Nan C W, Wei G D. ACS Energy Lett., 2019, 4: 2491.
[97]
Meng F N , Liu C Y , Gao L G , Ma T L . Progress in Chemistry , 2020, 32: 817.
孟凡宁, 刘彩云, 高立国, 马廷丽. 化学进展, 2020, 32: 817.
[98]
Wang H R, Bian H, Jin Z W, Liang L, Bai D L, Wang Q, Liu S Z. Sol. RRL , 2018, 2: 1800216.
[99]
Zhao H, Yang S M, Han Y, Yuan S H, Jiang H, Duan C Y, Liu Z K, Liu S Z. Adv. Mater. Technol., 2019, 4: 1900311.
[100]
Wang J, Zhang J, Zhou Y Z, Liu H B, Xue Q F, Li X S, Chueh C C, Yip H L, Zhu Z L, Jen A K Y. Nat. Commun., 2020, 11: 177.
[101]
Wang L , Zhou Q , Huang Y Q , Zhang B , Feng Y Q . Progress in Chemistry , 2020, 32: 119.
王蕾, 周勤, 黄禹琼, 张宝, 冯亚青. 化学进展, 2020, 32: 119.
[102]
Liu H W, Wu Z N, Shao J R, Yao D, Gao H, Liu Y, Yu W L, Zhang H, Yang B. ACS Nano , 2017, 11: 2239.
[103]
Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V. Nano Lett., 2015, 15: 3692.
[104]
Liu F, Zhang Y H, Ding C, Kobayashi S, Izuishi T, Nakazawa N, Toyoda T, Ohta T, Hayase S, Minemoto T, Yoshino K, Dai S Y, Shen Q. ACS Nano , 2017, 11: 10373.
[105]
Tolbert S H, Herhold A B, Johnson C S, Alivisatos A P. Phys. Rev. Lett., 1994, 73: 3266.
[106]
Sanehira E M, Marshall A R, Christians J A, Harvey S P, Luther J M. Sci. Adv., 2017, 3: eaao4204.
[107]
Ling X F, Zhou S J, Yuan J Y, Shi J W, Qian Y L, Larson B W, Zhao Q, Qin C C, Li F C, Shi G Z, Stewart C, Hu J X, Zhang X L, Luther J M, Duhm S, Ma W L. Adv. Energy Mater., 2019, 9: 1900721.
[108]
Zeng Z B, Zhang J, Gan X L, Sun H R, Shang M H, Hou D G, Lu C J, Chen R J, Zhu Y J, Han L Y. Adv. Energy Mater., 2018, 8: 1801050.
[109]
Qiu Z W, Li N X, Huang Z J, Chen Q, Zhou H P. Small Methods , 2020, 4: 1900877.
[110]
Tian J J, Xue Q F, Yao Q, Li N, Brabec C J, Yip H L. Adv. Energy Mater., 2020, 10: 2000183.
[1] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[2] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[3] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[4] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[5] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.
[6] 汪润田, 柳春丽, 陈振斌. 印迹复合膜[J]. 化学进展, 2020, 32(7): 989-1002.
[7] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[8] 吕维扬, 孙继安, 姚玉元, 杜淼, 郑强. 层状双金属氢氧化物的控制合成及其在水处理中的应用[J]. 化学进展, 2020, 32(12): 2049-2063.
[9] 马晓辉, 杨立群, 郑士建, 戴其林, 陈聪, 宋宏伟. 全无机钙钛矿太阳电池: 现状与未来[J]. 化学进展, 2020, 32(10): 1608-1632.
[10] 李巍, 杨子煜, 侯仰龙, 高松. 二维磁性纳米材料的可控合成及磁性调控[J]. 化学进展, 2020, 32(10): 1437-1451.
[11] 贾强, 宋洪伟, 唐盛, 王静, 彭银仙. 功能化多孔材料的制备及其在特异性识别分离中的应用[J]. 化学进展, 2019, 31(8): 1148-1158.
[12] 李晓茵, 周传聪, 王英华, 丁菲菲, 周华伟, 张宪玺. 锡基钙钛矿太阳电池光吸收材料[J]. 化学进展, 2019, 31(6): 882-893.
[13] 蒋志敏, 王莉, 沈旻, 陈慧闯, 马国强, 何向明. 锂离子电池正极界面修饰用电解液添加剂[J]. 化学进展, 2019, 31(5): 699-713.
[14] 单雪燕, 王时茂, 孟钢, 方晓东. 钙钛矿太阳电池电子传输层与光吸收层的界面工程[J]. 化学进展, 2019, 31(5): 714-722.
[15] 赵云, 亢玉琼, 金玉红, 王莉, 田光宇, 何向明. 锂离子电池硅基负极及其相关材料[J]. 化学进展, 2019, 31(4): 613-630.
阅读次数
全文


摘要